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Abstract. A state feedback impulsive model is set up to discuss the spread-
ing and control of the computer worm and virus. Considering the transmission

features, saturated infectious is adopted to describe the spreading in the model,

and all the treatment measures, such as patching operating system and updat-
ing antivirus software, are assumed to take effect instantly. Then the model is

analyzed with a novel method, and the existence and stability of order-1 limit

cycle are discussed. Finally, the numerical simulation is listed to verify the
result of the paper.

1. Introduction. In the past decade, information technology has gotten a rapid
development, and is playing an important role in industry, commerce and humans’
daily life. Computers, the most primary carriers of the advanced technique, are
the requisite hardware of the modern science. However, computers have to face the
threaten of worm and virus which are the biggest menace to the normal operation[16,
14]. Generally, the operators do not know the existence of the computer worm,
least of all how and when their computers have been infected. Worm and virus
are always attached to a junk mail, masqueraded as innocent files for downloading,
even ensconced in a code spreading through the Internet[5]. The dissemination of
the worm and virus only needs someone to open the host file, then the worm and
virus can transmit automatically without any additional operation[30]. Up to now,
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computer worm and virus can averagely cause billions of economic damage every
year. To the operators, the direct results caused by infectious, such as causing
system collapse, occupying computer RAM and demolishing existence data etc,
always make them pay a heavy price. In response, updating antivirus software and
patching operating system are two primary protections.

Recently, some researchers described the transmission and prevention of com-
puter worm and virus with the state feedback compulsive model, and they have got
some interesting results[7, 12, 27]. In their models, when the number of infected
computers reaches a certain level the impulsive control will be triggered. Then new
antivirus software will be published and installed, operating system will be patched
to the latest version. All those activities happened instantaneously, and they are
depicted as an impulse in the model.

However, the published researches all assume the diffusion of worm and virus is
linear with the number of infected and susceptible computers which goes against
the truth. In fact, at the initial period of a certain transmission, among the huge
number of healthy computers connected with the Internet, only few of them have
the opportunity to touch the virus[9, 22, 31]. And following the development, the
infectious rate can not keep being linear with the infected and susceptible ones if
the infected computers are numerically superior. So it is proper to describe the
infectious with saturated transmission, and we will study the impulsive control of
computer virus under this spreading fashion.

The remaining of this paper is arranged as follows: we set up the model and
introduce some preliminaries in section 2; the existence, uniqueness and stability of
order-1 limit cycle are analyzed in section 3; finally, some numerical simulation are
showed to confirm the result and some deeper discussion is carried out in section 4.

2. Modeling and preliminaries. Enlightened by the development in the field of
impulsive control and the progress of infectious disease study [19, 29, 25, 26], all the
computers connected with the Internet are divided into two disjoint groups: S(t)
and I(t), which also present the number of individuals in each group at time t. The
computers in group S are healthy ones and can be infected by the computer worm
and virus, and group I is made up of individuals that are infected and they can
transform worm and virus to members of S. In the present research[12, 27], the
incidence form are assumed as the simple item βSI which is contravened with the
truth. In fact, the incidence is not remarkably effected by the number of susceptible
ones when S occupies a considerable large proportion of the population, especially
during the first spreading stage of a certain computer worm or virus. According to
these truth, saturated incidence coincides with the real situation more closely.

Considering objectively, we make the following assumptions:
(1) all the new emerging computers are susceptible ones, and the rate is K;
(2) rejection rate is not affected by the computer worm and virus, and both sucep-
tibles and infectives are sifted out from the Internet at rate µ;
(3) the transmission incidence is βSI

1+αS which means the incidence is approximately
β
αI when the number of susceptibles S is relatively large;

(4) Ī is assumed as the threshold that the computer virus can be discovered.
When infectives is less than Ī, the computer virus spreads freely, and in case

the number of infectives reaches Ī, the computer worm and virus can be detected.
Then the super-version antivirus software and operating system patch program will
be published and a percentage of computers (both suceptibles and infectives) will
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upgrade their antivirus softwares and patch their operating systems. After these
operations, those computers are immune to the certain computer worm or virus
and get away from the virus spreading system. We define the upgrading rate of
suceptibles and infectives are σ1 and σ2 separately. Following these assumptions, the
spreading and control process can be explicated with the state feedback impulsive
model 

dS

dt
= K − βSI

1 + αS
− µS,

dI

dt
=

βSI

1 + αS
− µI,

I < Ī,

∆S = −σ1S, ∆I = −σ2I, I = Ī .

(1)

Considering the practical significance, all the parameters in this paper are positive,
σ1 ∈ (0, 1), σ2 ∈ (0, 1) and system (1) is only considered in space R+

2 = {(S, I)|S ≥
0, I ≥ 0}.

In the reminder part of this section, we introduce some definitions and lemmas to
support the proof of the existence and stability of the order-1 limit cycle of system
(1).

Definition 2.1 (19-25). A typical state feedback impulsive differential model can
be defined as 

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (x, y) /∈M{x, y},

∆x = α(x, y), ∆y = β(x, y), (x, y) ∈M{x, y},
(2)

and can be denoted by (Ω, f, ϕ,M). The solution sources from any point P in
the plane R2\M{x, y}, i.e. P ∈ Ω = R2\M{x, y}. ϕ(x, y) = (α(x, y), β(x, y)) is
defined as an impulsive mapping, ϕ is continuous. After the impulsive mapping,
x+ = x + α(x, y) and y+ = y + β(x, y), (x, y) ∈ M , all the points (x+, y+) form a
set N . Here, we call M and N impulse set and phase set respectively, and they can
be lines or curves in the plane R2 .

Definitions of successor function and order-1 periodic solution of state feedback
impulsive dynamic system are also vitally important in the research.

Definition 2.2. [2, 21, 15] Simply suppose the impulse set M and the phase set N
of system (2) are two straight lines respectively(see Fig.1), and the intersection of
phase set N and y axis is Q. To any point A ∈ N , the coordinate of A, denoted by a,
can be defined as the distance between A and Q. The solution trajectory originating
from A intersects impulse set M at point B, then the impulsive function ϕ maps
B to point C in phase set N , then C is called the subsequent point of A, and its
coordinate is c. The successor function of A is defined as a continuous function
F (A) = c− a. If C locates in the same point of A, then the trajectory segment ÂB

is an order-1 periodic solution, and the orbit ÂB∪BA is said to be an order-1 limit
cycle.

Remark 1. The necessary and sufficient condition that the solution passing point
A forms an order-1 periodic solution is F (A) = 0.

Lemma 2.3. [2, 21, 15] To a state feedback impulsive dynamic system (Ω, f, ϕ,M),
there exist two points B and C in phase set N , if F (B) ·F (C) < 0, then there must
exist a point A between B and C satisfying F (A) = 0, and the solution f(A, t)
forms an order-1 periodic solution.
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Figure 1. Successor function F (A) = c− a

3. Qualitative analysis of the uncontrolled system. Without counting the
impulsive control measure, system (1) can be simplified as

dS

dt
= K − βSI

1 + αS
− µS,

dI

dt
=

βSI

1 + αS
− µI,

(3)

system (3) is called uncontrolled system of (1). Change the variables with linear
transform t = (1 + αS)τ and still use t as the independent variable, then system
(3) changes into 

dS

dt
= −βSI + (K − µS)(1 + αS),

dI

dt
= βSI − µI(1 + αS).

(4)

3.1. Equilibria. It is obvious that system (4) has two equilibria E1(Kµ , 0) and

E2(S∗, I∗), where

S∗ =
µ

β − µα
and I∗ =

(K − µS∗)(1 + αS∗)

βS∗
=
K

µ
− µ

β − µα
.

E1 is a marginal equilibrium, while E2 is the only positive equilibrium in case of

β >
µ2

K
+ µα. (5)

In the following discussions, we assume condition (5) is satisfied consistently. The
Jacobian matrix of E1 is

JE1
=

(
−µ− αK −βKµ

0 βK
µ − µ− αK

)
,

D < 0, so E1 is a saddle. To positive equilibrium E2(S∗, I∗), its Jacobian matrix is

JE2
=

(
−Kµ (β − µα)− αµ2

β−µα − βµ
β−µα

K
µ (β − µα)− µ 0

)
.
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Assume λ1 and λ2 are two roots of the characteristic equation, then

λ1+λ2 = −K
µ

(β − µα)− αµ2

β − µα
< 0 and λ1·λ2 =

βµ

β − µα

(
K

µ
(β − µα)− µ

)
> 0,

so E2 is a locally stable node or focus (see Fig. 2).
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Figure 2. Trajectory of uncontrolled system. The parameter val-
ues: K = 0.06, β = 0.09, α = 8.2, µ = 0.01.

3.2. Uniform boundedness. In this part, we will consider the uniform bounded-
ness in the first quadrant. From system (4), we can find that

I = −µα
β
S +

K

β

1

S
+
Kα− µ

β

is vertical isoclinic line, and

S =
µ

β − µα
and I = 0

are horizontal isoclinic lines.
Following the succeeded statement, we select a piece of bounded region (see

Fig.3). Designate a line l : I = aS + b, where a < 0, b > 0. Line l intersects
S = µ

β−µα at point Q, and then make a horizontal straight line l1 passing point Q.

Denote the region bounded by l, l1, S = 0, I = 0 and S = K
µ as G. Then we discuss

the existence of proper a and b satisfying that G is attracted.
Assume ϕ = I − aS − b,then

dϕ

dt
=
dI

dt
− adS

dt

= (1 + a)aβ · x2 + [bβ(1 + a)− α(aK + bµ)] · x− (aK + bµ).
(6)

Set a = −1 and b = K
µ + 1 > 0,then dϕ

dt < 0,∀S ∈
(

µ
β−µα ,

K
µ

)
. Considering the

character of system (4), bounded region G is attracted.
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Figure 3. region G

3.3. Inexistence of limit cycle. Assume Dulac function u(S, I) = 1
SI , and let

dS

dt
= −βSI + (K − µS)(1 + αS)

∆
= P (S, I),

dI

dt
= βSI − µI(1 + αS)

∆
= Q(S, I),

(7)

then 
dS

dt
= u(S, I)P (S, I) = −βSI + (K − µS)(1 + αS)

∆
= P1(S, I),

dI

dt
= u(S, I)Q(S, I) = βSI − µI(1 + αS)

∆
= Q1(S, I).

(8)

It is obvious that ∂P1

∂S + ∂Q1

∂I = −µαI −
K
S2I < 0, then following Dulac Theorem

system (4) has no limited cycle.
Basing on the above discussion, if condition (5) is satisfied, then there exists

only one positive equilibrium E2(S∗, I∗) and E2(S∗, I∗) is globally asymptotically
stable.

4. Order-1 limit cycle of System(1). In this section, we will certificate the
existence and uniqueness of order-1 limit cycle of system (1). In reality, it is un-
reasonable that a single kind of computer virus lasts for long time without being
detected. So we assume Ī < I∗ without loss of generality, i.e. the impulsive set
M : I = Ī is a horizontal line beneath the positive equilibrium E2. The existence,
uniqueness and stability of the order-1 limit cycle will be proved progressively in
this section.

4.1. Existence of order-1 limit cycle. The existence of order-1 limit cycle is
studied in this subsection.

Theorem 4.1. If condition (5) holds, for any σ1 ∈ (0, 1) and σ2 ∈ (0, 1), system
(1) has an order-1 limit cycle.

Proof. In system (1), to any σ2 ∈ (0, 1), imagine set N : I = (1 − σ2)Ī appears as
another horizontal line under the impulsive set M : I = Ī. In the following part,
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we prove that to any σ2 ∈ (0, 1) there exists a corresponding σ1 forming an order-1
periodic solution.

Assume the intersection of imagine set N : I = (1 − σ2)Ī and the horizontal
isoclinic line dI

dt = 0 is A, and the coordinate is A(S∗, (1 − σ2)Ī). According to
the fundamental theorem of ODE, there must exist a trajectory passing point A,
denote it as L. After a period movement, trajectory L can reach the impulsive
set M , and we assume the intersection is MA and its coordinate is MA(xMA

, Ī).
Then the impulsive function ϕ maps MA to a point NA(xNA

, (1− σ2)Ī) in imagine
set N . If xNA

= S∗, i.e. point A and point NA are the same point, then the
trajectory L and the impulsive mapping ϕ form an order-1 periodic solution (see
Fig.4). Let σ∗1 = xMA

− S∗, then we prove there exists order-1 periodic solution
while 0 < σ1 < σ∗1 and σ∗1 < σ1 < 1.
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Figure 4. Case of NA coinciding with A

Case of 0 < σ1 < σ∗1 . When 0 < σ1 < σ∗1 , it means imagine point NA locates on the
right side of A (see Fig 5). Then the successor function of A is F (A) = xNA

−S∗ > 0.
Consider another point B which is the intersection of imagine set N and the vertical
isoclinic line dS

dt = 0. For point B(xB , (1 − σ2)Ī) locates on the vertical isoclinic
line, the trajectory L1 initiating from point B moves upside left until it reaches the
impulsive set M at MB . So xMB

< xB . Then the impulsive function ϕ maps MB

to the imagine point NB which is on left side of MB horizontally. Subsequently the
successor function of point B is F (B) = xNB

−xB < 0. Following the continuous of
successor function, there must exist a point C between A and B satisfying F (C) = 0,
and the trajectory initiating from C and the corresponding impulsive mapping form
the order-1 periodic solution.

Case of σ∗1 < σ1 < 1. When σ∗1 < σ1 < 1, it means that the impulsive function ϕ
controls the imagine point NA to fall on left side of A(see Fig 6), and the coordinate
is NA((1−σ1)xMA

, Ī). So the successor function of A is F (A) = xNA
−S∗ < 0. Then

consider the trajectory L2 initiating from NA, it moves adhering the uncontrolled
system (3) until intersects the impulsive set M at point MD. According to the
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Figure 5. Case of 0 < σ1 < σ∗1

non-intersecting feather of ODE trajectories, MD must locate on the right side of
MA, i.e. xMD

> xMA
. Denote the imagine point of MD is ND, and its coordinate

is ND((1 − σ1)xMD
, (1 − σ2)Ī). Then the successor function of NA is F (NA) =

xND
− xNA

= (1 − σ1)xMD
− (1 − σ1)xMA

= (1 − σ1)(xMD
− xMA

) > 0. Still
following the continuous of successor function, there must exist a point C between
A and NA satisfying F (C) = 0, that is to say the trajectory initiating from C and
the corresponding impulsive mapping form the order-1 periodic solution.

Basing on the above discussion, to any σ1 ∈ (0, 1) and σ2 ∈ (0, 1), there exist an
order-1 periodic solution of system (1).

Figure 6. Case of σ∗1 < σ1 < 1
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Since the order-1 periodic solution is isolated, its trajectory and the proper im-
pulsive line can form order-1 limit cycle of system(1).

4.2. Uniqueness of order-1 limit cycle. In this part we prove the uniqueness
of the order-1 limit cycle with the homogeneous of successor function.

Theorem 4.2. The order-1 limit cycle of system (1) is unique.

Proof. Select two points I and J in phase set N arbitrarily, and assume xI < xJ (see
Fig. 7). There must exist trajectories initiating from I and J , and we denote them
as LI and LJ respectively. These two trajectories can reach the impulse set M , and
we denote the intersections as MI and MJ respectively. It is obvious that MI must
locate on the right side of MJ , i.e. xMI

> xMJ
. Then the impulse function ϕ maps

them to NI and NJ respectively. xNI
= (1 − σ1)xMI

and xNJ
= (1 − σ1)xMJ

, it
is easy to obtain xNI

> xNJ
. I and J have NI and NJ as their subsequent points

respectively, F (I) and F (J) are their successor functions. Then F (I) − F (J) =
(xNI

− xI) − (xNJ
− xJ) = (xNI

− xNJ
) + (xJ − xI) > 0. Basing on the previous

discussion, we can draw the conclusion that the successor function F (·) of system
(1) is monotonically decreasing. Thus to any σ1 ∈ (0, 1) and σ2 ∈ (0, 1), there exists
only one point C in imagine set satisfying F (C) = 0. Therefore the order-1 limit
cycle of system (1) is unique.

Figure 7. The successor function is monotonically decreasing.

4.3. Stability of order-1 limit cycle. The above content has proved the existence
and uniqueness of order-1 limit cycle. In this subsection, we discuss the stability of
the order-1 limit cycle of system (1). Unlike the case of continuous dynamic system,
the stability proof of impulsive dynamic system is quite complex. Some definition
and lemma which are significant in the proof will be illustrated first.

Definition 4.3. [24] The order-1 limit cycle Γ is stable, if it is the ω limit set for
those trajectories initiating from any point of its small enough neighborhood U(Γ).
Otherwise, Γ is unstable.
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Basing on the theorem of subsection 4.1 and 4.2, to any σ1 ∈ (0, 1) and σ2 ∈ (0, 1),
system (1) has a unique order-1 limit cycle, here we denote it as Γ. We also assume
that Γ intersects the imagine set N at point A (see Fig.8). Then to any point S0

that locates in the small neighborhood of A, define a point series

S0, S1, · · · , Sk, Sk+1, · · · ,
where Si+1 is the subsequent point of Si, i = 0, 1, · · · , k, · · · , and their coordinates
s0, s1, · · · , sk, sk+1, · · · are defined as

sk =

{
−dk, Sk is on left side of A,
dk, Sk is on right side of A,

where dk is the distance between Sk and A. Under this rule, it is obvious that the
coordinate of A is 0.

Figure 8. S1, S2, · · · , Sk+1, Sk+2, · · · are the subsequent points of
S0, S1, · · · , Sk, Sk+1, · · · respectively.

Lemma 4.4. [24] Denote the mapping of the general impulsive dynamic system (2)
as f , and suppose function s̄ = f(s) is derivative at s = 0. Then s = 0 is stable
(unstable), if ∣∣∣∣ds̄ds

∣∣∣∣
s=0

< 1(> 1).

It is not easy to prove the stability of order-1 limit cycle of system (2) only with
the previous lemma, so we set up an orthogonal coordinate (s, n) in the nearby area
of Γ as an auxiliary tool.

Without loss of generality, we assume that functions P (x, y) andQ(x, y) of system
(2) have arbitrary order partial derivatives. Since the impulse mapping is quick
enough, the period of order-1 limit cycle is the same with the time interval between
A and C on a certain trajectory of corresponding uncontrolled system, and we
denote it as T .

To any point in that region, there exists a certain point in the closed orbit Γ and
its normal line passes the certain point. The first coordinate s of the new coordinate
is defined as the length of the trajectory from A to the certain point on Γ, while
the second coordinate n is defined as the number of the normal vector(upside is the

positive direction)(See Fig.9). Rewrite the rectangular equation of curve ÂBC into
the parametric equation

x = φ(s), y = ψ(s), (9)
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Figure 9. Establish coordinate system (s, n) on point A.

where s is the parameter.
Then the rectangular coordinate (x, y) can be expressed with the orthogonal

coordinate (s, n) as

x = φ(s)− nψ′(s), y = ψ(s) + nφ′(s), (10)

Following (2) and (10), we have

dn

ds
=
Qφ′ − Pψ′ − n(Pφ′′ +Qψ′′)

Pφ′ +Qψ′
∆
= F (s, n). (11)

It is apparent that n = 0 is a solution of (11) . We also assume that F (s, n) is
biased derivative, and the first-order partial derivative of F (s, n) is continuous with
respect to n, then (11) can be expressed briefly as

dn

ds
= Fn

′(s, n)
∣∣
n=0
· n+ o(n). (12)

Following (11), we can calculate

Fn
′(s, n)|n=0 =

P 2
0Qy0 − P0Q0(Py0 +Qx0) +Q2

0Px0

(P 2
0 +Q2

0)
3
2

∆
= H(s),

where P0 and Q0 are the values of P and Q at point A, Px0, Py0, Qx0 and Qy0

represent the partial derivatives of P andQ at n = 0 with respect to x, y respectively.
It is obvious that P0φ

′′ +Q0ψ
′′ = 0. Then the order-1 linear approximate equation

of (12) is
dn

ds
= H(s)n, (13)

and its solution is

n = n0e
∫ T
0
H(s′)ds′ , n0 = n(0). (14)

Theorem 4.5. Assume h is the length of curve ÂBC which is a segment of the
order-1 periodic solution Γ to system (2), then Γ is stable (unstable) if integration

of H(s) along ÂBC is negative (positive), i.e.∫ h

0

H(s)ds < 0(> 0).
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Theorem 4.6. Suppose the region closed by order-1 periodic solution Γ is convex.

If
T∫
0

(Px0 +Qy0)dt < 0 is satisfied, then Γ is stable.

The proofs of Theorem 4.5 and Theorem 4.6 are similar with that in [27], and
omitted here.

Then we can draw the corollary naturally.

Corollary 1. Suppose the area closed by order-1 limit cycle Γ is convex. If Px0 +
Qy0 < 0(> 0) holds, then Γ is stable(unstable).

5. Simulation and discussion. In this section, we present and discuss a special
example to check the theoretical results in section 3 and section 4.

The uncontrolled part of system (1) is numerically calculated with fourth-order
Runge-Kutta of Matlab software package. In the following, we discuss the solution of
system (1), considering the parameters K = 0.06, β = 0.09, α = 8.2 and µ = 0.01.
After a simple calculation, the corresponding uncontrolled system has a steady
state (x∗, y∗) = (1.25, 4.75). We also assume the threshold value that triggers
patching operating system and updating the antivirus software is 3.8. Then the
instantaneous impulse comes into force on 40% of susceptible ones and 60% of
infected ones respectively. The trajectory of system (1) and time series of S and I
are listed in Fig.(10).

From Fig.(10), it is obvious that system (1) has an order-1 limit cycle with the
parameters mentioned above. We can also find that the limit cycle forms soon after
the trajectory initiate from the original point which means that the impulsive patch-
ing and updating of antivirus software is quite effective. During the first period of
the transmission, the worm or the virus spreads freely, the number represents sus-
ceptible computers decreases rapidly and the number stands for the infectious ones
increased sharply. The developing trend of S and I(subplots (b) and (c) of Fig.(10))
indicates that the worm or virus erodes the computers ferociously, and most of the
healthy computers will be infected without any intervention. After patching the
system or updating the antivirus software, the infected computers will drop down
instantly. Then it rises again according to the uncontrolled propagation. However,
impulsive treatment triggered by the state of infected computers can prevent the
deluge of worms and the collapse of the Internet. Enhancing the Internet monitor,
publishing new version operating system patch, and developing efficient antivirus
software can make the Internet operating normally.
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