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Abstract. The epidemic characteristics of an epidemic model with behavioral
change in [V. Capasso, G. Serio, A generalizaition of the Kermack-McKendrick

deterministic epidemic model, Math. Bios., 42 (1978), 43-61] are investigated,

including the epidemic size, peak and turning point. The conditions on the
appearance of the peak state and turning point are represented clearly, and the

expressions determining the corresponding time for the peak state and turning

point are described explicitly. Moreover, the impact of behavioral change on
the characteristics is discussed.

1. Introduction. Dynamical models for epidemic spread have made a great con-
tribution to understanding transmission mechanism of the infection and controlling
the spread. In 1927, Kermack and McKendrick [5] established the following simple
SIR epidemic model to investigate the outbreak of the Great Plague lasting from
1665 to 1666 in London 

S′ = −βSI,

I ′ = βSI − αI,

R′ = αR,

(1)

where the population is divided into three classes, susceptible (S), infective (I) and
removed (R); S(t), I(t) and R(t) denote their numbers respectively at time t; β
is the infection rate coefficient, and α is the removal rate coefficient. A threshold
theorem of epidemic spread was found by Kermack and McKendrick [5] for system
(1). Since then a lot of epidemic models are established based on model (1)[9, 2]
and references therein.

In 1978, after a study of the cholera epidemic spread in Bari in 1973, Capasso
and Serio [3] proposed a saturation incidence rate βSI/(1 + εI) to measure the inhi-
bition effect due to behavioral change (e.g. reduction of contact rate, strengthening
of protection measures, etc.) of the susceptible individuals when the number of
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infective individuals increases, where ε is referred to as inhibition parameter reflect-
ing the intensity of behavioral change of susceptible individuals during the disease
spread. The replacement of the bilinear incidence in model (1) with the saturation
incidence yields the following model with behavioral change

S′ = − βSI
1+εI ,

I ′ = βSI
1+εI − αI,

R′ = αR,

(2)

For model (1), the epidemic final size (i.e. the number of individuals who are
infected over the course of the epidemic) can be determined easily by dividing the
first two equations of the model and then integrating it[1, 6, 8, 10], and the epidemic
peak (i.e. the largest number of real-time infected individuals in the population (not
cumulative cases)) can also be found directly from the first integral and the second
equation of model (1) [6].

In [3], Capasso and Serio compared the two models (1) and (2) in a qualitative
way, and extended the threshold theorem for model (1) by replacing the threshold
line of model (1) with the threshold curve of model (2). But with respect to the
epidemic final size and peak state of model (2), there is not an investigation in detail.
Especially, the role of the inhibition parameter ε for the epidemic characteristics
has not been discussed.

During an epidemic outbreak, for the local public health department to control
the spread of the disease, while concerning about the peak state of disease spread
and the epidemic final size, the turning point and the associated state of population
are also the important characteristics that need to be paid attention too. The
turning point denotes the time at which the rate of cumulative cases changes from
increasing to decreasing or vice versa [4]. Recently, we theoretically investigated the
epidemic characteristics including the epidemic final size, the peak and the turning
point of some simple epidemic models without vita dynamics including model (1),
and analyzed the dependence of the related quantities on the initial conditions [6, 7,
11]. However, in the preceding models considered by us, no behavioral intervention
was involved. In this paper, our aim is to investigate the impact of behavioral change
on the epidemic characteristics for model (2). Based on some fundamental and
elegant mathematical deductions, the dependence of the epidemic characteristics
on the initial condition and the inhibition parameter is established.

2. Formulation of model and preliminary. Since the variable R does not ap-
pear in the first two equations of (2), and the system (called as SI model) consisting
of the first two equations of (2) can determine its dynamics and epidemic charac-
teristics, we consider the reduced model{

S′ = − βSI
1+εI ,

I ′ = βSI
1+εI − αI

(3)

with the initial condition S(0) = S0 > 0 and I(0) = I0 > 0, where α may represent
the sum of the recovery and disease-induced death rates.

Obviously, the initial condition implies that S(t) > 0 and I(t) > 0 for t > 0.
Moreover, S(t) is decreasing since S′(t) < 0 for t > 0. Thus S(t) ≤ S0 for t ≥ 0.
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From model (3) we have

dI

dS
=
α(1 + εI)− βS

βS
. (4)

Correspondingly, I|S=S0
= I0. Then equation (4) with condition I|S=S0

= I0 has
the following solution

I = I0
S

S0
+
α

β

(
S

S0
− 1

)
− S ln

S

S0
for β = αε, (5)

and

I = I0

(
S

S0

)αε
β

− 1

ε

[
1−

(
S

S0

)αε
β

]
− βS

β − αε

[
1−

(
S

S0

)αε
β −1

]
for β 6= αε. (6)

For simplicity, we denote x = S/S0 and σ = αε/β. Here x = x(t) ∈ (0, 1] for
t > 0 since S(t) ≤ S0 for t ≥ 0.

Further, for σ = 1 and σ 6= 1, (5) and (6) can be rewritten as

I =
1

ε
[(εI0 + 1)x− 1− εS0x lnx] =:

1

ε
f1(x), (7)

and

I =
1

ε

[(
εI0 + 1 +

εS0

1− σ

)
xσ − 1− εS0x

1− σ

]
=:

1

ε
f2(x), (8)

respectively. In particular, when σ = 1 + εS0/(1 + εI0), function f2(x) becomes
f0(x) = (1 + εI0)x− 1.

Additionally, we state the following lemmas and inequalities, which will be used
in our later inferences.

Lemma 2.1. For function g(x) ∈ C2[a, b] with g′′(x) ≤ 0 (≥ 0), there is a unique
zero point in (a, b) if g(a)g(b) < 0; it is always positive (negative) in [a, b] if g′′(x) ≤
0 (≥ 0) and both g(a) and g(b) are positive (negative).

Lemma 2.2. For function g(x) ∈ C1[a, b], if there is at most one local extreme
point, then there is a unique zero of function g(x) in (a, b) if and only if g(a)g(b) < 0.

Lemma 2.3. The inequality

Φ(u) = u− 1− lnu ≥ 0

for u > 0, and the equality holds if and only if u = 1.

Lemma 2.4. For any positive number σ with σ 6= 1, the inequality

Ψ(u) = uσ +
σuσ−1

1− σ
− 1

1− σ
≥ 0

for u > 0, and the equality holds if and only if u = 1.

It is easy to prove the above lemmas and inequalities by applying the fundamental
knowledge of differential calculus, so we omit them.

3. Analysis of epidemic characteristics. In this section, we analyze the epi-
demic characteristics of SI model (3) including the final state, the peak state and
the turning point by means of Lemmas and the relation between variable S and I
obtained in Section 2.
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3.1. Epidemic final state. Epidemic final size is the number of the cumulative
cases. According to the character of SI model (3), there is no reinfection for the
model. Then the size can be obtained by subtracting the number of the individuals,
who have not been infected when the spread of the disease terminates, from the
initial number of susceptible individuals. The termination of infection is indicated
by the fact that there is no infected individuals.

In what follows, we will determine the final size by analyzing the zeros of fi(x)
(i = 0, 1, 2) on (0, 1]. It is easy to know that

lim
x→0+

f1(x) = f2(0) = −1,

and

f1(1) = f2(1) = εI0.

Moreover, the direct calculation gives

f ′′1 (x) = −εS0

x
, f ′′2 (x) = σ(σ − 1)

(
εI0 + 1 +

εS0

1− σ

)
xσ−2.

So the signs of f ′′1 (x) and f ′′2 (x) are unchanged for σ 6= 1 + εS0/(1 + εI0). Then,
according to Lemma 2.1, when σ 6= 1 + εS0/(1 + εI0), both f1(x) and f2(x) have a
unique zero in the interval (0, 1), denoted by x∞. Further, we know that fi(x) < 0
for 0 < x < x∞ and fi(x) > 0 for x∞ < x < 1 (i = 1, 2).

For σ = 1 + εS0/(1 + εI0), it is obvious that f0(x) has a unique positive zero,
1/(1 + εI0), denoted by x0∞.

The above inference implies that x∞ or x0∞ represents the fraction of the sus-
ceptible individuals, who have not been infected when the spread of the disease
terminates, and that the feasible region of the variable x is (x∞, 1] for σ 6= 1 +
εS0/(1 + εI0), and (x0∞, 1] for σ = 1+εS0/(1 + εI0). Therefore, when the infection
terminates, the number of susceptible individuals is S0x∞ for σ 6= 1+εS0/(1 + εI0),
and S0/(1 + εI0) for σ = 1 + εS0/(1 + εI0). Correspondingly, the epidemic fi-
nal size is S0(1 − x∞) for σ 6= 1 + εS0/(1 + εI0), and εS0I0/(1 + εI0) for σ =
1 + εS0/(1 + εI0).

Remark 1. Although we have introduced how to determine the epidemic state,
the related expressions are not formulated explicitly since the equations determining
them could be a transcendental one. Then it is necessary to turn to mathematical
softwares for finding them.

Additionally, with respect to x∞, we have the following statement which will be
used later.

Proposition 1. When σ = 1, x∞ < 1/(εS0). When σ 6= 1 and σ 6= 1 +
εS0/(1 + εI0), x∞ < σ/(εS0).

Proof. First, substituting x = 1/(εS0) into function f1(x) yields

f1

(
1

εS0

)
=
I0
S0

+ Φ

(
1

εS0

)
.

From Lemma 2.3 it follows that f1 (1/(εS0)) > 0. By the property of function f1(x)
we know that x∞ < 1/(εS0).

Next the substitution of x = σ/(εS0) into function f2(x) yields

f2

(
σ

εS0

)
= εI0

(
σ

εS0

)σ
+ Ψ

(
σ

εS0

)
.
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By Lemma 2.4 we know that f2 (σ/(εS0)) > 0. Further, the property of function
f2(x) implies that x∞ < σ/(εS0).

This completes the proof of Proposition 1.

3.2. Peak state. The peak state corresponds to time at which the number of
infected individuals attains the maximum. It can be found by determining the
state at which I ′(t) = 0. That is, the peak state satisfies the equation

βS

1 + εI
= α. (9)

Note that σ = αε/β. Then (9) can become

εI + 1− ε

σ
S = 0. (10)

In Section 2, we have expressed I by a function of x. Then, for the cases σ =
1 + εS0/(1 + εI0), σ = 1 and σ 6= 1, 1 + εS0/(1 + εI0), substituting S = S0x and
I = fi(x) (i = 0, 1, 2) into the left hand side of (10) gives gi(x) = 0, where

g0(x) = − εS0x
σ(1−σ) ,

g1(x) = x(1 + εI0 − εS0 − εS0 lnx) =: xḡ1(x),

g2(x) = x
[(
εI0 + 1 + εS0

1−σ

)
xσ−1 − εS0

σ(1−σ)

]
=: xḡ2(x).

Thus, the zero of functions gi(x) (i = 0, 1, 2) corresponds to the peak state of the
associated cases.

Obviously, g0(x) > 0 for x ∈ (x0∞, 1). Then there is no peak state as σ =
1 + εS0/(1 + εI0).

For σ = 1, from f1(x∞) = 0, i.e. 1 + εI0 − εS0 lnx∞ = 1/x∞, it follows that
ḡ1(x∞) = (1−εS0x∞)/x∞. From Proposition 1 we have ḡ1(x∞) > 0. Then, accord-
ing to the monotonicity of ḡ1(x), there is a unique zero of ḡ1(x) (i.e. g1(x)), x1p, in
the interval (x∞, 1) if and only if g1(1) = 1 + εI0 − εS0 < 0, i.e. εS0/(1 + εI0) > 1,
where

x1p = e(1+εI0−εS0)/(εS0).

For function ḡ2(x) with σ 6= 1, 1 + εS0/(1 + εI0), applying f2(x∞) = 0 gives
ḡ2(x∞) = 1/x∞ − εS0/σ. From Proposition 1 we know that ḡ2(x∞) > 0. It is
evident that ḡ2(x) is monotone, then ḡ2(x) (i.e. g2(x)) has a unique zero x2p in the
interval (x∞, 1) if and only if ḡ2(1) = 1 + εI0 − εS0/σ < 0, i.e., σ < εS0/(1 + εI0),
where

x2p =

{
εS0

σ[(1− σ)(εI0 + 1) + εS0]

}1/(σ−1)

.

Further, substituting x = xip (i = 1, 2) into S = S0x and I = fi(x)/ε (i =
1, 2), we obtain the peak state (S1p, I1p) for σ = 1, and (S2p, I2p) for σ 6= 1, 1 +
εS0/(1 + εI0), respectively, where

S1p = S0e
1+εI0−εS0

εS0 , I1p = S0e
1+εI0−εS0

εS0 − 1
ε ;

S2p = S0

{
εS0

σ[(1−σ)(εI0+1)+εS0]

} 1
σ−1

, I2p = S0

σ

{
εS0

σ[(1−σ)(εI0+1)+εS0]

} 1
σ−1 − 1

ε .

Moreover, the time of the peak state can also be found by substituting S = S0x
and I = fi(x)/ε (i = 1, 2) into the first equation of (3) and then integrating it. In
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detail, we first substitute S = S0x and I = fi(x)/ε (i = 1, 2) into the first equation
of (3) yields

dx

dt
= − βxfi(x)

ε[1 + fi(x)]

with x∞ < x < 1, that is,

dt = −ε[1 + fi(x)]

βxfi(x)
dx. (11)

Note that x(0) = 1 since S(0) = S0. Denote the time of the peak state by tp. Then
tp can be determined by integrating the right hand side of (11) from 1 to xip, that
is,

tp = −
∫ xip

1

ε[1 + fi(x)]

βxfi(x)
dx =

ε

β

[∫ 1

xip

dx

xfi(x)
− lnxip

]
.

3.3. Turning point. Let C(t) represent the number of the cumulative cases at
time t. Then the turning point of the infection spread corresponds to the inflection
point of function C(t), and C ′(t) = βSI/(1 + εI) for model (3).

The expressions (5) and (6) show that the variable I can be expressed by the
variable S. Then

C ′′(t) =
d

dS

(
βSI

1 + εI

)
· dS
dt

=
β

(1 + εI)2
·
[
I(1 + εI) + S

dI

dS

]
· dS
dt
.

Since dS
dt < 0, the inflection point of function C(t) is determined by equation

I(1 + εI) + S dI
dS = 0. (12)

Substituting S = S0x and I = fi(x)/ε (i = 0, 1, 2) into the left hand side of (12)
gives

h0(x) = (εI0+1)2x2

ε ,

h1(x) = 1
ε [f1(x)(1 + f1(x)) + xf ′1(x)]

= x2

ε

{
[(εI0 + 1)− εS0 lnx]

2 − εS0

x

}
=: x

2

ε h
+
1 (x)h−1 (x),

h2(x) = 1
ε [f2(x)(1 + f2(x)) + xf ′2(x)] =: x

2

ε h̄2(x),

respectively, where

h+1 (x) = (εI0 + 1)− εS0 lnx+
√

εS0

x ,

h−1 (x) = (εI0 + 1)− εS0 lnx−
√

εS0

x ,

h̄2(x) =
[
(εI0 + 1)xσ−1 − εS0(1−xσ−1)

1−σ

]2
− [(1− σ)(εI0 + 1) + εS0]xσ−2.

Thus, the zeros of functions hi(x) (i = 0, 1, 2) in (x∞, 1) correspond to the inflection
points of C(t) (i.e. the turning point of the infection) under the cases σ = 1 +
εS0/(1 + εI0), σ = 1 and σ 6= 1, 1 + εS0/(1 + εI0), respectively.

(1) Note that h0(x) > 0. Then there is no inflection point of function C(t) for
σ = 1 + εS0/(1 + εI0).

(2) When σ = 1, from f1(x) > 0 for x∞ < x < 1 it follows that (εI0 + 1) −
εS0 lnx > 1/x > 0 for x∞ < x < 1. Then h+1 (x) > 0 for x∞ ≤ x < 1.
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From f1(x∞) = 0 it follows that h−1 (x∞) = (1−
√
εS0x∞)/x∞. Further we know

that h−1 (x∞) > 0 by Proposition 1. Note that

h−1
′
(x) =

√
εS0

(
1

2
√
x
−
√
εS0

)
1

x

implies that function h̄1(x) has at most one local extreme point. Then from Lemma
2.2 it follows that there is one zero of h−1 (x) in (x∞, 1) if and only if h−1 (1) =
(εI0 + 1)−

√
εS0 < 0, i.e. εI0 + 1 <

√
εS0.

Therefore, when σ = 1, there is a unique inflection point of C(t) for x ∈ (x∞, 1)
if and only if εI0 + 1 <

√
εS0.

(3) It is easy to see that function h̄2(x) > 0 (i.e. h2(x) > 0) for x∞ < x < 1
when σ > 1 + εS0/(1 + εI0).

When σ < 1 + εS0/(1 + εI0) and σ 6= 1, function h̄2(x) can be expressed as
h̄2(x) = h+2 (x)h−2 (x), where

h+2 (x) =
[
(εI0 + 1)xσ−1 − εS0(1−xσ−1)

1−σ

]
+
√

[(1− σ)(εI0 + 1) + εS0]xσ−2,

h−2 (x) =
[
(εI0 + 1)xσ−1 − εS0(1−xσ−1)

1−σ

]
−
√

[(1− σ)(εI0 + 1) + εS0]xσ−2.

From f2(x) > 0 for x∞ < x < 1 we know that

(εI0 + 1)xσ−1 − εS0(1− xσ−1)

1− σ
>

1

x
> 0

for x∞ < x < 1. Then h+2 (x) > 0 for x∞ ≤ x < 1.
For function h−2 (x),

h−2
′
(x) = −

√
(1− σ)(εI0 + 1) + εS0x

σ
2−2

×
{√

(1− σ)(εI0 + 1) + εS0x
σ
2 + σ−2

2

}
.

Then function h−2 (x) has at most one local extreme point in (x∞, 1).
On the other hand, applying f2(x∞) = 0 gives h2(x∞) = (σ − εS0x∞)/ε > 0 by

Proposition 1. Further we have h−2 (x∞) > 0 since h+2 (x) > 0 for x∞ ≤ x < 1.
Therefore, from Lemma 2.2 function h−2 (x) has one zero in (x∞, 1) if and only if

h−2 (1) =
(εI0 + 1)(εI0 + σ)− εS0

(εI0 + 1) +
√

(1− σ)(εI0 + 1) + εS0

< 0,

i.e., σ < εS0/(1 + εI0) − εI0. Note that εS0/(1 + εI0) − εI0 < 1 + εS0/(1 + εI0).
Hence, when σ 6= 1, 1 + εS0/(1 + εI0), function h−2 (x)(i.e. h2(x) ) has one zero
in (x∞, 1) if and only if σ < εS0/(1 + εI0) − εI0. That is, when σ 6= 1, 1 +
εS0/(1 + εI0), there is a unique inflection point of C(t) for x ∈ (x∞, 1) if and only
if (εI0 + 1)(εI0 + σ) < εS0.

Summarizing the above inference, the conditions on the existence of the turning
point can be unified as the expression (εI0 + σ)(εI0 + 1) < εS0.

Since functions hi(x) (i = 1, 2) are transcendental functions, the value of x
corresponding to the inflection point of C(t) could not expressed explicitly. If it
exists, denoted by xt, then, similar to the determination of time corresponding to
the peak state, the time of the turning point of epidemic spread can be found by
the following expression

tt =
ε

β

[∫ 1

xt

dx

xfi(x)
− lnxt

]
,
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and the corresponding state is (St, It), where St = S0xt and It = fi(xt)/ε (i = 1, 2.)

4. Conclusion and discussion. In Section 3, we have discussed the epidemic
characteristics of model (3) with behavioral change, obtained the condition on the
existence of the peak state, σ(1 + εI0) < εS0, and the condition on the appearance
of the turning point of epidemic spread, (εI0 + σ)(1 + εI0) < εS0, and provided the
methods or expressions determining the associated quantities.

In order to make the dependence of the related conditions on the parameters
and the initial conditions more clear, we replace the parameter σ with αε/β in the
associated expressions. Correspondingly, the condition on the existence of the peak
state is that ε < (βS0/α− 1) /I0, and the condition on the appearance of the turning
point is that ε < [βS0/(α+ βI0) − 1]/I0. Conversely, when ε ≥ (βS0/α− 1) /I0,
the peak can not appear; when ε ≥ [βS0/(α+ βI0) − 1]/I0, there is no turning
point. Note that βS0/(α+ βI0) < βS0/α. Then, when ε < [βS0/(α+ βI0)− 1]/I0,
both the peak and the turning point can appear; when [βS0/(α+ βI0) − 1]/I0 ≤
ε < (βS0/α− 1) /I0, there is a peak but no turning point; if ε ≥ (βS0/α− 1) /I0,
both the two characteristics could not exist. These statements show the impact of
the behavioral change on the existence of the two characteristics. From another
point of view, when the turning point can appear, there must be the peak state.
But there may not be the turning point if the peak state exists. The inequalities
above also provide the threshold condition on the appearance of the peak and/or
the turning point. The results obtained here would be useful to make the effective
control strategy for disease spread.

In order to visually show the impact of behavioral change on the peak state
and turning point of disease spread, we plot a set of graphes (Figures 1, 2 and
3) of the curves of I = I(t) and C = C(t), denoting the real-time numbers of
infected individuals and cumulative cases, respectively. Here, the chosen values of
parameters and the initial conditions do not represent any real data. Corresponding
to all the three graphes, parameters α = 2 and β = 0.2, initial values S(0) = 200
and I(0) = 2, then

1

I0

(
βS0

α+ βI0
− 1

)
= 7.8333,

1

I0

(
βS0

α
− 1

)
= 9.5000.

According to the obtained results, there are both the peak and the turning point if
ε < 7.8333, there is the peak and no turning point if 7.8333 ≤ ε < 9.8, and there is
neither peak and no turning point for ε ≥ 9.5. These theoretic results are verified
by Figures 1, 2 and 3. In Figure 1 for ε = 0.08, the peak I = 75.53400 achieves at
t = 0.57065, and the turning point is (0.16853, 37.07000). In Figure 2 for ε = 8, the
peak is I = 2.29549 at t = 1.36570 and there is no turning point. For Figure 3 for
ε = 9.8, I = I(t) is decreasing, and C = C(t) is convex upwards. That is, both the
peak and the turning point do not appear.
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Figure 1. The case that both the peak and the turning point can appear.

0 20 40 60
0

50

100

150

t

C
(t

)

0 1 2 3 4
2

2.05

2.1

2.15

2.2

2.25

2.3

t

I(
t)

Peak point

Figure 2. The case that there is the peak and no turning point.

[3] V. Capasso and G. Serio, A generalizaition of the Kermack-McKendrick deterministic epi-

demic model, Math. Bios., 42 (1978), 43–61.

[4] Y. H. Hsieh and C. W. S. Chen, Turning points, reproduction number, and impact of clima-
tological events for multi-wave dengue outbreaks, Trop. Med. Int. Heal., 14 (2009), 628–638.

[5] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epi-

demics, Proc. R. Soc. Lond. A, 115 (1927), 700–721.

http://www.ams.org/mathscinet-getitem?mr=MR529097&return=pdf
http://dx.doi.org/10.1016/0025-5564(78)90006-8
http://dx.doi.org/10.1016/0025-5564(78)90006-8
http://dx.doi.org/10.1111/j.1365-3156.2009.02277.x
http://dx.doi.org/10.1111/j.1365-3156.2009.02277.x


1434 JIANQUAN LI, XIAOQIN WANG AND XIAOLIN LIN

0 50 100
0

20

40

60

80

100

120

140

160

180

t

C
(t

)

0 50 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

I(
t)

Figure 3. The case that both the peak and the turning point
can not appear.

[6] J. Li, Y. Li and Y. Yang, Epidemic characteristics of two classic models and the dependence

on the initial conditions, Math. Bios. Eng., 13 (2016), 999–1010.

[7] J. Li and Y. Lou, Characteristics of an epidemic outbreak with a large initial infection size,
J. Biol. Dyn., 10 (2016), 366–378.

[8] J. Ma and D. J. D. Earn, Generality of the final size formula for an epidemic of a newly

invading infectious disease, Bull. Math. Biol., 68 (2006), 679–702.
[9] Z. Ma and J. Li, Dynamical Modeling and Analysis of Epidemics, Singapore, 2009.

[10] J. C. Miller, A note on the derivation of epidemic final sizes, Bull. Math. Biol., 74 (2012),
2125–2141.

[11] F. Zhang, J. Li and J. Li, Epidemic characteristics of two classic SIS models with disease-

induced death, J. Theoret. Biol., 424 (2017), 73–83.

Received January 14, 2018; Accepted June 11, 2018.

E-mail address: jianq li@263.net

E-mail address: wangxiaoqin@sust.edu.cn

E-mail address: linxl@sust.edu.cn

http://www.ams.org/mathscinet-getitem?mr=MR3557180&return=pdf
http://dx.doi.org/10.3934/mbe.2016027
http://dx.doi.org/10.3934/mbe.2016027
http://www.ams.org/mathscinet-getitem?mr=MR3546148&return=pdf
http://dx.doi.org/10.1080/17513758.2016.1205223
http://www.ams.org/mathscinet-getitem?mr=MR2224786&return=pdf
http://dx.doi.org/10.1007/s11538-005-9047-7
http://dx.doi.org/10.1007/s11538-005-9047-7
http://www.ams.org/mathscinet-getitem?mr=MR2590537&return=pdf
http://dx.doi.org/10.1142/9789812797506
http://www.ams.org/mathscinet-getitem?mr=MR2964890&return=pdf
http://dx.doi.org/10.1007/s11538-012-9749-6
http://www.ams.org/mathscinet-getitem?mr=MR3657175&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2017.04.029
http://dx.doi.org/10.1016/j.jtbi.2017.04.029
mailto:jianq_li@263.net
mailto:wangxiaoqin@sust.edu.cn
mailto:linxl@sust.edu.cn

	1. Introduction
	2. Formulation of model and preliminary
	3. Analysis of epidemic characteristics
	3.1. Epidemic final state
	3.2. Peak state
	3.3. Turning point

	4. Conclusion and discussion
	Acknowledgments
	REFERENCES

