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Abstract. Infectious disease outbreaks sometimes overwhelm healthcare fa-
cilities. A recent case occurred in West Africa in 2014 when an Ebola virus

outbreak overwhelmed facilities in Sierra Leone, Guinea and Liberia. In such

scenarios, how many patients can hospitals admit to minimize disease burden?
This study considers what type of hospital admission policy during a hypothet-

ical Ebola outbreak can better serve the community, if overcrowding degrades

the hospital setting. Our result shows that which policy minimizes loss to
the community depends on the initial estimation of the control reproduction

number, R0. When the outbreak grows extremely fast (R0�1) it is better

(in terms of total disease burden) to stop admitting patients after reaching
the carrying capacity because overcrowding in the hospital makes the hospital

setting ineffective at containing infection, but when the outbreak grows only

a little faster than the systems ability to contain it (R0 & 1), it is better to
admit patients beyond the carrying capacity because limited overcrowding still

reduces infection more in the community. However, when R0 is no more than a

little greater than 1 (for our parameter values, 1.012), both policies result the
same because the number of patients never exceeds the maximum capacity.

1. Introduction. The most recent outbreak overwhelming a healthcare system
took place in west Africa in 2014-2015. A total of 28,616 Ebola cases in Guinea,
Liberia and Sierra Leone were reported to WHO as of June 10, 2016 with 11,310
deaths [16], with cases occurring as far away as the United States.

An outbreak can overwhelm hospitals and clinics by affecting the community on
a large scale. Healthcare facilities in developing countries are very often inadequate
to fight against any widespread disease. Even in the United States, the healthcare
system does not have enough infrastructure to fight against pandemics. According
to the U.S. Department of Health and Human Services, the total number of staffed
beds in 2013 was 914,513. Surprisingly, the number of staffed beds reduced about
38% from 1975 [23].

When a disease spreads rapidly, the resources required to treat patients effectively
may fall short. However, resource limitations are often overlooked in modeling out-
breaks. In the last few years, many researchers have used mathematical models to
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study Ebola virus disease (EVD), some of whom addressed the issue of limited hos-
pital beds. In 2015, Drake et al. [9] investigated the 2014 Ebola outbreak in Liberia,
where a dramatic increase in hospital capacity was observed during late August (to
about 400 beds, an order of magnitude higher than a month earlier). They inves-
tigated scenarios in which hospital capacity was increased heterogeneously. They
forecast 130,000 cases by December 31 with the existing hospital capacity, but only
50,000 for the same period when the number of beds was hypothetically ramped up
to 1700. However, their model suggested that without rapid hospitalization, such
an increase would not achieve containment. More recently, Njankou and Nyabadza
(2018) studied the dynamics of EVD [15] using a modified SIR [deterministic] model
with a time-dependent number of beds. With a limited number of beds, a backward
bifurcation arose, complicating the control of EVD. Finally, Ahmad et al. (2016)
used optimal control analysis on an SEIR model for EVD to study allocating re-
sources among additional hospitalization, quarantine and vaccination components
[2]. They compared constant vs. optimal control strategies in two cases: (i) hospital-
ization and quarantine and (ii) hospitalization and vaccination, and concluded that
optimal control is preferable for EVD. However, this requires that the healthcare
system have enough resources for hospitalization and medication for a considerable
number of susceptibles.

All these studies suggested increasing the number of hospital beds without bound,
but each hospital has its own capacity limitations. When that limit is reached, hos-
pital officials must decide how to respond to additional patients. This study aims to
consider this decision in the context of the resulting disease burden on the commu-
nity. We incorporate the idea of the healthcare system’s carrying capacity (number
of regular beds) K to observe the way a disease spreads when the number of patients
increases beyond the hospital's regular capacity. During an outbreak, if patients
continue to come to the hospitals or clinics when those are already occupied fully,
then hospital authorities have two options–they can either continue to admit pa-
tients (policy I), or send the patients back as they lack the resources to care properly
for them (policy II). Here, we assume that in an overcrowding scenario a hospital
can accept more patients than its carrying capacity, reducing infection in the com-
munity, but in return the quality of protection begins to break down, increasing
both the death and infection rates within the hospital setting. If instead the hospi-
tal stops accepting more patients to preserve care quality, the rising infection rate
in the community may lead to an epidemic. There is therefore a trade-off between
the effects of high infection prevalence in the hospital vs. in the community.

Public health officials need to do some estimation while deciding their policy.
They should adopt any policy to minimize loss. In an epidemic, however, estimating
disease burden is not straightforward. During the epidemic, some infected people
will die, and others will survive after a few days of suffering. It is very difficult to
establish a relation between the loss related to deaths and loss due to the suffering
of the survivors. Here we use the most commonly used idea of DALY s (Disability
Affected Life Years) to calculate loss during an epidemic. This estimation has two
components: DALY s for the survivals and DALY s for the non-survivals. This
study uses dynamical systems models as tools to compare the consequences of both
policies, in the aim of determining which policy by the hospital will better serve the
community.
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2. Mathematical model. In order to examine the effects of a hospital's admis-
sions policy on disease spread, we develop a compartmental model with details
focusing on within-hospital transmission. We begin by separating those in the hos-
pital from those in the community, and then within each setting by infection status.
While maintaining a simplified model, we pattern our outbreak on Ebola. Research
shows nobody has been attacked a second time by the same strain of Ebola virus
[12]. So, here we are considering an SIR model where we have two different sus-
ceptible classes– one is Sc, presenting healthy people living in the community, and
the other is SH , people admitted to the hospital prior to the outbreak, for reasons
other than the epidemic disease. These last represent the individuals at higher risk
of nosocomial infection when the hospital setting deteriorates in an overcrowding
scenario. There are three different groups of infected people, Ic, IH and M , among
which M represents the people admitted to the hospital for different reasons and
developed nosocomial infection with the disease of the epidemic before recovering
from their primary diagnosis. The groups Ic and IH (respectively) represent the
people in the community with infection and people in the hospital with only the
disease of our concern. Anyone from M who recovers from the primary diagno-
sis moves to IH , and those recovered from the secondary (epidemic) disease in M
move to RH . At recovery, people move to Rc from Ic and to RH from M . Anyone
from RH who recovers from the primary diagnosis moves to Rc. Here we consider
H = SH +M + IH +RH and C = Sc + Ic +Rc.

In modeling infection rates, we use the standard incidence in the community
as the community is saturated with people and so we introduce βc

Ic
C as the per

capita infection rate in the community. Now, the infected people in the community
transfer (at rate p) to the hospital (IH) or move (at rate γc) to the recovered class
(Rc) or can die (at rate dc) due to Ebola infection. For communities in which
traditional burial practices introduce a significant source of additional infection, a
term proportional to dcIc

Sc

C (the total death rate, multiplied by the proportion of
the community available to be infected) is added to the base infection rate, but the
net result is simply to increase the value of βc. We assume that deaths occurring
in the hospital are required to follow secure burial practices.

Since the population size is small inside the hospital, we consider mass-action
incidence there. Hence, when the hospital is operating at normal capacity (H ≤ K),
patients from SH either move to the nosocomial class at βH(M + IH) or return to
the community (at q) as susceptible. Patients from M either transfer to IH (at rate
q) or to RH (at rate γH) or can die (at rate dH). Finally, patients move to Rc from
IH (at rate γH) and from RH (at rate q). Here, we assume the recovery rates from
M to RH and from IH to Rc are equal, and the transfer rates (rates of transition
between compartments) from M to IH and from SH to Sc are same. The death
rates in the nosocomial class (M) and in the infected class in the hospital (IH) are
also assumed equal. We also assume that the epidemic will continue for a short
term and consequently we ignore natural birth and death rates in our model.

With regard to the effects of hospital overcrowding, we assume a gradual deteri-
oration in the quality of the hospital setting as admissions increase past the carry-
ing capacity. To describe this deterioration, we introduce a function f defined by
f(H) = max(1, eε(H−K)/K) which amplifies the in-hospital infection rate and death
rate (and slows down recovery) if the hospital continues to accept patients beyond
its capacity (H ≥K). While defining f(H), we introduce ε as a calibration param-
eter to control the degree to which the situation deteriorates with overcrowding.
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Figure 1. Flow diagram showing infection within, and transfer
between, hospital and community compartments. Rates are per
capita.

The in-hospital infection and death rates increase by a factor of f after admissions
surpass the carrying capacity. Correspondingly, the in-hospital recovery rates (q
and γH) are multiplied by 1/f when H≥K. Finally, our model becomes:

dSc
dt

= −βc
Ic
C
Sc +

1

f
qSH

dIc
dt

= βc
Ic
C
Sc − γcIc − pIc − dcIc

dSH
dt

= −fβH(M + IH)SH −
1

f
qSH

dM

dt
= fβH(M + IH)SH −

1

f
(γH + q)M − fdHM

dIH
dt

=
1

f
qM − γHIH + pIc − fdHIH

dRH
dt

=
1

f
(γHM − qRH)

dRc
dt

= γcIc +
1

f
(γHIH + qRH)

where dc > dH

In our model, we ignore the case of people moving from Sc to SH as during the
epidemic relatively few people will be sick for reasons other than the epidemic, and
during an epidemic people typically avoid going to hospitals [14]. Here, to simplify
and focus analysis on in-hospital impact of overcrowding, we assume no hospital
visitors are infected or contaminated, so no infection from hospital environment to
community; and we assume that any contamination of healthcare workers leading
to infection can be incorporated into the nosocomial infection term.
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In our research, we have two additional differential equations to calculate the
number of infections and number of deaths during the pandemic-

dIc
dt

= βc
Ic
C
Sc + fβH(M + IH)SH

dD

dt
= dcIc + fdH(M + IH)

where I and D represent the cumulative total number of infections and number of
deaths respectively.

Figure 2. Decomposition of infected class to compute disease burden

Now we define our cost function which is determined by the number of infections
and by the number of deaths and will estimate the total burden of the disease.
The accounting breakdown of this cost function is shown in Fig. 2. It can also
be considered as a burden function or loss function. This cost function will deter-
mine the number of DALY s which can be thought of as loss of healthy life. WHO
formulate how to calculate this loss [17]. As WHO prescribed, the DALY is com-
posed of Years Lost due to Disability (Y LD) resulting from infections and Years
of Life Lost (Y LL) caused by premature death. To estimate those values, we have
Y LD = I ×DW ×L1 and Y LL = D×L2, where L1 = average duration (in years)
of the case until remission or death (the duration of illness), which is the reciprocal
of the recovery rate (for survival) or of the death rate (for non-survival) and L2 =
standard life expectancy at age of death (in years) = average life expectancy of
the community – average age at premature death. The term DW is the disability
weight for the disease which ranges from 0 (perfect health) to 1(death). It can be
thought of as the proportional reduction in perfect health due to any adverse health
condition. So, the total burden of disease can be represented as the sum of Y LD
and Y LL, which leads us to −

Total DALY = I ×DW × L1 +D × L2.

But, L1 will be different in the community and in the hospital as well as different
for the survival and non-survival. So, to make our analysis more accurate we
divide I in four subgroups (Fig. 2).

Then, finally our cost function is-

J(t) =(ISN× 1
γc

+ISH× 1
γH

+INH× 1
dH

+INN× 1
dc

)×DW + D× L2

where the numbers of people in ISN , ISH , INH and INN classes are tabulated by
integrating the respective exit rates (γcIc,γH(IH +N), dH(IH +N), and dcIc).
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In many disease outbreaks, patients who recover and are discharged from the
hospital may return shortly afterward from complications caused by the illness.
We therefore also considered an extension of the model described above, in which
individuals in Rc move either to RH (readmission) or to a permanently recovered
class R. However, a readmission rate of 15% made an insignificant change (less
than 0.04%) in the final outbreak size reported in the analysis section. So, in the
remainder of the study we ignore the impact of readmissions during the outbreak.

3. Parameter estimation. In our work, we assume the population in the com-
munity is 100,000; among those 99,980 are susceptible and 10 are infected. We
also assume at the beginning of epidemic 10 people were already in the hospital for
different reasons other than the epidemic. We know the number of hospital beds
per 1000 people in Sierra Leone is 0.4 [1]. Using this documented data, we assume a
hospital in the area has a capacity of 40 beds. Here we ignore the number of health
workers while calculating the number of beds in hospital.

While estimating parameters, we try to take the values from the same epidemi-
ological context (Sierra Leone, 2014) to make our analysis more appropriate. The
infection rate in the community (βc) is taken as 0.455/day [4]. Here, we take the
reciprocal of the mean of boundary values of the range. Unfortunately, we did
not find any documented data for the infection rate in hospitals. However, in our
literature review, we find that control measures (including education and contact
tracing followed by quarantine) reduce the infection rate by 50% (from 0.38/day
to 0.19/day) for the 1995 Ebola epidemic in Congo and by 73% (from 0.33/day to
0.09/day) for the 2000 Ebola epidemic in Uganda [7]. So, we assume the transmis-
sion rate in our analysis is reduced by 61.50% in the hospital (mean of 50% and
73%). To get infection rate in a hospital, we reduce our value of βc by 61.50% and
then divide it by the carrying capacity as we consider mass-action incidence inside
the hospital. Here, we divide by the carrying capacity assuming a hospital will be
fully occupied with patients after very few days of the emergence of the disease.
Finally, we get 0.004375/person-day as infection rate in hospitals. We also have
0.057/day as recovery rate in hospitals (γH) [5]. Here,we use the reciprocal of the
sum of days for onset of symptoms to hospitalization and days for hospitalization
to death. However, we did not find any well documented data for the recovery rate
in the community. So, here we use the data from a research work on Ebola virus
infection in rhesus monkeys to compare recovery rates with and without treatment.
We take the ratio of the survival periods of untreated monkeys (8.3 days) to treated
(11.7 days) and apply it to the recovery rate in hospitals to estimate the recovery
rate in the community (γc= (8.3/11.7)×γH= (8.3/11.7) × 0.057/day =0.04/day)
[10]. We also did not find any authentic source for the average length of stay in
hospitals in Sierra Leone and not even in Liberia or in Guinea. Here, we consider
the average length of stay in hospital for Uganda and take the reciprocal to calculate
the value of parameter q which is 0.067/day [11]. For the transfer rate of infected
people from community to hospitals (p) we take the weighted mean 0.184/day of
some earlier documented estimation (Table 1).

We use the duration (mean of two values: 5.0 and 6.6) from onset of symptoms
to death and take the reciprocal to estimate death rates. Thus, we have 0.172/day
[3] and 0.102/day [22] as death rates in the community and in hospital. These two
values are taken as the reciprocal of the number of days.

A careful literature review turned up almost no data on how overcrowding de-
teriorates the quality of the hospital setting. During the 2014 Ebola outbreak, the
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Table 1. Estimation of the parameter p

Para-
Cases Value Country

Year of Weighted
meter Epidemic Mean

p
61 0.20/day ( 1

5 day )[20] Sierra
2014 0.184/day

106 0.175/day( 1
5.7 day ) [22] Leone

Table 2. Model parameters and their values

Parameter Meaning Value

βc Infection rate in the community 0.455/day

βH Infection rate in the hospital
0.004375

/person-day
γc Recovery rate in the community 0.04/day
γH Recovery rate in the hospital 0.057/day
dc Death rate in the community 0.172/day
dH Death rate in the hospital 0.102/day

p
Patients transfer rate from

0.184/day
community to hospital

q
Recovery rate in the hospital

0.067/day
from primary diseases

K Carrying capacity of the hospital 40 beds

ε
Scaling parameter for deterio-

0.48067ration of the hospital setting
under overcrowded scenario

WHO reported on one clinic in Liberia with 120 beds which had admitted as many
as 210 patients, 75% more than its carrying capacity [18], and noted that when a
new 20-bed clinic opened in Liberia's capital city, it was immediately overwhelmed
with more than 70 patients [19], although the report does not indicate how many
patients were able to remain there. Likewise, a MSF team rehabilitated a 40-bed
facility elsewhere in Liberia to the point that, two weeks later, it was caring for 137
suspected Ebola patients [14], although the report does not specify the nature of
the rehabilitations, which may have included expansion or permanent new beds. In
line with the first, more moderate figure above, we consider in our model the case
where a hospital can admit up to a maximum of 70% more (by doing arrangements
on floor and establishing temporary tents inside the hospital premises) than its car-
rying capacity [13]. In the absence of further data, we assume that at maximum
overcrowding the quality of the hospital setting degrades by 50%, i.e., the infection
and death rates in hospital increase by 50%. This assumption leads to a value of
ε =0.48067 in defining the function f(H). Although the numerical results below
clearly follow from this estimate, using different values for ε yields qualitatively
similar results.

For the estimation of the value of cost function we have the average age of
infection in Sierra Leone as 28 years [20] and the average life expectancy in Sierra
Leone as 57.39 years [6] which gives L2 = 57.39 – 28 = 29.39. Unfortunately,
there is no documented data for the DW for Ebola. However, we find a very well
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documented study on Global Disease Burden where DW values are reported for
three types of infectious diseases– mild, moderate and severe. For Ebola, we choose
the severe case and the DW for that is 0.133 [21].

4. Analysis. To find the equilibria of our dynamical system we set all the equations
of our model equal to zero and solve those. After doing some calculation, we get
one solution set (Ic = SH = M = IH = 0, Sc 6=0, Rc 6=0, Sc + Rc≤C(0) + H(0))
which represents an infinite number of disease-free equilibrium points. Because
these equilibria are non-isolated (in two dimensions, in fact), their stability cannot
be analyzed. In general, solutions of the system will eventually approach one of
them, first rising to an epidemic peak if the control reproduction number1 R0 > 1.
Further qualitative analysis of the system is therefore limited to deriving R0, which
remains crucial to understanding the behavior of the outbreak. So, we use the
Next Generation Method [8] on our model to derive the expression for the control

reproduction number, R0 = βc

γc+p+dc
, which gives 1.149 for our baseline estimation

of control reproduction number and for the basic reproduction number (setting the
transfer rate p to 0) it gives 2.146. In the analysis that follows, we use R0 as an
epidemiological index by which to compare the effects of the two admission policies.

policy-I

policy-II

50 100 150
days

10

20

30

40

50

60

(a) Patients in hospital

policy-I

policy-II

50 100 150
days

5000

10000

15000

20000

25000

(b) Duration of the epidemic

Figure 3. Ebola in Sierra Leone in 2014 for our hypothetical hos-
pital setup

In our numerical analysis, we found the hospital will reach its carrying capacity
in 26 days and the maximum 1.7 times its carrying capacity in 37 days (Fig. 3a).
We also found the epidemic will continue for 136 days and 128 days when policy I
and policy II are adopted respectively. In estimating the cost function, we found a
loss due to the epidemic of approximately 2.35 million DALY s in either case, but
policy II (no hospital overcrowding) results in over 500 fewer DALY s than policy
I.

Although Policy I results in fewer infections, it leads to more deaths and thus
a higher overall disease burden (Table 3). Thus, the policy of admitting patients
only up to a maximum of the hospital's carrying capacity is better (by 507 DALY s)
for our set of parameter values. Stopping admissions after reaching the carrying
capacity thus produces a lower disease burden in this case.

However, the epidemic will be longer if the hospital works under policy I (Fig. 3b).
This happens because health care benefits in the hospital slow down the epidemic.

1The control reproduction number is distinguished from the basic reproduction number by
the inclusion of control methods. Here we use the familiar notation R0 to refer to the control

reproduction number.
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Table 3. Summary of the epidemic for both policies: Continue to admit
patients (policy I) or limit admissions to the carrying capacity (policy II)

Policy Infections Deaths Uninfected

I 98,486 79,844 1514
II 98,518 79,827 1482

Our set of parameter values shows how the hospital's admission policy in terms of
admitting patients affects the burden of the epidemic at a baseline level.

To find which parameters most influence the final cost of the epidemic, we per-
form a sensitivity analysis on our model. In this process, we increase the value of all
the parameters by 1% to see the effect of these changes on the final value of the cost
function. Our analysis (see Fig. 4) shows infection rate (βc), recovery rate (γc) and
the death rate (dc) in the community impact the total loss an order of magnitude
more strongly than all the other parameters. So, we vary the infection rate, death
rate and recovery rate to observe the behavior of our system.

βc dc γh p q βh dh

-0.2

-0.1

0.0

0.1

0.2

Figure 4. A sensitivity analysis shows the percentage change in final
cost given parameter changes of 1%. Parameters are ranked here by
magnitude of impact.

To check the effect of infection rate on the impact of the two policies, we vary
the infection rate and try to establish a relation between the infection rate and the
entire loss (value of the cost function) due to the epidemic. Here, we used the range
0.380/day to 0.515/day for the value of the infection rate in the community (βc).
We assume the infection rate in the hospital (βH) will change at the same ratio as
the infection rate in the community. In Fig. 5a, the difference in behavior of the
policies is manifest near the R0 = 1 bifurcation though away from the bifurcation
it is obscured due to the issue of scale. Then, we generate another graph (Fig. 5b)
showing the difference in total burden (DALY s) associated with the two policies
with the same varying infection rate in the community (βc). It clearly manifests the
behavior difference due to the policies everywhere. In Fig. 5b, the DALY difference
is taken as the difference between DALY s associated with policy I and DALY s
associated with policy II. So, policy I is better when βc ranges from 0.401/day to
0.438/day (R0 &1, here 1.012 ≤ R0 ≤ 1.106) and policy II is better when βc is
higher than 0.438/day (R0 �1). Here, the range for R0 does not begin just after
1.00 as the epidemic is not big enough to fill up the hospital unless the value of R0
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Figure 5. Total loss comparison for two policies with varying in-
fection rate (βc)

reaches 1.012. However, the impact of the epidemic is the same regardless of the
policies if βc is 0.396/day or less (R0 ≤ 1.012), since the hospital never fills up.

Then, we try to observe the change in the behavior of the burden of the epidemic
if the death rate is changed. Here, we also assume the death rate in the hospital
(dH) changes at the same ratio as the death rate in the community (dc) is changed.
To see the effect of change in death rate we use the range 0.070/day to 0.320/day for
the value of dc. In Fig. 6a, we have the total burden of the epidemic with varying
death rates. However, the behavior difference away from the R0 = 1 (indicated
by the up arrow) bifurcation and near the horizontal axis is not manifest. Then,
we generate a graph (Fig. 6b) showing the difference in total burden, where values
below the horizontal axis imply policy II generates more DALY s and values above
the horizontal axis imply policy I generates more DALY s. It is evident from Fig. 6b
that policy I is better when the death rate (in the community) ranges from 0.180/day
to 0.231/day (R0 & 1, 1.013 ≤ R0 ≤ 1.126) and policy II is better when death rate
(in the community) is 0.180/day or less (R0 � 1). However, both policies result the
same when the death rate (in the community) is 0.231/day or above (R0 ≤ 1.013).
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(a) DALY difference vs death rate
(dc) around points where behavior
changes. The arrow indicates where
R0 = 1

0.10 0.15 0.20 0.25
dc

-5000

-4000

-3000

-2000

-1000

1000

2000

DALY difference

(b) DALY difference vs death rate
(dc), where the negative difference
means policy I incurs lower burden.
The arrow indicates where R0 = 1

Figure 6. Comparison of two policies as death rate (dc) changes

The same pattern is found while varying the recovery rate γc from 0.028/day
to 0.11/day(Fig. 7). Policy I is better when the recovery rate (in the community)
ranges from 0.05/day to 0.09/day (R0 & 1, 1.02 ≤ R0 ≤ 1.12) and policy II is better
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when this rate is 0.05/day or less (R0 � 1). However, no impact on the behavior
of the policies is observed when the recovery rate (in the community) is 0.099/day
or above (R0 ≤ 1.02).
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γc
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(a) DALY difference vs recovery
rate (γc) around points where be-
havior changes. The arrow indicates
where R0 = 1
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(b) DALY difference between the
two policies with varying γc, where
the negative difference means policy
I incurs lower burden. The arrow
indicates where R0 = 1

Figure 7. Policy comparison in terms of total loss with varying
recovery rate

Our simulations produce an overall fatality rate of about 80%, based on parame-
ter estimates from the Ebola epidemic in West Africa in 2014, which is significantly
different from the actual rate in that epidemic (about 50%). This happens because
we used published data (which included overcrowding) to derive baseline (non-
overcrowding) estimates and then applied overcrowding on top of that. Simulations
using other parameter values produced qualitatively similar results.

Our results are dependent on the choice of scaling parameter ε and maximum
possible overcrowding inside the hospital. Changes in these two values will either
widen or narrow the breadth of the interval of R0 for which overcrowding a hospital
is better. However, the qualitative results will remain the same although the upper
R0 threshold and the magnitude of the DALY difference will vary.

5. Discussion. It is not surprising to imagine that the effect of any epidemic will be
worse if hospitals stop admitting patients after reaching carrying capacity. However,
our work shows some interesting results. Our simulations of an Ebola epidemic
indicate that it is sometimes better to stop admitting patients after hospitals reach
their carrying capacity, rather than continue to admit patients and overcrowd the
facility (in the latter case we assumed a hospital can choose to continue to accept
patients up to a maximum of 70% more than its carrying capacity). There is a
narrow window where R0 is slightly greater than 1, where overloading a hospital is
better because this is enough to handle most cases. When the system is overwhelmed
anyway (R0 � 1), overcrowded hospitals spread infections and, in that scenario,
maintaining hospitals at their carrying capacity is better, because the quality of
the hospital setting becomes so compromised when highly overcrowded that it does
more to incubate infections than to limit them. However, when R0 ≤ 1.012, a
hospital's admission policy beyond its carrying capacity does not matter because
there is no epidemic large enough to fill the hospital completely.

The relation between the policy of admitting patients beyond hospitals' carrying
capacity and burden of Ebola is not straightforward: it depends on the value of
R0. It is better to continue admitting patients beyond their carrying capacity when
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R0&1 and better to stop admitting after reaching carrying capacity when R0�1 in
order to avoid heavily overcrowded hospitals increasing infection risk. However, the
R0 value delineating these two cases depends on how many more patients hospitals
are able to admit. Different choices of scaling parameter ε and maximum possible
overcrowding inside the hospital will change the interval of R0 values on which the
choice of policy depends, but not the qualitative result that slightly overwhelmed
healthcare facilities can continue to protect the community, while grossly overloaded
ones risk becoming sources of infection as crucial protective measures break down.

Our decision to ignore (or suppose negligible relative to other sources) infections
transmitted in-hospital to visitors potentially underestimates the total epidemic size
but allows analysis to focus on the two distinct epidemiological settings.

Future work can be done to investigate whether or not this result is true for
any infectious disease epidemic. Here, we deal with a non-vector-borne disease. It
will be interesting to see how the two policies behave when a vector-borne disease is
taken in account. Further studies could also investigate the impact of other resource
limitations such as antiviral stockpiles.
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