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Abstract. Public health information through media plays an important role
to curb the spread of various infectious diseases as most of the populations

rely on what media projects to them. Social media and TV advertisements are

important mediums to communicate people regarding the spread of any infec-
tious disease and methods to prevent its spread. Therefore, in this paper, we

propose a mathematical model to see how TV and social media advertisements

impact the dynamics of an infectious disease. The susceptible population is
assumed vulnerable to infection as well as information (through TV and social

media ads). It is also assumed that the growth rate of TV and social media ads

is proportional to the number of infected individuals with decreasing function
of aware individuals. The feasibility of possible equilibria and their stability

properties are discussed. It is shown that the increment in growth rate of
TV and social media ads destabilizes the system and periodic oscillations arise

through Hopf-bifurcation. It is also found that the increase in dissemination

rate of awareness among susceptible population also gives rise interesting dy-
namics about the stability of endemic equilibrium and causes stability switch.

It is observed that TV and social media advertisements regarding the spread

of infectious diseases have the potential to bring behavioral changes among the
people and control the spread of diseases. Numerical simulations also support

analytical findings.

1. Introduction. Due to inadequate medical facilities in developing countries,
they face difficulties to prevent the spread of new and re-emerging infectious dis-
eases. Thus, on the emergence of any new infectious disease, these countries focus on
the alternate of medical facilities to slow down its spread. Awareness, which brings
the behavioral changes among the population, can be seen as partial treatment at
no cost. Apart from this, awareness regarding the spread of any infectious disease
also reduces the economic burden required for medication [24, 31]. The correct and
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timely knowledge about the disease has the capacity to halt its spread. To dissemi-
nate awareness, several modes, like Television, radio, posters, social media, etc., can
be used. Nowadays social media is an important platform to propagate information
regarding the risk of infection and its control mechanisms. In India, the number
of Smartphone users are predicted to reach 340 million and could reach almost 468
million by 2021 [40]. Due to low literacy rates in rural population, especially in
developing countries, the print and social media are less effective in comparison to
TV and radio. Thus, Television and radio are powerful modes of transmission of any
information to the public as they are accessible to most of the population. When
an advertisement regarding the spread of any new infectious disease is broadcasted,
people change their perception and adopt precautionary measures to halt its spread.

In the recent past, some studies have been conducted to assess the impact of
media to control the spread of infectious diseases [11, 13, 27, 28, 29, 41, 37, 38, 36,
43, 44]. In particular, Sun et al. [41] have studied an SIS model to see the effect of
media-induced social distancing on disease prevalence in two patch. Authors have
assumed that the contact rate decreases as the number of infected individuals in
respective patch increases. Their finding suggests that the media coverage reduces
the disease prevalence and shorten the duration of infection. Misra et al. [29] have
proposed an SIS model to see the effects of awareness through media campaigns on
the prevalence of infectious diseases by considering media campaigns as a dynamic
variable whose growth is proportional to the number of infected individuals. In the
modeling process, it is assumed that media campaigns induce behavioral changes
among susceptible individuals and they form an isolated aware class, which is fully
protected from infection. The model analysis reveals that the number of infectives
decreases as the media campaigns increases. Samanta et al. [37] have extended
this model by assuming that aware susceptibles are also vulnerable to infection but
at a lower rate than unaware susceptibles. In this model, authors have assumed
that the growth rate of media campaigns is proportional to the mortality rate due
to the disease. It is shown that the rate of execution of awareness programs has
enough impact on the endemic state and sustained oscillations may arise through
Hopf-bifurcation. Further, Dubey et al. [11] have studied the role of media and
treatment on the emergence of an infectious disease. It is shown that media plays
an important role to eliminate the disease in presence of treatment. As the informa-
tion regarding the disease driven by media campaigns modifies the human behavior
towards the disease [9, 12, 35]. Therefore, Funk et al. [14] have studied the impact
of public awareness and local behavioral response, where the proportion of both the
susceptible and infected individuals is aware and aware susceptibles are less vulnera-
ble to infection whereas awareness among infected individuals reduces the infectivity
due to pharmaceutical interventions. Kiss et al. [22] have proposed an SIRS model
with treatment compartment by considering two classes of susceptible and infected
individuals (responsive and non-responsive towards the information). Authors have
assumed that the responsive infected individuals search treatment faster in com-
parison to non-responsive infected individuals and the rate of disease transmission
among responsive susceptibles is less due to the impact of information. It is shown
that if the dissemination rate is fast enough, the infection can be eradicated. Here,
it may be noted that information provided to the population through media changes
the human behavior and population adopt the precautionary measures, like the use
of bed nets for Malaria [3, 33], condoms for HIV/ AIDS [1, 8, 20, 34], wearing of face
masks for influenza [19, 23], vaccination [4, 5, 39], voluntary quarantine [17], etc.,
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to prevent the spread of such diseases. Buonomo et al. [5] have studied the effect
of information on vaccination of an infectious disease and it is shown that for low
media coverage, the endemic state is globally stable and for higher media coverage,
this endemic state becomes unstable and sustained oscillations occur. The effect
of media-related information on the spread of any infectious disease is also studied
by considering the decrease in the contact rate between susceptibles and infectives
as (i) the exponential decaying function of infectives [6, 26], (ii) saturated function
of infectives [7, 27, 42]. In these studies, it is found that media coverage does not
affect basic reproduction number of the disease but controls the prevalence of the
disease in the population.

For some infectious diseases, mathematical models are also proposed to see the
effect of time delay in the implementation of awareness programs [15, 30, 32] and
it is shown that incorporation of time delay in the modeling process destabilizes
the system. Recently, Kumar et al. [24] have proposed an SIRS model to see the
role of information and limited optimal treatment on disease prevalence. Authors
have considered that the growth rate of information is proportional to a saturated
function of infected individuals. It is shown that combined effects of information and
treatment are more fruitful and economical during the course of infection. Agaba
et al. [2] have proposed a SIRS - type model to see the impact of awareness by
considering private awareness, which reduces the contact rate between unaware and
aware population and public information campaigns on disease prevalence. It is
shown that both the private and public awareness have the capacity to reduce the
size of epidemic outbreaks.

It may be noted that the change in human behavior towards the diseases through
print media, social media, internet are limited only to educated people but TV
ads have the capacity to impact large population (less educated people too) in a
very short period of time and thus are more effective. In previous studies, it is
assumed that the awareness programs are implemented proportional to the number
of infected individuals by considering media campaigns as a dynamic variable or
transmission rate as decreasing function of infected individuals due to media alerts.
However, it is plausible to assume that the cumulative number of TV and social
media ads increases proportional to number of infected individuals and their growth
rate decreases with the increase in number of aware individuals as cost is also
involved in broadcasting the information. In this regard, Kim and Yoo [21] have
presented the cost effective analysis for the implementation of TV campaigns to
promote vaccination against seasonal influenza in an elderly population and the
remarkable increment in vaccination coverage is found due to TV campaigns.

Keeping in mind the importance of information provided through social media
and TV ads to the population regarding the protection against any infectious disease
and cost involved in TV advertisements, in the present, we formulate and analyze a
nonlinear mathematical model to study the effect of TV and social media ads which
includes internet information as well as print media for the control of an infectious
disease. In the modeling process, it is assumed that the cumulative number of TV
and social media ads increases proportional to the number of infected individuals
and their growth rate decreases with the increase in number of aware individuals.

2. Mathematical model. Let in the region under consideration, N(t) be the total
population at any time t, which is divided into three sub-populations; namely S(t)-
susceptible population, I(t)-infected population and A(t)-aware population. Let Λ
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be the constant immigration in the class of the susceptible population at any time
t in the region. It is assumed that the population is homogeneously mixed and
susceptible individuals contract the infection via the direct contact with infected
individuals. Further, the variable M(t) addresses the cumulative number of TV and
social media advertisements, which includes internet information as well as print
media etc., in the region at time t. The information regarding the protection against
the disease is propagated through TV and social media ads and the growth rate
of cumulative number of TV and social media ads is assumed to be proportional
to the number of infected individuals. However, this growth rate decreases with a
factor f(A) = rθ A

ω+A . In this case, the net growth rate of TV and social media

ads to aware the population becomes r
(

1− θ A
ω+A

)
. The constant θ is the decay

in advertisements due to increase in the number of aware individuals. Further, it
is assumed that M0 is the baseline number of TV and social media ads, which
are always broadcasted. The constant ω represents the half saturation point [27]
for this interaction as f(A) attains half of its maximum value rθ when due to the
effect of TV and social media ads, the aware population arrives at ω. Here, it
may be pointed out that for the feasibility of model, the value of θ lies between
0 and 1. It is often observed that as time passes, the TV and social media ads
lose their impact, which leads to the diminution in TV and social media ads. In
this view, depletion in the cumulative number of TV and social media ads is also
incorporated in the model. It is also assumed that TV and social media ads induce
behavioral changes among susceptible individuals and they avoid their contact with
infected individuals by forming an isolated class known as aware class, which is
fully protected from infection as aware individuals use precautionary measures for
their protection during the infection period. It may be noted that individuals in
aware class may lose awareness with the passage of time and become susceptible
again, this aspect has been considered by incorporating the term λ0A. Further, it
is assumed that TV and social media ads have limited impact on the susceptible
population and thus the susceptible population becomes aware at a rate λS M

p+M

and moves to the aware class. Here, the constant p represents the half saturation
point for the impact of TV and social media ads on susceptible individuals and
it attains half of its maximum value λS when the cumulative number of ads to
aware the population arrives at p. The interaction between susceptible and infected
individuals is assumed to follow the simple law of mass action.

Taking into account above facts, the dynamics of the problem is governed by the
following system of nonlinear ordinary differential equations:

dS

dt
= Λ− βSI − λS M

p+M
+ νI + λ0A− dS,

dI

dt
= βSI − (ν + α+ d)I, (1)

dA

dt
= λS

M

p+M
− (λ0 + d)A,

dM

dt
= r

(
1− θ A

ω +A

)
I − r0(M −M0),

where, S(0) > 0, I(0) ≥ 0 , A(0) > 0 and M(0) ≥M0.
In the above model system (1), β is the contact rate between susceptibles with

infectives and the constant λ represents the dissemination rate of awareness among
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susceptible individuals due to which they form a different class and keep themselves
away from infected individuals. The constants ν, α and d denote the recovery rate,
disease-induced death rate and natural death rate, respectively. The constant λ0

denotes the rate of transfer of aware individuals to susceptible class. The constant
r is the growth rate in TV and social media ads whereas the constant r0 represents
the diminution rate of TV and social media ads due to inefficiency and psychological
barriers etc. [18].

Using the fact that S + I + A = N , the above system reduces to the following
system:

dI

dt
= βI (N − I −A)− (ν + α+ d)I,

dA

dt
= λ

M

p+M
(N − I −A)− (λ0 + d)A,

dN

dt
= Λ− dN − αI, (2)

dM

dt
= r

(
1− θ A

ω +A

)
I − r0(M −M0).

As the study of model system (1) is equivalent to the study of model system (2),
so we study model system (2).

For the solutions of model (2), the region of attraction [29] is given by the set:

Ω = {(I, A,N,M) ∈ R4
+ : 0 ≤ I, A ≤ N ≤ Λ

d
, 0 ≤ M ≤

(
M0 +

rΛ

r0d

)
= Mr}.

and attracts all solutions initiating in the interior of the positive orthant.

Proof. From the third equation of model system (2), we have

dN

dt
≤ Λ− dN

and
d

dt

(
Nedt

)
≤ Λedt.

Now integrating the above equation from 0 to t, we have

N(t) ≤ N0e
−dt +

Λ

d

Therefore, by using the theory of differential inequalities [25], we obtain, limt→∞
supN(t) ≤ Λ

d , i.e., the human population can not be more than N(t)→ N∞ ≤ Λ
d .

Since S = N − I −A ≥ 0, therefore 0 ≤ I, A ≤ N ≤ Λ
d for large t ≥ 0.

Further, from the fourth equation of model system (2) and using the fact, I ≤ Λ
d

for large t > 0, we obtain

dM

dt
+ r0M ≤

(
r0M0 + r

Λ

d

)
.

From the theory of differential inequality, we obtain

lim
t→∞

supM(t) ≤
(
M0 +

rΛ

r0d

)
.

This implies that 0 ≤M(t) ≤
(
M0 + rΛ

r0d

)
for large t ≥ 0.
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3. Equilibrium analysis. In this section, we show the feasibility of all equilibria
by setting the rate of change with respect to time ‘t’ of all dynamical variables to
zero. The model system (2) has two feasible equilibria, which are listed as follows:

(i) The disease-free equilibrium (DFE) E0

(
0, λΛM0

d(λM0+(λ0+d)(p+M0)) ,
Λ
d ,M0

)
.

(ii) The endemic equilibrium (EE) E∗(I∗, A∗, N∗,M∗).

Let us denote R0 =
βΛ

d(ν + α+ d)
, the quantity R0 is known as basic reproduc-

tion number when there is no TV and social media ads, the number of newly
infected individuals produced by an infected individual during his / her whole in-
fectious period in completely susceptible population [10], i.e., the infection persists
in population if on average an infected individual infects more than one suscep-
tible individuals during his / her whole infectious period. In the presence of TV
and social media ads, this basic reproduction number is modified and becomes

R1 = βΛ
d(ν+α+d)

(
(λ0+d)(p+M0)

λM0+(λ0+d)(p+M0)

)
. It is easy to see that R1 < R0. The basic

reproduction number (R1) is obtained by using next generation matrix approach
[10], for the proof, see Appendix A.

The feasibility of the equilibrium E0 is trivial. Here, we show the feasibility of
endemic equilibrium E∗.

Feasibility of equilibrium E∗:
In equilibrium E∗(I∗, A∗, N∗,M∗), the values of I∗, A∗, N∗ and M∗ are obtained

by solving following set of algebraic equations:

β(N − I −A)− (ν + α+ d) = 0, (3)

λ
M

p+M
(N − I −A)− (λ0 + d)A = 0, (4)

Λ− dN − αI = 0, (5)

r

(
1− θ A

ω +A

)
I − r0(M −M0) = 0. (6)

From equation (5), we obtain

N − I =
Λ− (α+ d)I

d
. (7)

From equations (3) and (7), we get

A =
β(Λ− (α+ d)I)− d(ν + α+ d)

βd
. (8)

Here, it may be noted that for A to be positive, we must have I <
(
βΛ−d(ν+α+d)

β(α+d)

)
=

I1 (say) and clearly I1 > 0, if R1 > 1 as R0 > R1.
From equation (8), we obtain

G(I) =

(
1− θ A

ω +A

)
=
βdω + (1− θ)[β(Λ− (α+ d)I)− d(ν + α+ d)]

βdω + β(Λ− (α+ d)I)− d(ν + α+ d)
. (9)

Differentiating above equation with respect to I, we get

G′(I) =
θβ2dω(α+ d)

[βdω + β(Λ− (α+ d)I)− d(ν + α+ d)]2
. (10)

From the above equation, it is clear that, G′(I) > 0.
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Further, from equation (6), we have

M

p+M
=

r0M0 + rIG(I)

(p+M0)r0 + rIG(I)
. (11)

Substituting equations (8) and (11) in equation (4), we obtain an equation in I as:

F (I) = λ

(
r0M0 + rIG(I)

(p+M0)r0 + rIG(I)

)(
ν + α+ d

β

)
− (λ0 + d)

(
β(Λ− (α+ d)I)− d(ν + α+ d)

βd

)
.

(12)

From, equation (12), we may easily note that

(i) β F (0) =
{
λ M0

p+M0
(ν + α+ d)− (λ0 + d)

(
βΛ
d − (ν + α+ d)

)}
< 0, if R1 > 1.

(ii)βF (I1) =
{
λ
(

r0M0+rI1
(p+M0)r0+rI1

)
(ν + α+ d)

}
> 0, (iii) F ′(I) > 0 in (0, I1).

Thus, clearly F (I) = 0 has a unique positive root I = I∗ (say) in (0, I1), provided
R1 > 1. Now using I = I∗ in equations (7), (8) and (11), we obtain positive values
of N∗, A∗ and M∗, respectively. Thus, equilibrium E∗(I∗, A∗, N∗,M∗) is feasible
provided R1 > 1 and I∗ ∈ (0, I1).

Remark 1. From equation (12), it is easy to see that dI∗

dr < 0, dI
∗

dλ < 0 and dI∗

dM0
< 0.

This implies that the equilibrium number of infected individuals decreases as the
growth rate of TV and social media ads (r), dissemination rate of awareness among
susceptible individuals (λ) and the baseline number of TV and social media ads

(M0) increases. Further, we may see that dI∗

dp > 0, i.e., the equilibrium number of

infected individuals increases as the value of p increases.

Remark 2. From equation (12), it is also easy to note that dI∗

dθ > 0 and dI∗

dω < 0.
This implies that the equilibrium number of infected individuals increases as the
decay in advertisements due to increase in aware individuals (θ) increases whereas
it decreases as the value of ω increases.

For the details of remarks 1 and 2, see Appendix B.

4. Local stability analysis. In this section, we summarize the results of linear
stability of the model system (2) by finding the sign of eigenvalues of the Jacobian
matrix around the equilibrium E0 and E∗. The stability conditions of equilibria E0

and E∗ are stated in the following theorem:

Theorem 4.1. (i) The equilibrium (DFE) E0 is always feasible and unstable if
R1 > 1, whereas it is locally asymptotically stable if R1 < 1.
(ii) The equilibrium (EE) E∗ is feasible if R1 > 1 and locally asymptotically stable
provided the following condition is satisfied:

B3(B1B2 −B3)−B2
1B4 > 0. (13)

For the proof of this theorem, see Appendix C.
The above theorem tells that if E∗ is feasible, then E0 is saddle point with stable

manifold locally in N − A−M space and unstable manifold locally in I-direction.
Thus, E0 is unstable whenever E∗ is feasible.

The local stability analysis of the endemic equilibrium tells that if the initial
values of any trajectory are near the equilibrium E∗(I∗, A∗, N∗,M∗), the solution
trajectories approach to the equilibrium E∗ under the condition (13). Thus, the
initial values of the state variables I, A, N and M are near to the corresponding
equilibrium levels, the equilibrium number of infected individuals get stabilized if
condition (13) is satisfied.
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5. Global stability analysis. In this section, we provide the result of the non-
linear stability of the model system (2). The nonlinear stability analysis of the
endemic equilibrium follows from the following theorem:

Theorem 5.1. The endemic equilibrium E∗, if feasible, is non-linearly stable in
the region Ω, if following inequalities are satisfied:

(G11)
2
<

16

45
min

{
1

5

(
d

θΛ

)2

, G12

}
(14)

(
λM∗

λM∗ + (p+M∗)(λ0 + d)

)2

<
16

75
min

{
1

3
,
d

α

}
(15)

where, G11 = λΛr
r0d(ω+A∗)(λM∗+(p+M∗)(λ0+d))

, G12 = β(p+M∗)

3m1(ω+A∗(1−θ))2(λM∗+(p+M∗)(λ0+d))
.

The inequality (15) is a condition for determining m1 > 0.

For the proof of this theorem, see Appendix D.

Remark 3. From the nonlinear stability conditions (14) and (15) of the endemic
equilibrium, it is clear that the growth rate of TV and social media ads and dis-
semination rate of awareness among susceptible individuals (i.e., r and λ) may have
destabilizing effect on the system. It is noted that on increasing the value of r and
λ, the local stability condition stated in Theorem 4.1 is violated and thus there is a
possibility of Hopf - bifurcation as the value of r and λ cross a threshold value and
the endemic equilibrium may become unstable and periodic solutions may arise.

6. Existence of Hopf-bifurcation. In this section, we derive the conditions for
the existence of Hopf-bifurcation around the endemic equilibrium E∗(I∗, A∗, N∗,
M∗) by taking ‘r’ as a bifurcation parameter. Since all the coefficients of charac-
teristic equation (50) can be written as a function of r, we have

η4 +B1(r)η3 +B2(r)η2 +B3(r)η +B4(r) = 0. (16)

It is clear that Bj(r) > 0 (j = 1, 2, 3, 4) for any r > 0. Let at r = rc,

B3(rc)(B1(rc)B2(rc)−B3(rc))−B2
1(rc)B4(rc) = 0. (17)

Then at r = rc, the characteristic equation can be written as(
η2 +

B3

B1

)(
η2 +B1η +

B1B4

B3

)
= 0. (18)

This equation has four roots, say ηj (j = 1, 2, 3, 4), with pair of purely imaginary

roots η1,2 = ±iω0, where ω0 = (B3

B1
)1/2. For the existence of Hopf-bifurcation, all

the roots except ±iω0 (i.e., η3 and η4) should lie in the left half of the complex
plane. To identify the nature of remaining two roots, we have

η3 + η4 = −B1 (19)

ω2
0 + η3η4 = B2 (20)

ω2
0(η3 + η4) = −B3 (21)

ω2
0η3η4 = B4. (22)

If, η3 and η4 are complex conjugate, then from equation (19), we have 2<(η3) =
−B1, i.e., η3 and η4 have negative real parts. If, η3 and η4 are real roots, then from
(19) and (22), we find that η3 and η4 are negative. Thus, the roots η3 and η4 lie
in the left half of the complex plane. Further, we find the transversality condition
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under which Hopf-bifurcation may occur. For this let at any point r ∈ (rc−ε, rc+ε),
η1,2 = κ± iϑ. Putting this in equation (16), we have

κ4 +B1κ
3 +B2κ

2 +B3κ+B4 + ϑ4 − 6κ2ϑ2 − 3B1κϑ
2 −B2ϑ

2 = 0, (23)

4κϑ(κ2 − ϑ2)−B1ϑ
3 + 3B1κ

2ϑ+ 2B2κϑ+B3ϑ = 0. (24)

As ϑ(r) 6= 0, from equation (24), we have

−(4κ+B1)ϑ2 + 4κ3 + 3B1κ
2 + 2B2κ+B3 = 0.

Using the value of ϑ2 in equation (23) we have

−64κ6 − 96B1κ
5 − 16

(
3B2

1 + 2B2

)
κ4 − 8

(
B3

1 + 4B1B2

)
κ3

−4
(
B2

2 + 2B2
1B2 +B1B3 − 4B4

)
κ2 − 2B1(B1B3 +B2

2 − 4B4)κ

−(B3(B1B2 −B3)−B2
1B4) = 0.

Differentiating above equation with respect to r and use the fact that κ(rc) = 0, we
get [

dκ

dr

]
r=rc

=

[
d
dr (B3(B1B2 −B3)−B2

1B4)

−2B1 (B1B3 +B2
2 − 4B4)

]
r=rc

.

Using the value of B4(rc) =
(
B1(rc)B2(rc)B3(rc)−B2

3(rc)

B2
1(rc)

)
from equation (17) in above

equation we have

[
dκ

dr

]
r=rc

=

 d
dr (B3(B1B2 −B3)−B2

1B4)

−2B1

(
B1B3 +

(
2B3

B1

)2

− 2
(

2B3

B1

)
B2 +B2

2

)

r=rc

.

This implies that[
dκ

dr

]
r=rc

=

[
d
dr (B1B2B3 −B2

3 −B2
1B4)

−2B1(B1B3 + (2B3/B1 −B2)2)

]
r=rc

6= 0

if [ ddr (B1B2B3 − B2
3 − B2

1B4)]r=rc 6= 0. Thus, the transversality condition is

[ ddr (B1B2B3 − B2
3 − B2

1B4)]r=rc 6= 0. Hence, we have following theorem for the
existence of Hopf-bifurcation.

Theorem 6.1. The reduced model system (2) undergoes Hopf-bifurcation around
the endemic equilibrium E∗ if there exists r = rc such that:
(i) B3(rc)(B1(rc)B2(rc)−B3(rc))−B2

1(rc)B4(rc) = 0.

(ii)
[
<dηj(r)dr

]
r=rc

6= 0 for j = 1, 2

i.e.,
[
d
dr (B1B2B3 −B2

3 −B2
1B4)

]
r=rc

6= 0.

7. Stability and direction of Hopf-bifurcation. In this section, we present
the result for the direction of bifurcating periodic solutions. The following theorem
provides the information about the direction and stability of the periodic solutions.

Theorem 7.1. The Hopf-bifurcation is forward (backward) if µ2 > 0 (µ2 < 0) and
the bifurcating periodic solution exist for r > rc (r < rc). The periodic solutions are
stable or unstable according as β2 < 0 or β2 > 0 and period increases or decreases
according as τ2 > 0 or τ2 < 0.

For the proof of this theorem see, Appendix E.
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Figure 1. Effect of changing the values of λ and M0 on R1

8. Numerical simulation. In the previous sections, we have presented the quali-
tative analysis of the model system (2) and obtained results regarding the stability of
equilibria and Hopf-bifurcation analysis of the endemic equilibrium. In this section,
we conduct numerical simulation of model system (2) using MATLAB, regarding
the feasibility of our analysis and its stability conditions.

Table 1. Parameter values for the model system (2)

Parameter Values Parameter Values

Λ 5 day−1 β 0.0000030 day−1

λ 0.012 day−1 λ0 0.008 day−1

ν 0.2 day−1 α 0.00001 day−1

d 0.00004 day−1 r 0.006 day−1

r0 0.005 day−1 θ 0.0005
ω 6000 p 1200
M0 500

.

For the set of parameter values, we have checked that the condition for the feasibility
of the endemic equilibrium (i.e., R1 > 1) is satisfied. The equilibrium values are
obtained as:

I∗ = 932, A∗ = 57151, N∗ = 124767, M∗ = 1618.

For the set of parameter values given in Table 1, the value of basic reproduction
number R0 is found to be 1.87 and the value of modified basic reproduction number
R1 is 1.30. We have made contour plots of R1 for different values of λ and M0,
which are shown in Fig. 1. From this figure, it may be noted that for small values
of dissemination rate of awareness among susceptible individuals (λ) and baseline
number of TV and social media ads (M0), the value of R1 is higher but on in-
creasing the values of these parameters, R1 becomes less than unity and endemic
equilibrium loses its feasibility, showing the importance of TV and social media
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Figure 2. Non-linear stability behavior of model system (2) in
I −A−M space for λ = 0.00003, keeping rest of parameter values
same as given in Table 1, which shows that all solution trajectory
attains their equilibrium E∗ inside the region of attraction Ω.

ads. The eigenvalues of the Jacobian matrix corresponding to the equilibrium E∗

are −0.02208, −0.00004, −0.00032 + 0.00984i and −0.00032 − 0.00984i. We note
that two eigenvalues of the Jacobian matrix are negative and the other two eigen-
values have negative real part. This implies that the endemic equilibrium is locally
asymptotically stable. Further, it may be checked that the stability condition stated
in Theorem 4.1 is satisfied. Fig. 2 is drawn for the solution trajectories of model
system (2) with different initial starts in I −A−M space for λ = 0.00003, keeping
rest of parameter values same as given in Table 1. We may see that all solution tra-
jectories starting in positive orthant inside the region of attraction are approaching
towards its equilibrium value. This shows the non-linear stability of the endemic
equilibrium in I − A −M space. The non-linear stability conditions stated in the
Theorem 5.1 is also satisfied, which shows disease remains endemic in the region for
smaller values of r and λ.

For the chosen set of parameter values given in Table 1, the dynamics near the
endemic equilibrium changes as the growth rate of TV and social media ads (r)
increases. For small values of r, the endemic equilibrium is stable while an increase
in the growth rate of TV and social media ads destabilizes the endemic equilibrium
and sustained oscillations arise, which clearly states that Hopf-bifurcation occurs as
the values of r increases after a threshold. Numerically, we have obtained the critical
value of growth rate of advertisements parameter (i.e., r = rc) at which change in
stability occurs and this is rc = 0.01011. It may be noted that for r ∈ [0, rc), all
the eigenvalues of Jacobian matrix lie in the left half of the complex plane showing
that the endemic equilibrium of model system (2) is stable for small values of r
while loss of stability occurs for r = 0.011(> rc) and endemic equilibrium becomes
unstable. The conditions stated in Theorem 6.1 are also satisfied, which shows that
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Figure 3. Variation of S(t), I(t), A(t) and M(t) with respect to
time t for r = 0.005, which shows that the equilibrium E∗ is stable
and we have damped oscillation.

model system (2) undergoes Hopf-bifurcation around the endemic equilibrium at
r = rc. Further, the sign of µ2, β2 and τ2 at r = rc are found to be 1.48 × 10−15,
−3.06 × 10−15 and 4.47 × 10−15, respectively. Using Theorem 7.1 we can say that
the Hopf-bifurcation is forward and bifurcating periodic solutions exist for r > rc.
The periodic solutions are stable and period increases as µ2 > 0, β2 < 0 and τ2 > 0.
Now, we discuss the variation of susceptible population S(t), infected population
I(t), aware population A(t) and cumulative number of TV and social media ads
M(t) with respect to time t for r = 0.005 (< rc), which is shown in Fig. 3. This
diagram reveals that for r ∈ [0, rc), all the variables attain their equilibrium values.
In Fig. 4, we plot a phase portrait for r = 0.005 (< rc), which demonstrates that

the endemic equilibrium is stable, i.e., the solution trajectory starting from outside
approaches towards its equilibrium E∗. Further, we have plotted the variation of
S(t), I(t), A(t) and M(t) with respect to time t for r = 0.011 (> rc). This diagram
clarifies that all the variables show oscillatory behavior, which is shown in Fig. 5.
In Fig. 6, we draw a phase portrait in I − A−M space to show that the endemic
equilibrium is unstable for r = 0.011 (> rc). To get the more clear picture, we
have drawn a bifurcation diagram shown in Fig. 7, by taking r as a bifurcation
parameter. Form Fig. 7, it can be easily seen that for small values of the growth
rate of TV and social media ads, all variables settle down to their equilibrium
values. However, as the growth rate of TV and social media ads increase after
a threshold, periodic solutions of increasing amplitude are observed and endemic
equilibrium changes its stability from stable to unstable. In addition, for r = 0.05,
ω = 60, keeping rest of parameter values same as given in Table 1, the dynamics
near the endemic equilibrium changes as the dissemination rate of awareness among
susceptible individuals (λ) increases. For small values of λ, the endemic equilibrium
is stable while an increase in dissemination rate destabilizes the endemic equilibrium.
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Figure 4. Phase portrait of model system (2) for r = 0.005 in
I −A−M space, which shows that the equilibrium E∗ is stable.
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Figure 5. Variation of S(t), I(t), A(t) and M(t) with respect
to time t for r = 0.011, which shows that the equilibrium E∗ is
unstable and we have undamped sustained oscillation.

Further increase in dissemination rate again stabilizes the endemic equilibrium,
which clearly states that Hopf-bifurcation occurs twice as the value of λ increases.
Numerically, we have obtained the critical values of dissemination parameter λ (i.e.,
λc1 and λc2) at which the change in stability occurs are given by λc1 = 0.00997 and
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Figure 6. Appearance of limit cycle of model system (2) for r =
0.011 in I −A−M space, which shows that the equilibrium E∗ is
unstable.
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in Table 1.
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parameters same as given in Table 1.

λc2 = 0.01779. For r = 0.05, ω = 60 and rest of parameter values as given in Table
1, the endemic equilibrium is stable if λ ∈ [0, λc1) ∪ (λc2 , λmax) and unstable for
λ ∈ (λc1 , λc2). Furthermore, increase in the value of λ(> λc2), after a threshold (i.e.,
λ = λmax = 0.0239), the endemic equilibrium loses its feasibility (i.e., R1 becomes
less than unity) and in this case only disease-free equilibrium will be feasible. This
states that if dissemination rate of awareness among the susceptible individuals
is fast enough then disease can be effectively controlled in the population. To
get the more clear picture, we have plotted a bifurcation diagram shown in Fig.
8 (a-c), by taking λ as a bifurcation parameter. These figures demonstrate the
interesting dynamics of the system as the dissemination rate of awareness among
susceptible individuals (λ) increases. From Fig. 8 (a), it can be easily seen that
for small values of the dissemination rate, the number of infected individuals settles
to their equilibrium value but as the dissemination rate increases, the periodic
oscillations in the number of infected individuals with increasing amplitude are
observed. Further increase in dissemination rate leads to decrease in the amplitude
of these oscillations and finally, they die out for large values of dissemination rate
and again the number of infected individuals settles down to their lower equilibrium
value. From Figs. 8 (a-c), it is also apparent that for λ ∈ [0, λc1) ∪ (λc2 , λmax),
the endemic equilibrium shows stable character; however for λ ∈ (λc1 , λc2), the
endemic equilibrium is unstable and Hopf-bifurcation occurs at λ = λc1 and λc2 .
Thus, we have observed that the endemic equilibrium of model system (2) switches
from stability to instability to stability as dissemination rate of awareness among
susceptible individuals (λ) increases.

9. Conclusion. In this paper, we have proposed and analyzed a nonlinear mathe-
matical model to assess the impact of TV and social media ads on the spread of an
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infectious disease. In the model formulation, it is assumed that cumulative num-
ber of TV and social media ads increases proportional to the number of infected
individuals and their growth rate decreases with the increase in number of aware
individuals. It is also assumed that susceptible individuals contract infection due
to the direct contact with infected individuals.

The analysis of proposed model reveals that only two equilibria; namely disease-
free equilibrium (DFE) E0, and endemic equilibrium (EE) E∗ are feasible. The
linear and non-linear stability of endemic equilibrium, existence of Hopf-bifurcation
and result for the direction of bifurcating periodic solutions are discussed. Model
analysis shows that the increase in growth rate of cumulative number of TV and
social media ads after a threshold value destabilizes the system and periodic oscil-
lations arise through Hopf-bifurcation. It is also found that the dissemination rate
of awareness among susceptible individuals gives rise to interesting result about the
stability of endemic equilibrium. It is noted that for small values of dissemination
rate, the endemic equilibrium is stable and the increase in dissemination rate desta-
bilizes the system; however further increase in this rate again stabilizes the endemic
equilibrium. This means that the endemic equilibrium changes its stability from
stable to unstable to stable state as the dissemination rate of awareness among
susceptible individuals increases and further increase in dissemination rate after a
threshold (i.e., λmax), ceases the feasibility of endemic equilibrium (i.e., R1 < 1)
and only disease-free equilibrium is feasible, which is stable. It is also noted that
in absence of baseline number of TV and social media ads, the basic reproduction
number R0 is same as obtained for classical SIS models considered in other arti-
cles [29, 37, 30]. The incorporation of baseline number of TV and social media
ads modifies this basic reproduction number to R1, which is less than R0. This
infers that the TV and social media ads have the potential to reduce the number
of infected individuals but for the eradication of the disease from the community,
some other efforts, like treatment, sanitation, maintaining the baseline number of
TV and social media ads are also important.

The above discussion in terms of epidemiology states that the augmentation in
the dissemination rate of awareness among susceptible individuals increases the
number of aware individuals, which leads to decrease in the number of TV and
social media ads and thus increases the number of infected individuals. Further,
this increase in number of infected individuals increases the TV and social media
ads, which increases the aware individuals. This interplay between the number of
infected individuals and dissemination of awareness through TV and social media
gives rise to oscillatory solution. It may be noted that when number of infected indi-
viduals become low and aware population reaches its saturated level, the oscillatory
behavior dies out and further increase in dissemination rate provides the stable so-
lution. Further increase in dissemination rate of awareness among the susceptible
individuals after a threshold (i.e., λmax) leads to the feasibility of only disease-free
equilibrium.
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Appendix A.. Here, we will find the basic reproduction number (R1) of model
system (2) using next generation matrix approach. we have the matrix of new
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infection F(x) and the matrix of transfer V(x). Let x = (I, A,N,M)T , the model
system (2) can be rewritten as:

dx

dt
= F(x)− V(x),

where F(x) =


βI(N − I −A)

0
0
0

 and V(x) =


(ν + α+ d)I

−λ M
p+M

(N − I −A) + (λ0 + d)A

−Λ + dN + αI

−r
(

1− θ A
ω+A

)
I + r0(M −M0)

 .

The Jacobian matrix of F(x) and V(x) at disease-free equilibrium E0 (0,

λΛM0

d(λM0+(λ0+d)(p+M0)) ,
Λ
d ,M0

)
are JF(E0) =


βΛ
d

(
(λ0+d)(p+M0)

λM0+(λ0+d)(p+M0)

)
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


and

JV(E0) =


(ν + α+ d) 0 0 0

λ M0
p+M0

(
λ M0
p+M0

+ λ0 + d
)
−λ M0

p+M0
− λp

(p+M0)2

(
Λ
d
−A0

)
α 0 d 0

−r
(

1− θ A0
ω+A0

)
0 0 r0

 ,

where A0 = λΛM0

d(λM0+(λ0+d)(p+M0)) . The next generation matrix KL = JF(E0)

JV(E0)−1 is given by

KL =


βΛ

d(ν+α+d)

(
(λ0+d)(p+M0)

λM0+(λ0+d)(p+M0)

)
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 .

Therefore, basic reproduction number is R1 = ρ(KL) = max (|µ|;µ ∈ ρ(KL)) is
spectral radius of matrix KL and basic reproduction number (R1) is obtained as
follows,

R1 =
βΛ

d(ν + α+ d)

(
(λ0 + d)(p+M0)

λM0 + (λ0 + d)(p+M0)

)
.

Appendix B.. Here, we proof the results for dI∗

dr < 0, dI∗

dλ < 0, dI∗

dM0
< 0, dI∗

dp > 0,
dI∗

dθ > 0 and dI∗

dω < 0 stated in remarks 1, 2.
(i) Variation of I∗ with respect to r:

Here we show the variation of I∗ with respect to r. Since at the equilibrium point
E∗(I∗, A∗, N∗,M∗), the rate of change of all dynamical variables with respect to
time ‘t’ is zero. Thus we have following system of equations:

β(N∗ − I∗ −A∗)− (ν + α+ d) = 0, (25)

λ
M∗

p+M∗
(N∗ − I∗ −A∗)− (λ0 + d)A∗ = 0, (26)

Λ− dN∗ − αI∗ = 0, (27)

r

(
1− θ A∗

ω +A∗

)
I∗ − r0(M∗ −M0) = 0. (28)

Using equation (27) in equation (25), we have

Let F1(r, I∗, A∗) := β

(
Λ− (α+ d)I∗

d
−A∗

)
− (ν + α+ d) = 0. (29)
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And using equations (27) and (28) in equation (26), we have

G1(r, I∗, A∗) := λ

 r
(

1− θ A∗

ω+A∗

)
I∗ + r0M0

r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

(Λ− (α+ d)I∗

d
−A∗

)
−(λ0 + d)A∗ = 0. (30)

Differentiating F1(r, I∗, A∗) and G1(r, I∗, A∗) partially with respect to r, I∗ and

A∗, we get ∂F1

∂r = 0, ∂F1

∂I∗ = −β(α+d)
d , ∂F1

∂A∗ = −β,

∂G1

∂r
=

λpr0

(
1− θ A∗

ω+A∗

)
I∗(

r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

)2

(
Λ− (α+ d)I∗

d
−A∗

)
, (31)

∂G1

∂I∗
= −λ(α+ d)

d

 r
(

1− θ A∗

ω+A∗

)
I∗ + r0M0

r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)


+

λpr0r
(

1− θ A∗

ω+A∗

)
(
r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

)2

(
Λ− (α+ d)I∗

d
−A∗

)
, (32)

∂G1

∂A∗
= −λ

 r
(

1− θ A∗

ω+A∗

)
I∗ + r0M0

r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)


−

 λpr0rθωI
∗

(ω +A∗)2
(
r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

)2


×
(

Λ− (α+ d)I∗

d
−A∗

)
− (λ0 + d). (33)

Since F1(r, I∗, A∗) = 0, and differentiating it with respect to r, we have

∂F1

∂r
+
∂F1

∂I∗
dI∗

dr
+
∂F1

∂A∗
dA∗

dr
= 0.

Using the values of ∂F1

∂r , ∂F1

∂I∗ and ∂F1

∂A∗ in above equation, we have

dA∗

dr
= −

(
α+ d

d

)
dI∗

dr
. (34)

Since G1(r, I∗, A∗) = 0, and differentiating it with respect to r, we have

∂G1

∂r
+
∂G1

∂I∗
dI∗

dr
+
∂G1

∂A∗
dA∗

dr
= 0.

Using equations (31)-(33) and (34), we get

dI∗

dr
= −

(
A11

A12

)
.

where, A11 = λpr0

(
1− θ A∗

ω+A∗

)(
Λ−(α+d)I∗

d −A∗
)
I∗ and A12 = λpr0r (1−

θ A∗

ω+A∗

)(
Λ−(α+d)I∗

d −A∗
)

+ λpr0rθω(α+d)I∗

d(ω+A∗)2

(
Λ−(α+d)I∗

d −A∗
)

+ (α+d)(λ0+d)
d(

r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

)2

.
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Thus, from above equation it is clear that dI∗

dr < 0.
(ii) Variation of I∗ with respect to λ:

Let F2(λ, I∗, A∗) := β

(
Λ− (α+ d)I∗

d
−A∗

)
− (ν + α+ d) = 0, (35)

and

G2(λ, I∗, A∗) := λ

 r
(

1− θ A∗

ω+A∗

)
I∗ + r0M0

r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

(Λ− (α+ d)I∗

d
−A∗

)
−(λ0 + d)A∗ = 0. (36)

Differentiating F2(λ, I∗, A∗) and G2(λ, I∗, A∗) partially with respect to λ, I∗ and

A∗, we get ∂F2

∂λ = 0, ∂F2

∂I∗ = −β(α+d)
d , ∂F2

∂A∗ = −β, ∂G2

∂λ =

(
r(1−θ A∗

ω+A∗ )I∗+r0M0

r(1−θ A∗
ω+A∗ )I∗+r0(p+M0)

)
(

Λ−(α+d)I∗

d −A∗
)
, ∂G2

∂I∗ = ∂G1

∂I∗ and ∂G2

∂A∗ = ∂G1

∂A∗ . Since F2(λ, I∗, A∗) = 0, and

differentiating it with respect to λ, we have

∂F2

∂λ
+
∂F2

∂I∗
dI∗

dλ
+
∂F2

∂A∗
dA∗

dλ
= 0.

Using the values of ∂F2

∂λ , ∂F2

∂I∗ and ∂F2

∂A∗ in above equation, we have

dA∗

dλ
= −

(
α+ d

d

)
dI∗

dλ
. (37)

Since G2(λ, I∗, A∗) = 0, and differentiating it with respect to λ, we have

∂G2

∂λ
+
∂G2

∂I∗
dI∗

dλ
+
∂G2

∂A∗
dA∗

dλ
= 0.

Using the values of ∂G2

∂λ , ∂G2

∂I∗ , ∂G2

∂A∗ and dA∗

dλ in above equation, we have

dI∗

dλ
= −

(
A21

A22

)
,

where, A21 =
(
r
(

1− θ A∗

ω+A∗

)
I∗ + r0M0

)(
r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

)
×
(

Λ−(α+d)I∗

d −A∗
)
, and A22 = A12.

Thus, from above equation it is easy to note that dI∗

dλ < 0. Hence the proof.
(iii) Variation of I∗ with respect to M0:

Here we show the variation of I∗ with respect to M0.

Let F3(M0, I
∗, A∗) := β

(
Λ− (α+ d)I∗

d
−A∗

)
− (ν + α+ d) = 0, (38)

and

G3(M0, I
∗, A∗)

:= λ

 r
(

1− θ A∗

ω+A∗

)
I∗ + r0M0

r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

(Λ− (α+ d)I∗

d
−A∗

)
−(λ0 + d)A∗ = 0. (39)

Differentiating F3(M0, I
∗, A∗) and G3(M0, I

∗, A∗) partially with respect to M0, I∗

and A∗, we get ∂F3
∂M0

= 0, ∂F3
∂I∗ = −β(α+d)

d
, ∂F3
∂A∗ = −β, ∂G3

∂M0
=

λpr20

(
Λ−(α+d)I∗

d
−A∗

)
(
r
(
1−θ A∗

ω+A∗
)
I∗+r0(p+M0)

)2 ,
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∂G3

∂I∗ = ∂G1

∂I∗ and ∂G3

∂A∗ = ∂G1

∂A∗ . Since F3(M0, I
∗, A∗) = 0, and differentiating it with

respect to M0, we have

∂F3

∂M0
+
∂F3

∂I∗
dI∗

dM0
+
∂F3

∂A∗
dA∗

dM0
= 0.

Using the values of ∂F3

∂M0
, ∂F3

∂I∗ and ∂F3

∂A∗ in above equation, we obtain

dA∗

dM0
= −

(
α+ d

d

)
dI∗

dM0
. (40)

Since G3(M0, I
∗, A∗) = 0, and differentiating it with respect to M0, we have

∂G3

∂M0
+
∂G3

∂I∗
dI∗

dM0
+
∂G3

∂A∗
dA∗

dM0
= 0.

Using the values of ∂G3

∂M0
, ∂G3

∂I∗ , ∂G3

∂A∗ and dA∗

dM0
in above equation, we get

dI∗

dM0
= −

(
A31

A32

)
,

where, A31 = λpr2
0

(
Λ−(α+d)I∗

d −A∗
)
, and A32 = A12.

Thus, it is clear that dI∗

dM0
< 0. Hence the proof.

(iv) Variation of I∗ with respect to p:

Let F4(p, I∗, A∗) := β

(
Λ− (α+ d)I∗

d
−A∗

)
− (ν + α+ d) = 0, (41)

and

G4(p, I∗, A∗) := λ

 r
(

1− θ A∗

ω+A∗

)
I∗ + r0M0

r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

(Λ− (α+ d)I∗

d
−A∗

)
−(λ0 + d)A∗ = 0. (42)

Differentiating F4(p, I∗, A∗) and G4(p, I∗, A∗) partially with respect to p, I∗ and

A∗, we obtain ∂F4

∂p = 0, ∂F4

∂I∗ = −β(α+d)
d , ∂F4

∂A∗ = −β,

∂G4

∂p = − λr0(r(1−θ A∗
ω+A∗ )I∗+r0M0)

(r(1−θ A∗
ω+A∗ )I∗+r0(p+M0))

2

(
Λ−(α+d)I∗

d −A∗
)
, ∂G4

∂I∗ = ∂G1

∂I∗ and ∂G4

∂A∗ = ∂G1

∂A∗ .

Since F4(p, I∗, A∗) = 0, and differentiating it with respect to p, we have

∂F4

∂p
+
∂F4

∂I∗
dI∗

dp
+
∂F4

∂A∗
dA∗

dp
= 0.

Using the values of ∂F4

∂p , ∂F4

∂I∗ and ∂F4

∂A∗ in above equation, we get

dA∗

dp
= −

(
α+ d

d

)
dI∗

dp
. (43)

Since G4(p, I∗, A∗) = 0, and differentiating it with respect to p, we have

∂G4

∂p
+
∂G4

∂I∗
dI∗

dp
+
∂G4

∂A∗
dA∗

dp
= 0.

Using the values of ∂G4

∂p , ∂G4

∂I∗ , ∂G4

∂A∗ and dA∗

dp in above equation, we obtain

dI∗

dp
=

(
A41

A42

)
,
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where, A41 = λr0

(
r
(

1− θ A∗

ω+A∗

)
I∗ + r0M0

)(
Λ−(α+d)I∗

d −A∗
)
, and A42 = A12.

Thus, from above equation, it is clear that dI∗

dp > 0. Hence the proof.

(v) Variation of I∗ with respect to θ:
Here, we show the variation of I∗ with respect to θ.

Let F5(θ, I∗, A∗) := β

(
Λ− (α+ d)I∗

d
−A∗

)
− (ν + α+ d) = 0, (44)

and

G5(θ, I∗, A∗) := λ

 r
(

1− θ A∗

ω+A∗

)
I∗ + r0M0

r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

(Λ− (α+ d)I∗

d
−A∗

)
−(λ0 + d)A∗ = 0. (45)

Differentiating F5(θ, I∗, A∗) and G5(θ, I∗, A∗) partially with respect to θ, I∗ and

A∗, we get ∂F5

∂θ = 0, ∂F5

∂I∗ = −β(α+d)
d , ∂F5

∂A∗ = −β,

∂G5

∂θ = −
(

λpr0rI
∗A∗

(ω+A∗)(r(1−θ A∗
ω+A∗ )I∗+r0(p+M0))

2

)(
Λ−(α+d)I∗

d −A∗
)
, ∂G5

∂I∗ = ∂G1

∂I∗ and

∂G5

∂A∗ = ∂G1

∂A∗ . Since F5(θ, I∗, A∗) = 0, and differentiating it with respect to θ, we
have

∂F5

∂θ
+
∂F5

∂I∗
dI∗

dθ
+
∂F5

∂A∗
dA∗

dθ
= 0.

Using the values of ∂F5

∂θ , ∂F5

∂I∗ and ∂F5

∂A∗ in above equation, we obtain

dA∗

dθ
= −

(
α+ d

d

)
dI∗

dθ
. (46)

Since G5(θ, I∗, A∗) = 0, and differentiating it with respect to θ, we have

∂G5

∂θ
+
∂G5

∂I∗
dI∗

dθ
+
∂G5

∂A∗
dA∗

dθ
= 0.

Using the values of ∂G5

∂θ , ∂G5

∂I∗ , ∂G5

∂A∗ and dA∗

dθ in above equation, we have

dI∗

dθ
=

(
A51

A52

)
,

where, A51 = λpr0rI
∗A∗

ω+A∗

(
Λ−(α+d)I∗

d −A∗
)
, and A52 = A12. Thus, from above

equation, it is easy to note that dI∗

dθ > 0. Hence the proof.
(vi) Variation of I∗ with respect to ω:

Let F6(ω, I∗, A∗) := β

(
Λ− (α+ d)I∗

d
−A∗

)
− (ν + α+ d) = 0, (47)

and

G6(ω, I∗, A∗) := λ

 r
(

1− θ A∗

ω+A∗

)
I∗ + r0M0

r
(

1− θ A∗

ω+A∗

)
I∗ + r0(p+M0)

(Λ− (α+ d)I∗

d
−A∗

)
−(λ0 + d)A∗ = 0. (48)

Differentiating F6(ω, I∗, A∗) and G6(ω, I∗, A∗) partially with respect to ω, I∗, A∗,

we get ∂F6

∂ω = 0, ∂F6

∂I∗ = −β(α+d)
d , ∂F6

∂A∗ = −β,

∂G6

∂ω =

(
λpr0rθI

∗A∗

(ω+A∗)2(r(1−θ A∗
ω+A∗ )I∗+r0(p+M0))

2

)(
Λ−(α+d)I∗

d −A∗
)
, ∂G6

∂I∗ = ∂G1

∂I∗ and
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∂G6

∂A∗ = ∂G1

∂A∗ . Since F6(ω, I∗, A∗) = 0, and differentiating it with respect to ω,
we have

∂F6

∂ω
+
∂F6

∂I∗
dI∗

dω
+
∂F6

∂A∗
dA∗

dω
= 0.

Using the values of ∂F6

∂ω , ∂F6

∂I∗ and ∂F6

∂A∗ in above equation, we have

dA∗

dω
= −

(
α+ d

d

)
dI∗

dω
. (49)

Since G6(ω, I∗, A∗) = 0, and differentiating it with respect to ω, we have

∂G6

∂ω
+
∂G6

∂I∗
dI∗

dω
+
∂G6

∂A∗
dA∗

dω
= 0.

Using the values of ∂G6

∂ω , ∂G6

∂I∗ , ∂G6

∂A∗ and dA∗

dω in above equation, we obtain

dI∗

dω
= −

(
A61

A62

)
,

where, A61 = λpr0rθI
∗A∗

(ω+A∗)2

(
Λ−(α+d)I∗

d −A∗
)
, and A62 = A12. Thus, from above

equation, it is clear that dI∗

dω < 0. Hence the proof.

Appendix C..

Proof. Here, we show the local stability of equilibrium E0 and E∗ by finding the
eigenvalues of corresponding Jacobian matrices J0 and J∗. The general Jacobian
matrix ‘J ’ of model system (2) is as follows:

J =


a11 −βI βI 0

− λM
p+M − λM

p+M − (λ0 + d) λM
p+M

λp(N−I−A)
(p+M)2

−α 0 −d 0

r
(

1− θA
ω+A

)
− rθωI

(ω+A)2 0 −r0

 .

where,
a11 = β(N − 2I −A)− (ν + α+ d).

Let J0 and J∗ be Jacobian matrices evaluated at the equilibrium E0 and E∗, re-
spectively. Now the Jacobian matrix at equilibrium E0 is given by:

J0 =


a0

11 − (ν + α+ d) 0 0 0

− λM0

p+M0
− λM0

p+M0
− (λ0 + d) λM0

p+M0
a0

24

−α 0 −d 0

r
(

1− θA0

ω+A0

)
0 0 −r0

 .

where,

A0 = λΛM0

d(λM0+(λ0+d)(p+M0)) , a0
11 = βΛ

d

(
(λ0+d)(p+M0)

λM0+(λ0+d)(p+M0)

)
and a0

24 = λpΛ
d(p+M0)2(

(λ0+d)(p+M0)
λM0+(λ0+d)(p+M0)

)
.

From the Jacobian matrix evaluated at E0, it is observed that one of the eigenva-
lue of this matrix is

(
a0

11 − (ν + α+ d)
)
, which is positive if R1 > 1 and negative if

R1 < 1. It is also easy to see that all other eigenvalues of J0 are -
(
λM0

p+M0
+ λ0 + d

)
,

−d and −r0. Thus, the equilibrium E0 is locally asymptotically stable if R1 < 1. E0

becomes unstable whenever E∗ is feasible (i.e., R1 > 1). Thus, E0 is saddle point
with stable manifold locally in N − A−M space and unstable manifold locally in
I-direction whenever E∗ is feasible.
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Now, we show the local stability of the endemic equilibrium E∗ using Routh-
Hurwitz criterion. The characteristic equation for the matrix J∗ is given as follows:

η4 +B1η
3 +B2η

2 +B3η +B4 = 0. (50)

where, B1 = a∗21 + λ0 + 2d + r0 + βI∗, B2 = r0(a∗21 + λ0 + d) + a∗24
rθωI∗

(ω+A∗)2 +

βI∗(λ0 + r0 + d) + αβI∗ + d(a∗21 + λ0 + r0 + d) + dβI∗.

B3 = βI∗r0(λ0 + d) + βI∗a∗24
rθωI∗

(ω+A∗)2 + βI∗a∗24r
(

1− θA∗

ω+A∗

)
+ αβI∗(λ0 + r0 +

d) + dr0(a∗21 + λ0 + d) + da∗24
rθωI∗

(ω+A∗)2 + βdI∗(λ0 + r0 + d), B4 = βdI∗r0(λ0 +

d) + dβI∗a∗24
rθωI∗

(ω+A∗)2 + dβI∗a∗24r
(

1− θA∗

ω+A∗

)
+ αβI∗(λ0 + d)r0 + αβI∗a∗24

rθωI∗

(ω+A∗)2 ,

a∗21 = λM∗

p+M∗ , a∗24 = λp(N∗−I∗−A∗)
(p+M∗)2 . Here, we see that B1, B2, B3 and B4 all are

positive. Thus, by using Routh-Hurwith criterion for above characteristic equation,
we say that all the eigenvalues of the Jacobian matrix J∗ will be in left-half of the
complex plane if following condition is satisfied:

B3(B1B2 −B3)−B2
1B4 > 0.

Hence, the endemic equilibrium E∗ is locally asymptotically stable provided the
above condition is satisfied.

Appendix D..

Proof. To establish the non-linear stability of equilibrium E∗, consider the following
positive definite function corresponding to reduced model system (2), about the
equilibrium E∗(I∗, A∗, N∗,M∗):

G =I − I∗ − I∗ ln

(
I

I∗

)
+

1

2
m1(A−A∗)2 +

1

2
m2(N −N∗)2

+
1

2
m3(M −M∗)2. (51)

where, the coefficient m1, m2 and m3 are positive constants to be chosen appropri-
ately.

Differentiating equation (51) with respect to time ‘t’, along the solutions of model

system (2) and choosing m2 = β
α , after rearranging the terms, we have

dG

dt
= −β(I − I∗)2 −m1

(
λM∗

p+M∗
+ (λ0 + d)

)
(A−A∗)2 − βd

α
(N −N∗)2

−m3r0(M −M∗)2 − β(A−A∗)(I − I∗)−m1
λM∗

p+M∗
(I − I∗)(A−A∗)

+m1
λp(N − I −A)

(p+M)(p+M∗)
(M −M∗)(A−A∗)

−m3
rθωI

(ω +A)(ω +A∗)
(M −M∗)(A−A∗)

+m1
λM∗

p+M∗
(N −N∗)(A−A∗)

+m3r

(
1− θ A∗

ω +A∗

)
(I − I∗)(M −M∗).
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Thus, dG
dt will be negative definite inside the region of attraction Ω provided the

following inequalities are satisfied:

β <
4

15
m1

(
λM∗

p+M∗
+ λ0 + d

)
, (52)

m1

(
λM∗

p+M∗

)2

<
4β

15

(
λM∗

p+M∗
+ λ0 + d

)
, (53)

m1

(
λM∗

p+M∗

)2

<
4βd

5α

(
λM∗

p+M∗
+ λ0 + d

)
, (54)

m1

(
λΛ

d(p+M∗)

)2

<
4r0

15
m3

(
λM∗

p+M∗
+ λ0 + d

)
, (55)

m3

(
rθΛ

d(ω +A∗)

)2

<
4r0

15
m1

(
λM∗

p+M∗
+ λ0 + d

)
, (56)

m3r
2

(
1− θA∗

ω +A∗

)2

<
4βr0

9
. (57)

From inequalities (52)-(54), we may choose the positive value of m1, provided con-
dition (15) is satisfied. Now, using this value of m1, we may choose the positive
value of m3 from inequalities (55)-(57), provided condition (14) is satisfied.

Thus, dG
dt will be negative definite inside the region of attraction Ω, if the in-

equalities (14) and (15) are satisfied.

Appendix E..

Proof. In this section, we proof the result for direction of bifurcating periodic so-
lutions. For this, we translate the origin of the co-ordinate system to the Hopf-
bifurcation point E∗(I∗, A∗, N∗,M∗), by substituting I = I∗ + z1, A = A∗ + z2,
N = N∗ + z3, M = M∗ + z4.

Where, z = (z1, z2, z3, z4)T , where T represents the transpose of matrix. Now
we have the following system:

dz1
dt
dz2
dt
dz3
dt
dz4
dt

 =


f1(z1, z2, z3, z4)
f2(z1, z2, z3, z4)
f3(z1, z2, z3, z4)
f4(z1, z2, z3, z4)

+O(|z|3).

where, f1(z1, z2, z3, z4) = −βI∗z1 − βI∗z2 + βI∗z3 − βz2
1 − βz1z2 + βz1z3,

f2(z1, z2, z3, z4) = − λM∗

p+M∗ z1 −
(
λM∗

p+M∗ + λ0 + d
)
z2 + λM∗

p+M∗ z3 + λp(N∗−I∗−A∗)
(p+M∗)2 z4,

− λp(N∗−I∗−A∗)
(p+M∗)3 z2

4 −
λp

(p+M∗)2 z1z4 − λp
(p+M∗)2 z2z4 + λp

(p+M∗)2 z3z4,

f3(z1, z2, z3, z4) = −αz1 − dz3,

f4(z1, z2, z3, z4) = r
(

1− θA∗

ω+A∗

)
z1 − rθωI∗

(ω+A∗)2 z2 − r0z4 + rθωI∗

(ω+A∗)3 z
2
2 − rθω

(ω+A∗)2 z1z2.

In the above expression, we are not interested in the coefficient of the third, forth
and higher order terms as they make no contribution in the further calculation.

Now, system takes the form:

ż = Pz +H(z). (58)
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where, z =


z1

z2

z3

z4

,

P =


−βI∗ −βI∗ βI∗ 0

− λM∗

p+M∗ −
(
λM∗

p+M∗ + λ0 + d
)

λM∗

p+M∗
λp(N∗−I∗−A∗)

(p+M∗)2

−α 0 −d 0

r
(

1− θA∗

ω+A∗

)
− rθωI∗

(ω+A∗)2 0 −r0

 . and

H(z) =


h1

h2

h3

h4



=


−βz2

1 − βz1z2 + βz1z3

−λp(N
∗−I∗−A∗)

(p+M∗)3 z2
4 −

λp
(p+M∗)2 z1z4 − λp

(p+M∗)2 z2z4 + λp
(p+M∗)2 z3z4

0
rθωI∗

(ω+A∗)3 z
2
2 − rθω

(ω+A∗)2 z1z2

 .

The eigenvectors v1, v2 and v3 of the Jacobian matrix P corresponding to the
eigenvalues iω0, η3 and η4, respectively, at r = rc are obtained as follows:

v1 =


v11 − iv12

v21 − iv22

v31 − iv32

v41 − iv42

, v2 =


v13

v23

v33

v43

 and v3 =


v14

v24

v34

v44

 .

where, v11 = λp(N∗−I∗−A∗)
(p+M∗)2

rθωI∗

(ω+A∗)2 + r0

(
λM∗

p+M∗ + λ0 + d
)
− ω2

0 ,

v12 = −
{
ω0

(
λM∗

p+M∗ + λ0 + d
)

+ r0ω0

}
,

v21 = r
(

1− θA∗

ω+A∗

)
λp(N∗−I∗−A∗)

(p+M∗)2 − λM∗

p+M∗

(
r0(α+d)d+ω2

0(α+r0)

d2+ω2
0

)
,

v22 = λM∗

p+M∗

(
ω0((α+d)d+ω2

0)−r0ω0α

d2+ω2
0

)
,

v31 = −
{
αλpd(N∗−I∗−A∗)
(d2+ω2

0)(p+M∗)2
rθωI∗

(ω+A∗)2 + αdr0
d2+ω2

0

(
λM∗

p+M∗ + λ0 + d
)

+
αω2

0r0
d2+ω2

0

+
αω2

0

d2+ω2
0

(
λM∗

p+M∗ + λ0

)}
,

v32 =
{

αω3
0

d2+ω2
0

+ αdω0

d2+ω2
0

(
λM∗

p+M∗ + λ0 + d
)
− αω0

d2+ω2
0

(
λp(N∗−I∗−A∗)

(p+M∗)2

)
rθωI∗

(ω+A∗)2

− αω0r0
d2+ω2

0

(
λM∗

p+M∗ + λ0

)}
,

v41 = λM∗

p+M∗

(
1 + αd

d2+ω2
0

)
rθωI∗

(ω+A∗)2 + r
(

1− θA∗

ω+A∗

)(
λM∗

p+M∗ + λ0 + d
)
,

v42 = λM∗

p+M∗

(
αω0

d2+ω2
0

)
rθωI∗

(ω+A∗)2 − rω0

(
1− θA∗

ω+A∗

)
,

v13 = λp(N∗−I∗−A∗)
(p+M∗)2

rθωI∗

(ω+A∗)2 + (r0 + η3)
(
λM∗

p+M∗ + λ0 + d+ η3

)
,

v23 = r
(

1− θA∗

ω+A∗

)
λp(N∗−I∗−A∗)

(p+M∗)2 − (r0 + η3)
(
α+d+η3

d+η3

)
λM∗

p+M∗ ,

v33 = − α
d+η3

{
λp(N∗−I∗−A∗)

(p+M∗)2
rθωI∗

(ω+A∗)2 + (r0 + η3)
(
λM∗

p+M∗ + λ0 + d+ η3

)}
,

v43 = λM∗

p+M∗

(
α+d+η3

d+η3

)(
rθωI∗

(ω+A∗)2

)
+ r

(
1− θA∗

ω+A∗

)(
λM∗

p+M∗ + λ0 + d+ η3

)
,

v14 = λp(N∗−I∗−A∗)
(p+M∗)2

rθωI∗

(ω+A∗)2 + (r0 + η4)
(
λM∗

p+M∗ + λ0 + d+ η4

)
,
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v24 = r
(

1− θA∗

ω+A∗

)
λp(N∗−I∗−A∗)

(p+M∗)2 − (r0 + η4)
(
α+d+η4

d+η4

)
λM∗

p+M∗ ,

v34 = − α
d+η4

{
λp(N∗−I∗−A∗)

(p+M∗)2
rθωI∗

(ω+A∗)2 + (r0 + η4)
(
λM∗

p+M∗ + λ0 + d+ η4

)}
,

v44 = λM∗

p+M∗

(
α+d+η4

d+η4

)(
rθωI∗

(ω+A∗)2

)
+ r

(
1− θA∗

ω+A∗

)(
λM∗

p+M∗ + λ0 + d+ η4

)
.

Define, V = (Re(v1),−Im(v1), v2, v3),

V =


v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44

 .

The matrix V is non-singular such that

V −1PV =


0 −ω0 0 0
ω0 0 0 0
0 0 η3 0
0 0 0 η4

 .

Inverse of matrix V is given by:

V −1 =


w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

 .

where,
w11 = 1

∆ [v22(v44v33 − v43v34) + v23(v42v34 − v44v32) + v24(v43v32 − v42v33)] ,

w12 = 1
∆ [v12(v43v34 − v44v33) + v13(v32v44 − v34v42) + v14(v33v42 − v43v32)] ,

w13 = 1
∆ [v12(v44v23 − v43v24) + v13(v42v24 − v44v22) + v14(v43v22 − v23v42)] ,

w14 = 1
∆ [v12(v24v33 − v23v34) + v13(v22v34 − v32v24) + v14(v23v32 − v33v22)] ,

w21 = 1
∆ [v21(v34v43 − v44v33) + v23(v44v31 − v34v41) + v24(v41v33 − v31v43)] ,

w22 = 1
∆ [v11(v33v44 − v34v43) + v13(v34v41 − v44v31) + v14(v31v43 − v33v41)] ,

w23 = 1
∆ [v11(v43v24 − v44v23) + v13(v21v44 − v24v41) + v14(v41v23 − v43v21)] ,

w24 = 1
∆ [v11(v23v34 − v24v33) + v13(v31v24 − v34v21) + v14(v33v21 − v23v31)] ,

w31 = 1
∆ [v21(v32v44 − v42v34) + v22(v34v41 − v31v44) + v24(v31v42 − v32v41)] ,

w32 = 1
∆ [v11(v42v34 − v44v32) + v12(v44v31 − v34v41) + v14(v41v32 − v42v31)] ,

w33 = 1
∆ [v11(v44v22 − v42v24) + v12(v41v24 − v21v44) + v14(v41v32 − v42v31)] ,

w34 = 1
∆ [v11(v32v24 − v34v22) + v12(v21v34 − v24v31) + v14(v22v31 − v21v32)] ,

w41 = 1
∆ [v21(v42v33 − v43v32) + v22(v43v31 − v33v41) + v23(v41v32 − v31v42)] ,

w42 = 1
∆ [v11(v43v32 − v42v33) + v12(v33v41 − v31v43) + v13(v42v31 − v32v41)] ,

w43 = 1
∆ [v11(v42v23 − v43v22) + v12(v21v43 − v23v41) + v13(v41v22 − v21v42)] ,

w44 = 1
∆ [v11(v33v22 − v32v23) + v12(v31v23 − v21v33) + v13(v32v21 − v31v22)] .

∆ = det(V ). Consider the transformation z = V y, i.e., y = V −1z.
Where,

y = (y1, y2, y3, y4)T .

Under this linear transformation system (58), takes the form:

ẏ = (V −1PV )y + f(y). (59)
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where, f(y) = V −1H(V y). This can be written as:

ẏ1 = −ω0y2 + f1(y1, y2, y3, y4),

ẏ2 = ω0y1 + f2(y1, y2, y3, y4),

ẏ3 = η3y3 + f3(y1, y2, y3, y4),

ẏ4 = η4y4 + f4(y1, y2, y3, y4).

where,

f = (f1, f2, f3, f4)T .

f1 =w11h1 + w12h2 + w13h3 + w14h4,

f2 =w21h1 + w22h2 + w23h3 + w24h4,

f3 =w31h1 + w32h2 + w33h3 + w34h4,

f4 =w41h1 + w42h2 + w43h3 + w44h4,

h1 =− β(v11y1 + v12y2 + v13y3 + v14y4)2

− β(v11y1 + v12y2 + v13y3 + v14y4)(v21y1 + v22y2 + v23y3 + v24y4)

+ β(v11y1 + v12y2 + v13y3 + v14y4)(v31y1 + v32y2 + v33y3 + v34y4),

h2 =− λp(N∗ − I∗ −A∗)
(p+M∗)3

(v41y1 + v42y2 + v43y3 + v44y4)2

− λp

(p+M∗)2
(v11y1 + v12y2 + v13y3 + v14y4)(v41y1 + v42y2 + v43y3 + v44y4)

− λp

(p+M∗)2
(v21y1 + v22y2 + v23y3 + v24y4)(v41y1 + v42y2 + v43y3 + v44y4)

+
λp

(p+M∗)2
(v31y1 + v32y2 + v33y3 + v34y4)(v41y1 + v42y2 + v43y3 + v44y4),

h3 =0,

h4 =− rθω

(ω +A∗)2
(v11y1 + v12y2 + v13y3 + v14y4)(v21y1 + v22y2 + v23y3 + v24y4)

+
rθωI∗

(ω +A∗)3
(v21y1 + v22y2 + v23y3 + v24y4)2.

Furthermore, we can calculate h11, h02, h20, H21, H1
110, H2

110, H1
101, H2

101, σ1
11, σ2

11,
σ1

20, σ2
20 following the procedure given in Hassard et al. [16].

Using above, we can find following quantities:

h21 = H21 + 2
(
H1

110σ
1
11 +H2

110σ
2
11

)
+H1

101σ
1
20 +H2

101σ
2
20,

c1(0) =
i

2ω0

(
h11h20 − 2|h11|2 −

|h02|2

3

)
+
h21

2
,

µ2 = −Re(c1(0))

φ′(0)
,

τ2 = −Im(c1(0)) + µ2σ
′(0)

ω0
,

β2 = −2µ2φ
′(0).

where, φ′(0) = d
dr (Re(η1(r)))|r=rc and σ′(0) = d

dr (Im(η1(r)))|r=rc .



1342 ARVIND KUMAR MISRA, RAJANISH KUMAR RAI AND YASUHIRO TAKEUCHI

REFERENCES

[1] M. O. Adibe, J. M. Okonta and P. O. Udeogaranya, The effects of television and radio
commercials on behavior and attitude changes towards the campaign against the spread of

HIV/AIDS, Int. J. Drug. Dev. Res., 2 (2010), 975–9344.
[2] G. O. Agaba, Y. N. Kyrychko and K. B. Blyuss, Mathematical model for the impact of

awareness on the dynamics of infectious diseases, Math. Biosci., 286 (2017), 22–30.

[3] F. B. Agusto, S. Del Valle, K. W. Blayneh, C. N. Ngonghala, M. J. Goncalves, N. Li, R. Zhao
and H. Gong, The impact of bed-net use on malaria prevalence, J. Theor. Biol., 320 (2013),

58–65.

[4] J. Aminiel, D. Kajunguri and E. A. Mpolya, Mathematical modeling on the spread of aware-
ness information to infant vaccination, Appl. Math., 5 (2015), 101–110.

[5] B. Buonomo, A. d’Onofrio and D. Lacitignola, Global stability of an SIR epidemic model

with information dependent vaccination, Math. Biosci., 216 (2008), 9–16.
[6] J. Cui, Y. Sun and H. Zhu, The impact of media on the control of infectious diseases, J. Dyn.

Differ. Equ., 20 (2008), 31–53.

[7] J. Cui, X. Tao and H. Zhu, An SIS infection model incorporating media coverage, Rocky
Mountain J. Math., 38 (2008), 1323–1334.

[8] S. Del Valle, A. M. Evangelista, M. C. Velasco, C. M. Kribs-Zaleta and S. H. Schmitz, Effects
of education, vaccination and treatment on HIV transmission in homosexuals with genetic

heterogeneity, Math. Biosci., 187 (2004), 111–133.

[9] S. Del Valle, H. Hethcote, J. M. Hyman and C. Castillo-Chavez, Effects of behavioral changes
in a smallpox attack model, Math. Biosci., 195 (2005), 228–251.

[10] P. V. Driessche and J. Watmough, Reproduction numbers and sub-thershold endemic equal-

ibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
[11] B. Dubey, P. Dubey and U. S. Dubey, Role of media and treatment on an SIR model, Non-

linear Anal. Model. Control., 21 (2016), 185–200.

[12] N. Ferguson, Capturing human behaviour, Nature., 446 (2007), 733.
[13] S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact

on epidemic outbreaks, Proc. Natl. Acad. Sci. USA., 106 (2009), 6872–6877.

[14] S. Funk, E. Gilad and V. A. A. Jansen, Endemic disease, awareness, and local behavioural
response, J. Theor. Biol., 264 (2010), 501–509.

[15] D. Greenhalgh, S. Rana, S. Samanta, T. Sardar, S. Bhattacharya and J. Chattopadhyay,
Awareness programs control infectious disease multiple delay induced mathematical model,

Appl. Math. Comput., 251 (2015), 539–563.

[16] B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf-bifurcation,
Cambridge University Press, Cambridge, 1981.

[17] H. Hethcote, Z. Ma and L. Shengbing, Effects of quarantine in six endemic models for infec-
tious diseases, Math. Biosci., 180 (2002), 141–160.

[18] H. H. Hyman and P. B. Sheatsley, Some reasons why information campaigns fail, Pub. Opin.

Quart., 11 (1947), 412–423.

[19] T. F. Joseph, ScD Lau, X. Yang, H. Y. Tsui and J. H. Kim, Impacts of SARS on health-seeking
behaviors in general population in Hong Kong, Prev. Med., 41 (2005), 454–462.

[20] H. Joshi, S. Lenhart, K. Albright and K. Gipson, Modeling the effect of information campaigns
on the HIV epidemic in Uganda, Math. Biosci. Eng., 5 (2008), 557–570.

[21] M. Kim and B. K. Yoo, Cost-effectiveness analysis of a television campaign to promote sea-

sonal influenza vaccination among the elderly, Value in Health, 18 (2015), 622–630.

[22] I. Z. Kiss, J. Cassell, M. Recker and P. L. Simon, The impact of information transmission on
epidemic outbreaks, Math. Biosci., 255 (2010), 1–10.

[23] I. S. Kristiansen, P. A. Halvorsen and D. G. Hansen, Influenza pandemic: Perception of
risk and individual precautions in a general population: Cross sectional study, BMC Public

Health., 7 (2007), 48–54.

[24] A. Kumar, P. K. Srivastava and Y. Takeuchi, Modeling the role of information and limited
optimal treatment on disease prevalence, J. Theor. Biol., 414 (2017), 103–119.

[25] V. Lakshmikantham and S. Leela, Differential and Integral Ineualities; Theory and Applica-

tions, Acedemic press New Yark and Landan, 1969.
[26] R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging

infectious diseases, Comput. Math. Methods Med., 8 (2007), 153–164.

http://www.ams.org/mathscinet-getitem?mr=MR3619199&return=pdf
http://dx.doi.org/10.1016/j.mbs.2017.01.009
http://dx.doi.org/10.1016/j.mbs.2017.01.009
http://www.ams.org/mathscinet-getitem?mr=MR3042456&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2012.12.007
http://www.ams.org/mathscinet-getitem?mr=MR2474852&return=pdf
http://dx.doi.org/10.1016/j.mbs.2008.07.011
http://dx.doi.org/10.1016/j.mbs.2008.07.011
http://www.ams.org/mathscinet-getitem?mr=MR2385721&return=pdf
http://dx.doi.org/10.1007/s10884-007-9075-0
http://www.ams.org/mathscinet-getitem?mr=MR2457362&return=pdf
http://dx.doi.org/10.1216/RMJ-2008-38-5-1323
http://www.ams.org/mathscinet-getitem?mr=MR2043821&return=pdf
http://dx.doi.org/10.1016/j.mbs.2003.11.004
http://dx.doi.org/10.1016/j.mbs.2003.11.004
http://dx.doi.org/10.1016/j.mbs.2003.11.004
http://www.ams.org/mathscinet-getitem?mr=MR2146479&return=pdf
http://dx.doi.org/10.1016/j.mbs.2005.03.006
http://dx.doi.org/10.1016/j.mbs.2005.03.006
http://www.ams.org/mathscinet-getitem?mr=MR1950747&return=pdf
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://www.ams.org/mathscinet-getitem?mr=MR3439673&return=pdf
http://dx.doi.org/10.1038/446733a
http://dx.doi.org/10.1073/pnas.0810762106
http://dx.doi.org/10.1073/pnas.0810762106
http://www.ams.org/mathscinet-getitem?mr=MR2981476&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2010.02.032
http://dx.doi.org/10.1016/j.jtbi.2010.02.032
http://www.ams.org/mathscinet-getitem?mr=MR603442&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1935292&return=pdf
http://dx.doi.org/10.1016/S0025-5564(02)00111-6
http://dx.doi.org/10.1016/S0025-5564(02)00111-6
http://www.ams.org/mathscinet-getitem?mr=MR2478986&return=pdf
http://dx.doi.org/10.3934/mbe.2008.5.757
http://dx.doi.org/10.3934/mbe.2008.5.757
http://dx.doi.org/10.1016/j.jval.2015.03.1794
http://dx.doi.org/10.1016/j.jval.2015.03.1794
http://www.ams.org/mathscinet-getitem?mr=MR2642266&return=pdf
http://dx.doi.org/10.1016/j.mbs.2009.11.009
http://dx.doi.org/10.1016/j.mbs.2009.11.009
http://dx.doi.org/10.1186/1471-2458-7-48
http://dx.doi.org/10.1186/1471-2458-7-48
http://www.ams.org/mathscinet-getitem?mr=MR3614989&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2016.11.016
http://dx.doi.org/10.1016/j.jtbi.2016.11.016
http://www.ams.org/mathscinet-getitem?mr=MR0379933&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2351961&return=pdf
http://dx.doi.org/10.1080/17486700701425870
http://dx.doi.org/10.1080/17486700701425870


IMPACTS OF TV AND SOCIAL MEDIA ADS 1343

[27] Y. Liu and J. Cui, The impact of media convergence on the dynamics of infectious diseases,
Int. J. Biomath., 1 (2008), 65–74.

[28] X. Lu, S. Wang, S. Liu and J. Li, An SEI infection model incorporating media impact, Math.

Biosci. Eng., 14 (2017), 1317–1335.
[29] A. K. Misra, A. Sharma and J. B. Shukla, Modeling and analysis of effects of awareness

programs by media on the spread of infectious diseases, Math. Comput. Model., 53 (2011),
1221–1228.

[30] A. K. Misra, A. Sharma and V. Singh, Effect of awareness programs in cotroling the prevelence

of an epidemic with time delay, J. Biol. Syst., 19 (2011), 389–402.
[31] A. K. Misra, A. Sharma and J. B. Shukla, Stability analysis and optimal control of an epidemic

model with awareness programs by media, BioSystems, 138 (2015), 53–62.

[32] A. K. Misra, R. K. Rai and Y. Takeuchi, Modeling the effect of time delay in budget allocation
to control an epidemic through awareness, Int. J. Biomath, 11 (2018), 1850027, 20 pp.

[33] C. N. Ngonghala, S. Del Valle, R. Zhao and J. M. Awel, Quantifying the impact of decay in

bed-net efficacy on malaria transmission, J. Theor. Biol., 363 (2014), 247–261.
[34] F. Nyabadza, C. Chiyaka, Z. Mukandavire and S. D. Hove-Musekwa, Analysis of an HIV/AIDS

model with public-health information campaigns and individual withdrawal, J. Biol. Syst.,

18 (2010), 357–375.
[35] P. Poletti, B. Caprile, M. Ajelli, A. Pugliese and S. Merler, Spontaneous behavioural changes

in response to epidemics, J. Theor. Biol., 260 (2009), 31–40.
[36] G. P. Sahu and J. Dhar, Dynamics of an SEQIHRS epidemic model with media coverage,

quarantine and isolation in a community with pre-existing immunity, J. Math. Anal. Appl.,

421 (2015), 1651–1672.
[37] S. Samanta, S. Rana, A. Sharma, A. K. Misra and J. Chattopadhyay, Effect of awareness

programs by media on the epidemic outbreaks: A mathematical model, Appl. Math. Comput.,

219 (2013), 6965–6977.
[38] S. Samanta and J. Chattopadhyay, Effect of awareness program in disease outbreak-A slowast

dynamics, Appl. Math. Comput., 237 (2014), 98–109.

[39] A. Sharma and A. K. Misra, Modeling the impact of awareness created by media campaigns
on vacination coverage in a variable population, J. biol. syst., 22 (2014), 249–270.

[40] Statista, Number of mobile phone users in India from 2013 to 2019, statista.com, https:

//www.statista.com/statistics/274658/forecast-of-mobile-phone-users-in-india/.

[41] C. Sun, W. Yang, J. Arino and K. Khan, Effect of media-induced social distancing on disease

transmission in a two patch setting, Math. Biosci., 230 (2011), 87–95.
[42] J. Tchuenche, N. Dube, C. Bhunu and C. Bauch, The impact of media coverage on the

transmission dynamics of human influenza, BMC Public Health, 11 (2011), 1–5.

[43] J. Tchuenche and C. Bauch, Dynamics of an infectious disease where media coverage influences
transmission, ISRN Biomath., 2012 (2012), Article ID 581274, 10 pages.

[44] Y. Xiao, S. Tang and J. Wu, Media impact switching surface during an infectious disease
outbreak, Scientifc Reports., 5 (2015), 7838.

Received September 26, 2017; Accepted April 25, 2018.

E-mail address: akmisra knp@yahoo.com

E-mail address: rajanishrai94@gmail.com

E-mail address: takeuchi@gem.aoyama.ac.jp

http://www.ams.org/mathscinet-getitem?mr=MR2419647&return=pdf
http://dx.doi.org/10.1142/S1793524508000023
http://www.ams.org/mathscinet-getitem?mr=MR3657130&return=pdf
http://dx.doi.org/10.3934/mbe.2017068
http://www.ams.org/mathscinet-getitem?mr=MR2769492&return=pdf
http://dx.doi.org/10.1016/j.mcm.2010.12.005
http://dx.doi.org/10.1016/j.mcm.2010.12.005
http://www.ams.org/mathscinet-getitem?mr=MR2819521&return=pdf
http://dx.doi.org/10.1142/S0218339011004020
http://dx.doi.org/10.1142/S0218339011004020
http://dx.doi.org/10.1016/j.biosystems.2015.11.002
http://dx.doi.org/10.1016/j.biosystems.2015.11.002
http://www.ams.org/mathscinet-getitem?mr=MR3767046&return=pdf
http://dx.doi.org/10.1142/S1793524518500274
http://dx.doi.org/10.1142/S1793524518500274
http://www.ams.org/mathscinet-getitem?mr=MR3278716&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2014.08.018
http://dx.doi.org/10.1016/j.jtbi.2014.08.018
http://www.ams.org/mathscinet-getitem?mr=MR2658670&return=pdf
http://dx.doi.org/10.1142/S0218339010003329
http://dx.doi.org/10.1142/S0218339010003329
http://www.ams.org/mathscinet-getitem?mr=MR2973056&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2009.04.029
http://dx.doi.org/10.1016/j.jtbi.2009.04.029
http://www.ams.org/mathscinet-getitem?mr=MR3258343&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2014.08.019
http://dx.doi.org/10.1016/j.jmaa.2014.08.019
http://www.ams.org/mathscinet-getitem?mr=MR3027860&return=pdf
http://dx.doi.org/10.1016/j.amc.2013.01.009
http://dx.doi.org/10.1016/j.amc.2013.01.009
http://www.ams.org/mathscinet-getitem?mr=MR3201114&return=pdf
http://dx.doi.org/10.1016/j.amc.2014.03.109
http://dx.doi.org/10.1016/j.amc.2014.03.109
http://www.ams.org/mathscinet-getitem?mr=MR3215231&return=pdf
http://dx.doi.org/10.1142/S0218339014400051
http://dx.doi.org/10.1142/S0218339014400051
https://www.statista.com/statistics/274658/forecast-of-mobile-phone-users-in-india/.
https://www.statista.com/statistics/274658/forecast-of-mobile-phone-users-in-india/.
http://www.ams.org/mathscinet-getitem?mr=MR2808144&return=pdf
http://dx.doi.org/10.1016/j.mbs.2011.01.005
http://dx.doi.org/10.1016/j.mbs.2011.01.005
http://dx.doi.org/10.5402/2012/581274
http://dx.doi.org/10.5402/2012/581274
http://dx.doi.org/10.1038/srep07838
http://dx.doi.org/10.1038/srep07838
mailto:akmisra_knp@yahoo.com
mailto:rajanishrai94@gmail.com
mailto:takeuchi@gem.aoyama.ac.jp

	1. Introduction
	2. Mathematical model
	3. Equilibrium analysis
	4. Local stability analysis
	5. Global stability analysis
	6. Existence of Hopf-bifurcation
	7. Stability and direction of Hopf-bifurcation
	8. Numerical simulation
	9. Conclusion
	Acknowledgments
	Appendix A. 
	Appendix B. 
	Appendix C. 
	Appendix D. 
	Appendix E. 
	REFERENCES

