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Abstract. In this paper we examine ultimate dynamics of the four-dimen-

sional model describing interactions between tumor cells, effector immune cells,
interleukin -2 and transforming growth factor-beta. This model was elaborated

by Arciero et al. and is obtained from the Kirschner-Panetta type model by

introducing two various treatments. We provide ultimate upper bounds for all
variables of this model and two lower bounds and, besides, study when dynam-

ics of this model possesses a global attracting set. The nonexistence conditions

of compact invariant sets are derived. We obtain bounds for treatment pa-
rameters s1,2 under which all trajectories in the positive orthant tend to the

tumor-free equilibrium point. Conditions imposed on s1,2 under which the
tumor population persists are presented as well. Finally, we compare tumor

eradication/ persistence bounds and discuss our results.

1. Introduction. The Kirschner-Panetta equations [2] have a great influence on
the modelling tumor dynamics under immunotherapy. These equations describe dy-
namics of interactions between tumor cells, effector immune cells and interleukin-2
(IL-2). One of the promising generalizations of this model is obtained by incorporat-
ing in these equations yet another differential equation characterizing the dynamics
of the suppressor cytokine, transforming growth factor-β (TGF-β), [1]. It is well-
known [16] that TGF-β may display both inhibitory activity and stimulating activ-
ity on the growth of most of cells depending on type of cells, their differentiation and
activation state. The production of TGF-β by tumor cells greatly challenges the im-
mune system through the promotion of angiogenesis, enhancing tumor growth and
metastasis. Tumors can evade immune surveillance by secreting various immuno-
suppressive factors including (interleukin-10) IL-10 and TGF-β, [8, 17]. It was indi-
cated in [17] that activation of the immunosuppressed immune system by cytokine
IL-2 therapy is a possible strategy to limit the malignant immuno-modulatory ac-
tivities of TGF-β. This type of therapy may be applied alone or in combination
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with other immunotherapeutic approaches and is used in the clinical practice, [16].
This possible approach to cancer treatment is formalized in this paper by intro-
ducing into the model from [1] two treatment parameters s1,2. Parameters s1,2 are
included in the equations for the same cells populations as in the Kirschner-Panetta
(KP)- model. We recall that s1 is the treatment term that represents an external
source of IL-2 injected into the system; s2 is the treatment term that represents
an external source of effector cells such as LAK (lymphocytes activated killer cells)
or TIL (tumor-infiltrating lymphocytes). Following to [1] we consider that s1,2 are
constants. So we come to the following model in the non-dimensional form

ẋ = rx(1− x

k
)− awx

1 + x
+
p2xz

1 + z
, (1)

ẏ = −y +
p3xw

(g4 + x)(1 + αz)
+ s2,

ż = −z +
p4x

2

x2 + τ2
,

ẇ =
cx

1 + γz
− µ1w +

wy

1 + y
(p1 −

q1z

q2 + z
) + s1.

In equation (1) x(t) describes the number of tumor cells at the moment t; y(t)
describes the concentration of effector molecules at the moment t; z(t) describes
TGF-β’s immuno-suppressive and growth stimulatory effects in the single tumor-
site compartment; w(t) describes the number of immune cells at the moment t.

All parameters are supposed to be positive excepting s1,2 which are nonnegative.
In the first equation r is the cancer growth rate; a is the cancer clearance term.
The proliferation of tumor cells due to the response to TGF-β is denoted by p2
and is modeled by Michaelis-Menten kinetics. In the second equation p3 is the rate
of IL-2 production in the presence of effector cells; g4 is half-saturation constant;
α is a measure of inhibition. In the third equation p4 is maximal rate of TGF-β
production; τ is the critical tumor cells population at which angiogenesis switch
occurs. In the fourth equation c is known as the antigenicity of the tumor which
measures the ability of the immune system to recognize tumor cells; γ is inhibitory
parameter; µ1 is the death rate of immune cells; p1 is the proliferation rate of
immune cells; q1 is the rate of anti-proliferative effect of TGF-β; q2 is half-saturation
constant. More details concerning these parameters are contained in [1].

We notice that if we put z = 0, p4 = 0 in (1) we get the KP-model which
was created for studying the immune response to tumors under special types of
immunotherapy.

Dynamics of the KP-model has been studied in [1, 2, 3, 14] and some others. In
particular, ultimate upper and lower bounds for state variables of the KP- model
have been derived in different cases. The main result of [14] consists in global
asymptotic tumor clearance conditions obtained under various assumptions imposed
on the ratio between the proliferation rate of the immune cells and their mortality
rate. To the best of the authors’ knowledge, up to now there have not been published
any results concerning rigorous dynamical analysis of (1). We notice that the system
(1) introduced for the case s1 = s2 = 0 was explored in [1] only by means of
numerical simulations of its dynamics.

In this paper we consider the tumor growth system pertained to the broad class
of life sciences models which possess the following characteristic feature: there is
a tumor-free equilibrium point, which is the most preferable state of the system.
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From the biological point of view some deviations from this equilibrium point can
be dangerous and cause fatal outcomes.

Therefore, the control goal is to return the system to the indicated equilibrium
point and keep it in a sufficiently small neighborhood of this state. It can be done
by different treatment injections.

This article establishes the existence conditions for the positively invariant poly-
tope that has a biological meaning. Further, two types of conditions are found: the
first one is the tumor persistence (impossibility to achieve the control goal), another
one is the tumor eradication (possibility of global asymptotical stabilization at the
tumor-free equilibrium point).

The goal and the novelty of this work consists in studies of ultimate dynamics (1)
in case of applied treatments si, i = 1, 2. Namely, we find upper and lower ultimate
bounds for all variables of the system (1) and establish conditions under which (1)
is dissipative in the Levinson sense; 2) we propose the nonexistence conditions of
compact invariant sets in the positive orthant; 3) we deduce the global asymptotic
tumor eradication conditions; 4) we describe the tumor persistence conditions.

In other words, the three most important results for understanding of any dynam-
ical system’s behavior are actually proved: the existence conditions of the global
system’s attractor; the coincidence of this attractor with the tumor-free equilib-
rium point; the presence of a local attractor of the system that does not contain
the tumor-free equilibrium point, but attracts almost all (“perturbed”) trajectories
of the system.

Our approach is based on the localization method of compact invariant sets in
which the first order extremum conditions are utilized, see [4, 5, 6]. We also mention
that earlier this method has been successfully utilized in studies of various cancer
tumor growth models, see e.g. [7, 9, 10, 11, 12, 13, 14, 15] and references therein.

The remainder of the paper is organized as follows. In Section 2 we briefly present
useful results. In Section 3 under some condition we obtain formulae for a polytope
containing all compact invariant sets. This polytope provides us ultimate upper
and lower bounds for all variables of the system (1), see Theorem 3.4. In Section
4 under the same condition as in Theorem 3.4 we show in Theorem 4.1 that this
polytope contains the attracting set of the system (1). In Section 5 we present the
nonexistence conditions of compact invariant sets in R4

+,0 ∩ {x > 0}, see Theorem
5.1. Further, in Section 6 using results of Theorems 3.4; 4.1; 5.1 we derive condi-
tions of global asymptotic stability with respect to the tumor-free equilibrium point
(TFEP), see Theorem 6.1. In the latter theorem we provide bounds for treatments
parameters si, i = 1, 2, for which the global asymptotic tumor eradication process
may be observed. In Section 7 we describe the persistence tumor conditions which
are compared with tumor eradication bounds of Theorem 7.1 in Section 8. Section
9 contains the concluding remarks.

In what follows, we examine dynamics of (1) in the positive orthant

R4
+ = {(w, x, y, z)T ∈ R4, w;x; y; z > 0};

let R4
+,0 be the closure of R4

+.

2. Some useful results. We consider a nonlinear system

ẋ = v(x) (2)

where v is a C1−differentiable vector field; x ∈ Rn is the state vector. Let h(x)
be a C1−differentiable function such that h is not the first integral of (2). By
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h|B we denote the restriction of h on a set B ⊂ Rn. By S(h) we denote the set
{x ∈ Rn | Lvh(x) = 0}, where Lvh(x) is a Lie derivative of h(x) with respect to v.

Assume that we are interested in the localization of all compact invariant sets
contained in the set U . Further, we define

S(h;U) := S(h) ∩ U = {x ∈ U | Lvh(x) = 0};
hinf(U) := inf{h(x) | x ∈ S(h;U)};
hsup(U) := sup{h(x) | x ∈ S(h;U)}.

Assertion 1 [5, 6] For any h(x) ∈ C1(Rn) all compact invariant sets of the system
(2) located in U are contained in the localization set K(h;U) defined by the formula

K(h;U) = {x ∈ U | hinf(U) ≤ h(x) ≤ hsup(U)}
as well. If U ∩ S(h) = ∅ then there are no compact invariant sets located in U .

Assertion 2. Let U be a positively invariant set; ḣ(x)|H < 0, where

H = {x ∈ U | hsup(U) < h(x)}.
Then for any τ0 > 0 the extended localization set

K̂(h;U ; τ0) := {x ∈ U | h(x) ≤ hsup(U) + τ0} (3)

is positively invariant.
Assertion 3. Let U be a positively invariant set; τ0 > 0. If for any τ1 ≥ 0 exists
c > 0: ḣ|H1

≤ −c, where

H1 = {x ∈ U | hsup(U) + τ0 ≤ h(x) ≤ hsup(U) + τ0 + τ1},

then every trajectory of the system (2) goes into the set K̂(h;U ; τ0) in finite time.

3. Formulae for a polytope containing all compact invariant sets. Here we
find localization sets for the system (1). Let f be a vector field of this system.

Lemma 3.1. All compact invariant sets in R4
+,0 are located in the set

K1 = K(x,R4
+,0) =

{
0 ≤ x ≤ xmax :=

k(p2 + r)

r

}
∩R4

+,0. (4)

Proof. We apply the function h1 = x and get that

S(h1) =

{
r(1− x

k
)− aw

1 + x
+

p2z

1 + z
= 0

}
∪ {x = 0}

and h1,inf(R
4
+,0) = 0. On the set S(h1) ∩R4

+,0 ∩ {x > 0} the inequality

r
(

1− x

k

)
+ p2

z

1 + z
=

aw

1 + x
≥ 0

holds. Using the last inequality to calculate the supremum we obtain

h1,sup(R4
+,0) =

k(p2 + r)

r
.

Let η = min(g4; 1)ap−13 .

Lemma 3.2. All compact invariant sets in R4
+,0 are located in the set

K2 =

{
ymin := s2 ≤ y ≤ ymax :=

(1 + r + p2)2k

4rη
+ s2

}
∩R4

+,0. (5)
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Proof. We apply the function h2 = x+ ηy and compute

Lfh2 = xw( p3η
(g4+x)(1+αz)

− a
1+x )− ηy + rx− rx2

k + p2xz
1+z + ηs2

= xw( p3η
(g4+x)(1+αz)

− a
1+x ) + x− h2 + rx− rx2

k + p2xz
1+z + ηs2.

In R4
+,0 we get the inequality

Lfh2 ≤ x− h2 + rx− rx2

k
+ p2x+ ηs2

because z
1+z ≤ 1 and η was chosen earlier such that

p3η

(g4 + x)(1 + αz)
− a

1 + x
≤ 0.

After calculating the supremum we obtain that

h2|S(h2,R4
+,0)
≤ h2,sup(R4

+,0) = sup
x≥0

((1+r+p2)x− r
k
x2)+ηs2 =

(1 + r + p2)2k

4r
+ηs2.

Now let us use the function h3 = y and compute

h3,inf(K∗) = s2; h3,sup(K∗) ≤ sup
K∗

y ≤ (1 + r + p2)2k

4rη
+ s2.

Therefore,

K(h3,K∗) ⊂ {s2 ≤ y ≤
(1 + r + p2)2k

4rη
+ s2} ∩K∗ = K2

and we come to the desirable conclusion.

Lemma 3.3. All compact invariant sets in R4
+,0 are located in the set

K3 = K(z,R4
+,0) = {0 ≤ z ≤ zmax := p4} ∩R4

+,0. (6)

Proof. We apply the function h4 = z and get that

S(h4) = {z =
p4x

2

x2 + τ2
}, h4,sup(R4

+,0) = p4

which leads to the desirable conclusion.

Let M = K1 ∩K2 ∩K3.

Theorem 3.4. If

µ1 > µpol1 = µpol1 (s2) := p1
ymax

1 + ymax
, ymax :=

(1 + r + p2)2k

4rη
+ s2 (7)

then all compact invariant sets are located in the polytope

Π = {0 ≤ x ≤ xmax; ymin ≤ y ≤ ymax; 0 ≤ z ≤ zmax;wmin ≤ w ≤ wmax},

where

wmin =
s1

µ1 + q1p4
q2+p4

· ymax

1+ymax
− p1 s2

1+s2

, wmax =
cxmax + s1

µ1 − µpol1 (s2)
.
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Proof. We apply the function h5 = w and transform equation Lfh5 = 0 in the
equality

w(µ1 +
y

1 + y
(
q1z

z + q2
− p1)) =

cx

1 + γz
+ s1.

Therefore,

h5|S(h5,M)(µ1 − p1
ymax

1 + ymax
) ≤ cxmax + s1; h5,sup(M) ≤ wmax

and

s1 ≤ h5|S(h5,M)(µ1 +
y

1 + y
· q1z

q2 + z
− p1

y

1 + y
) ≤

≤ h5|S(h5,M)(µ1 +
ymax

1 + ymax
· q1zmax

q2 + zmax
− p1

ymin

1 + ymin
);

h5|S(h5,M) ≥ h5,inf(M) ≥ wmin,

because

µ1 +
ymax

1 + ymax
· q1zmax

q2 + zmax
− p1

ymin

1 + ymin
> p1

ymax

1 + ymax
− p1

ymin

1 + ymin
≥ 0,

and all compact invariant sets are located in the set {wmin ≤ w ≤ wmax} ∩M = Π.

Corollary 1. If

µ1 > µM1 = µM1 (s2) := − q1p4
q2 + p4

· ymax

1 + ymax
+ p1

s2
1 + s2

(8)

then all compact invariant sets are located in the set

M1 := {wmin ≤ w} ∩M =

= {0 ≤ x ≤ xmax; ymin ≤ y ≤ ymax; 0 ≤ z ≤ zmax;wmin ≤ w}.

4. On the dissipativity in the sense of Levinson. Below we shall establish
conditions under which the system (1) is dissipative in the sense of Levinson. Here
we recall that the system (2) is called dissipative in the sense of Levinson if there
exists r > 0 such that for any x ∈ Rn we have that

lim
t→∞

sup |ϕ(x, t)| < r;

here |ϕ(x, t)| is the Euclidean norm of the solution ϕ(x, t) of the system (2) starting
in time t = 0 at the point x ∈ Rn.

In this case there exists a bounded set which attracts any trajectory in Rn.

Theorem 4.1. If condition (7) is fulfilled then the system (1) is dissipative in sense
of Levinson in R4

+,0

Proof. Firstly, we note that extended localization sets

K̂1 = {h1 = x ≤ x̂max := xmax + τ1} ∩R4
+,0;

K̂2 =
{
h2 = x+ ηy ≤ ĥ2,sup(R4

+,0) := h2,sup(R4
+,0) + τ2

}
∩R4

+,0;

K̂3 = {h4 = z ≤ ẑmax := zmax + τ3} ∩R4
+,0,

where τi > 0, i = 1, 2, 3, have the form of the set (3) and, by Assertions 2,3 (see
remark below), are positively invariant and every trajectory goes into these sets

in finite time. Therefore, the intersection of these sets M̂ = K̂1 ∩ K̂2 ∩ K̂3 is a
positively invariant set and every trajectory goes into this set in finite time.
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Next, if condition (7) is fulfilled then for some sufficiently small τ2 > 0 we get

µ1 > p1
ŷmax

1 + ŷmax
, ŷmax = ymax +

τ2
η
.

We fix such value of τ2 and find the localization set

K := {w ≤ h5,sup(M̂) ≤ wmax} ∩ M̂, wmax =
cx̂max + s1

µ1 − p1 ŷmax

1+ŷmax

(see the proof of Theorem 3.4). By Assertions 2,3 (see remark below), the bounded
set

K̂4 := {h5 = w ≤ ŵmax := wmax + τ4} ∩ M̂, τ4 > 0,

is a positively invariant set and every trajectory goes into this set in finite time. As
a result, the polytope M̂ contains the attracting set of the system (1).

Remark 1. The conditions of Assertions 2,3 are fulfilled for localizing functions
h1; h2; h4; h5, because the next estimations for their derivatives are correct:

in the set {h1 ≥ x̂max} ∩R4
+,0 the localizing function h1 = x is equal to x̂max +

∆1 > 0, where ∆1 ≥ 0, and therefore,

ḣ1 = (x̂max + ∆1)
{
r − r

k (xmax + τ1 + ∆1)− aw
1+x + p2z

1+z

}
≤ −(xmax + τ1 + ∆1) rk (τ1 + ∆1) ≤ −(xmax + τ1) rk τ1 < 0;

in the set {h2 ≥ ĥ2,sup(R4
+,0)} ∩R4

+,0 the localizing function h2 = x + ηy is equal

to ĥ2,sup(R4
+,0) + ∆2, where ∆2 ≥ 0, and therefore,

ḣ2 ≤ −τ2 −∆2 ≤ −τ2 < 0;

in the set {h4 ≥ ẑmax}∩R4
+,0 the localizing function h4 = z is equal to ẑmax+∆3,

where ∆3 ≥ 0, and therefore,

ḣ4 ≤ −τ3 −∆3 ≤ −τ3 < 0;

in the set {h5 ≥ ŵmax}∩M̂ the localizing function h5 = w is equal to ŵmax+∆4 >
0, where ∆4 ≥ 0, and therefore,

ḣ5 ≤ cx̂max+s1+(wmax+τ4+∆4)(−µ1+p1
ŷmax

1 + ŷmax
) = (τ4+∆4)(−µ1+p1

ŷmax

1 + ŷmax
)

≤ −τ4(µ1 − p1
ŷmax

1 + ŷmax
) < 0.

5. The nonexistence conditions of compact invariant sets in R4
+,0∩{x > 0}.

Under condition (8) all compact invariant sets lying in the set R4
+,0 ∩ {x > 0} are

contained in the set O1 := M1 ∩ {x > 0} (see Corollary 1). Below we apply
localizing function h1 = x and show that its derivative is negative in the set O1 if
some inequality holds. Therefore, in the case (8) this inequality is a nonexistence
condition of compact invariant sets in the set R4

+,0 ∩ {x > 0}. This condition may
hold both in case of the existence of the TFEP and its nonexistence. It means
the nonexistence of bounded tumor persistence dynamics, for example, the tumor
dormancy. As a corollary, we describe the property of the nonexistence of periodic
orbits and tumor persistence equilibrium points (TPEPs) in some range of model
and treatment parameters.

Let us denote

C1 := µ1 −
p1s2
s2 + 1

+
q1ymaxp4

(ymax + 1)(q2 + p4)
; C2 := r +

r

k
+

p2p4
1 + p4

.
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Theorem 5.1. Suppose that (8) and

s1 > satt1 = satt1 (s2) :=
w0

a
C1, (9)

where

w0 =

{
r + p2p4

1+p4
, if r(1− 1

k ) + p2p4
1+p4

≤ 0,
kC2

2

4r , if r(1− 1
k ) + p2p4

1+p4
> 0,

hold. Then there are no compact invariant sets in the set R4
+,0 ∩ {x > 0}.

Proof. Let us apply the function h1 = x and find that Lfh1|O1 < 0 in the set O1 if

r(1− x

k
)− aw

1 + x
+

p2z

1 + z
< 0,

i.e.

awmin > max
x∈[0;xmax]

(1 + x)
(
r − rx

k
+

p2zmax

1 + zmax

)
= w0.

In order to find w0 we consider

η̂(x) = (1 + x)
(
r − rx

k
+

p2p4
1 + p4

)
and get

η̂(0) = r +
p2p4

1 + p4
> 0; η̂(xmax) < 0; η̂′(0) = r(1− 1

k
) +

p2p4
1 + p4

;

η̂′(x∗) = 0 if x∗ =
k

2
− 1

2
+

kp2p4
2r(1 + p4)

; η̂(x∗) =
k

4r
C2

2 .

Therefore if η̂′(0) ≤ 0 then w0 = η̂(0) and if η̂′(0) > 0 then w0 = η̂(x∗).

6. Global asymptotic stability respecting the TFEP. If

µ1 > µTFEP1 = µTFEP1 (s2) := p1
s2

1 + s2
(10)

the system (1) has the TFEP

E1 = (0, s2, 0, w1)T ,

where

w1 =
s1(1 + s2)

µ1 + µ1s2 − p1s2
=

s1
µ1 − p1 s2

1+s2

.

The TFEP is asymptotically stable if r < aw1 i.e.

s1 > sst1 = sst1 (s2) :=
r

a
(µ1 −

p1s2
1 + s2

). (11)

Theorem 6.1. If conditions (7); (9) and (11) hold then the TFEP attracts all
trajectories in R4

+,0.

Proof. If conditions of this theorem are fulfilled then all trajectories of the system (1)

go into bounded positively invariant set K̂4; the TFEP exists and is asymptotically
stable. Therefore, in order to prove Theorem 6.1 it is sufficient to show that the
TFEP is the unique compact invariant set of the system.
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The system (1) has no compact invariant sets in R4
+,0 ∩ {x > 0} (see Theorem

5.1). The TFEP is the only compact invariant set of the system in the invariant
plane {x = 0}. Indeed, let us consider the system restricted on this plane

ẏ = −y + s2, (12)

ż = −z,
ẇ = −µ1w +

wy

1 + y
(p1 −

q1z

q2 + z
) + s1.

Next, applying localizing functions x; y; w we obtain localization sets for compact
invariant set of the system (12)

K(y,R3) = Y := {y = s2}; K(z,R3) = Z := {z = 0};
K(w, Y ∩ Z) = {(s2, 0, w1)}.

Now let us prove that the system (1) has no compact invariant set C for which
C ∩R4

+,0 ∩ {x > 0} 6= ∅ and C ∩ {x = 0} 6= ∅. Indeed, otherwise C ∩ {x = 0} = E1

and there exists a point P ∈ C ∩R4
+,0 ∩ {x > 0}. In this case the α–limit set of

the trajectory starting at the point P is a nonempty compact invariant set D and
E1 /∈ D because otherwise the point E1 is not stable. Therefore, the nonempty
compact invariant set D is a subset of R4

+,0 ∩ {x > 0} and the statement of the
theorem follows from this contradiction with Theorem 5.1.

7. Tumor persistence conditions.

Theorem 7.1. Suppose that condition (7) holds and ωmax < r/a i.e.

s1 < sper1 = sper1 (s2) :=
r

a
(µ1 − p1

ymax

1 + ymax
)− ck(

p2
r

+ 1). (13)

Then in R3
+,0 ∩ {x > 0} each trajectory goes into the bounded positively invariant

set

P := K̂4 ∩ {x ≥ x+ − τ5}
where sufficiently small τ5 > 0;

x+ :=
k − 1

2
+

√
(k − 1)2

4
+ k − ak

r
wmax

in finite time.

Proof. In the set R3
+,0 ∩ {x > 0} each trajectory goes into bounded positively

invariant set K̂4 ∩ {x > 0} in finite time (see the proof of Theorem 4.1). In the set

K̂4 ∩ {x > 0} we have that

ẋ ≥ x(r − r

k
x− aŵmax

1 + x
) = − rx

k(1 + x)
Q(x), Q(x) = x2 + x(1− k) +

ak

r
ŵmax − k.

We note that ŵmax → wmax under τ1, τ2, τ4 → 0. Therefore, if the condition (13)
holds there exist sufficiently small τ1, τ2, τ4 for which ŵmax <

r
a . Hence, then for

any τ5 > 0, τ5 << min{x+; 1}, the inequality Q(x) < 0 is fulfilled in

{0 < x ≤ x+ − τ5} ∩ K̂4.

For any x1 ∈ (0;x+ − τ5) the derivative ẋ is separated from zero in compact set

{x1 ≤ x ≤ x+ − τ5} ∩ K̂4 and we come to the statement of the theorem.
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8. Comparison of bounds. Now we describe how some features of ultimate dy-
namics depend on values s1 and s1 under condition that all other parameters are
fixed. We recall the formulas

µTFEP1 (s2) = p1
s2

1 + s2
(see (10));

µM1 (s2) = − q1p4
q2 + p4

· ymax

1 + ymax
+ p1

s2
1 + s2

(see (8));

µpol1 (s2) = p1
ymax

1 + ymax
(see (7)).

It is easy to see that if s2 > 0 then the double inequality

µM1 (s2) < µTFEP1 (s2) < µpol1 (s2)

is fulfilled. We notice that the value s2 determines the existence of:
(i) the localization set M̂1 for compact invariant sets of (1) under condition

µM1 (s2) < µ1;
(ii) TFEP, with µTFEP1 (s2) < µ1;
(iii) bounded localization set Π for compact invariant sets of the system and

global attractor, with µpol1 (s2) < µ1.
Let us consider the case when our system has the TFEP, i.e. µ1 > µTFEP1 (s2).

In this case the value s1 determines the behavior of system trajectories relating to
the TFEP. Indeed, we have introduced above functions

sper1 (s2) =
r

a
(µ1 − p1

ymax

1 + ymax
)− ck(

p2
r

+ 1) =

=
r

a
(µ1 − µpol1 (s2))− ck(

p2
r

+ 1) (see (13));

sst1 (s2) =
r

a
(µ1 −

s2
1 + s2

) =
r

a
(µ1 − µTFEP1 (s2)) (see (11));

satt1 (s2) =
w0

a
(µ1 −

p1s2
s2 + 1

+
q1ymaxp4

(ymax + 1)(q2 + p4)
) =

w0

a
(µ1 − µM1 (s2)) (see (9)).

It is easy to see that

sper1 (s2) < sst1 (s2) < satt1 (s2), s2 > 0.

If s1 < sst1 (s2) holds then the TFEP is not stable and under additional conditions

s1 < sper1 (s2); µpol1 (s2) < µ1

we have the tumor persistence.
If s1 > sst1 (s2) holds then the TFEP is asymptotically stable and under additional

conditions
s1 > satt1 (s2); µpol1 (s2) < µ1

all trajectories in R4
+ tend to the TFEP.

9. Concluding remarks. The main contribution of the present paper lies in the
rigorous dynamical analysis of the four-dimensional system (1) and in obtaining
global tumor clearance conditions via the localization method of compact invariant
sets. We have studied various aspects of the ultimate dynamics of (1) describ-
ing interactions of cancer cells, TGF-β and immune cells under two types of the
treatment. This research includes the following parts.

1. Under condition (7) we have found all upper bounds for variables of the
state vector of the system (1). Moreover, in this case it was shown that (1) has
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the property of the dissipativity in the sense of Levinson, because there exists the
positively invariant polytope.

2. Further, we provide conditions (8) and (9) under which there are no compact
invariant sets in the set R4

+,0∩{x > 0}. As a result, there is no conditions for tumor
dormancy. In particular, the system (1) has neither TPEPs nor periodic orbits.

3. We find conditions (7); (9) and (11) under which the TFEP attracts all
trajectories in R4

+,0. The biological sense of this behavior consists in asymptotic
eradication of tumor cells which means that after a while the tumor cells population
will be under control.

4. Tumor eradication and tumor persistence bounds are compared in Section
8. One can point to the following essential difference of dynamics of (1) in cases
s1,2 = 0, [1], and in case s1,2 > 0 under varying antigenicity c. Namely, it was
noticed in [1] that there are many negative scenarios including uncontrolled tumor
growth and damped oscillations around the TPEP, which corresponds to tumor
dormancy. In our work, because of the proper assignment of treatment parameters
s1,2 satisfying Theorem 6.1 for given model parameters a, k, r, µ1, g4, p1, p2, p3, p4
one may achieve tumor eradication regardless the value of c, where c > 0. However,
the tumor persistence bound sper1 depends on parameter c.

All assertions are formulated in terms of simple algebraic inequalities imposed
on parameters of the model and treatments. These inequalities are stable for suf-
ficiently small perturbations caused by imprecise knowledge of parameters’ values
which is convenient in applications.
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