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Université de Poitiers, Laboratoire de Mathématiques et Applications
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Abstract. The aim of this article is to study the well-posedness and properties

of a fast-slow system which is related with brain lactate kinetics. In particular,
we prove the existence and uniqueness of nonnegative solutions and obtain

linear stability results. We also give numerical simulations with different values

of the small parameter ε and compare them with experimental data.

1. Introduction. The brain is an organ with high energy needs. While it repre-
sents only 2% of the body weight it grabs at least 20% of its total energy needs
[9]. The consumed energy can come from many forms such as glutamate, glucose,
oxygen and also lactate [3]. Energy is necessary to support neural activity. Gliomas
are the most frequent primary brain tumors (more than 50% of brain cancer cases
according to the ICM institute). Like other cancers, they lead to alterations of
cells’ energy management. In particular, lactate creation, consumption, import and
export of a glioma cell seem to play a key role in the cancer development [5]-[11].
Today, neuroimaging techniques allow an indirect and noninvasive measure of cere-
bral activity. It also enables measurement of various metabolic concentrations such
as lactate and measurement of important biological parameters such as the rela-
tive cerebral blood volume (allowing relative cerebral blood flow calculations). But
because energy management in healthy and tumoral cells and glioma growth can
be difficult to observe and explain experimentally, we propose to use mathematical
modeling to help to describe and understand cells energy changes.

To the best of our knowledge, only a few mathematical models have been pro-
posed to study lactate fluxes in the brain and the interconnections with energy, see
[3] for example. We aim herein at analyzing a model first described in [2].
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Our paper is organized as follows. We first present the mathematical model
proposed to describe the mechanisms of interest. We then investigate its well-
posedness and derive bounds on the solutions. Indeed, such an analysis is necessary
to justify how a mathematical model is well-adapted to a biological problem. We
also analyze the limit model and study its steady state. Bounds on the solutions are
important as they are related with the viability domain of the cell. Furthermore, as
mentioned in [8], a therapeutic perspective is to have the steady state outside the
viability domain where cell necrosis occurs. Additionnally, we present numerical
simulations with different values of the small parameter ε and compare them with
experimental data. We finally discuss our results.

2. Mathematical modeling. The present model is reduced in order to follow
in a simpler way lacate kinetics between a cell and the capillary network in its
neighborhood. It is built in vivo which means that we have to consider loss and
input terms for both intracellular and capillary lactate concentrations. We denote by
uε the intracellular lactate concentration and vε the capillary lactate concentration
where ε stands for the volume separating the compartments. They are given in
mM. One of the main parameters in the model is ε. Indeed to manage the blood
flow, vessels dilate and modify their volume. We cannot model this phenomenon in
a simple mathematical way. It is thus important to know how variations of their
volume correlated with variations of ε impact the whole dynamics.

First, there is a lactate cotransport through the brain blood. It is taken into
account by a simplified version of an equation for carrier-mediated symport. This
nonlinear term depends on the maximum transport rate between the blood and the
cell T > 0 and the modified Michaelis-Menten positive constant for both intracel-
lular and capillary lactate concentrations (k and k′ respectively).

Then a cell can equally produce and consume lactate, but also export surplus
lactate to neighboring cells. We denote by J the balance sheet of the whole phe-
nomenon. The function J is a nonnegative function depending on t and uε seen as
a regulatory term. It is assumed to be bounded by a constant BJ and Lipschitz
continuous.

Next there is a blood flow contribution to capillary lactate depending on both
arterial and venous lactates. We denote by L > 0 the arterial lactate concentration.
We also define the blood flow F . The function F is a positive bounded continuous
function (F1 < F < F2) seen as a forcing term.

Finally, we have the following ODE’s, for t ∈ R+:

u′ε(t) = J(t, uε(t))− T (
uε(t)

k + uε(t)
− vε(t)

k′ + vε(t)
), (2.1)

εv′ε(t) = F (t)(L− vε(t)) + T (
uε(t)

k + uε(t)
− vε(t)

k′ + vε(t)
). (2.2)

The initial condition is given by :

(uε(0); vε(0)) = (ū0; v̄0) ∈ R+ × R+.

The model is biologically described in [2], to which we refer the interested readers
for a better understanding of this process.
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Figure 1. Schematic representation of lactate exchanges in a lo-
cal brain part. There is a cotransport through the brain-blood bar-
rier, a blood flow, cell creation and consumption and interactions
between a cell and its neighborhood. Interactions are described in
the main text.

3. The case ε > 0.

Well-posedness. Recall that an ODE system x′(t) = f(t, x(t)) on Rn, x = [x1, · · · ,
xn], f = [f1, · · · , fn], is called quasipositive if the condition :

x > 0, xk = 0⇒ fk(t, x) > 0

is verified for all k = 1, · · · , n. System (2.1)-(2.2) obviously is quasipositive. Hence
solutions with nonnegative initial data (ū0; v̄0) remain in (R+)2 for all positive times.

Since we have for nonnegative u1 and u2 :∣∣∣∣ u1
k + u1

− u2
k + u2

∣∣∣∣ =
k |u2 − u1|

(k + u1)(k + u2)
6
|u2 − u1|

k
,

then we can rewrite (2.1)-(2.2), setting

X(t) := (uε(t); vε(t)),

to have ∀t ∈ R+ :

X ′(t) = H(t,X(t)), X(0) = X0,

where H is globally Lipschitz continuous with respect to the second variable. We
finally conclude, thanks to the Cauchy-Lipschitz theorem, that we have existence
and uniqueness of the solution to the system ∀t ∈ R+.

Bounds on the solution. By means of (2.2), we have ∀t ∈ R+,

v′ε(t) 6 −
F1vε(t)

ε
+
F2L

ε
+
T

ε
,

which implies, using Gronwall’s lemma, that

vε(t) 6 exp(
−F1t

ε
)v̄0 +

∫ t

0

exp(
−F1(t− s)

ε
)
T + F2L

ε
ds,
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or equivalently,

vε(t) 6 exp(
−F1t

ε
)v̄0 +

T + F2L

F1
(1− exp(

−F1t

ε
)).

One can see, using the above formula, that we have ∀t ∈ R+,

vε(t) 6 max(v̄0,
T + F2L

F1
) := Bv.

Theorem 3.1. We can exhibit a sufficient, but not necessary, condition to ensure
a bound on uε. When it exists, let BJ ∈ R be such that :

∀(t, x) ∈ R2, J(t, x) 6 BJ

and :

BJ < T (1− Bv

k′ +Bv
)⇔ BJ(k′ +Bv) < Tk′. (C2.1)

In that case, we have, setting z = Bv

k′+Bv
+ BJ

T and ∀t ∈ R+ :

uε(t) 6 max(
kz

1− z
, ū0) := Bu. (3.1)

Remark 1. Condition (C2.1) is related to the equation f(x) = 0 with f(x) =
BJ− Tx

k+x+ TBv

k′+Bv
for which a positive solution exists if and only ifBJ < T (1− Bv

k′+Bv
),

i.e. (C2.1) holds. From a biological point of view, this condition means that at
each time the lactate uptake by a cell (from itself or its neighborhood) cannot be
larger than the lactate it can purge through the blood. Otherwise, the cell lactate
concentration increase may not be limited.

Proof. Equation (2.1) gives ∀t ∈ R+ :

u′ε(t) 6 BJ + T
Bv

Bv + k′
− T uε(t)

k + uε(t)
.

We set z = Bv

k′+Bv
+ BJ

T and have, thanks to (C2.1) :

1− z =
(k′ +Bv)T

(k′ +Bv)T
− Bv(T +BJ) + k′BJ

(k′ +Bv)T
=
k′T −BJ(k′ +Bv)

(k′ +Bv)T
> 0.

Let t ∈ R+ be such that:

uε(t) >
kz

1− z
.

Then,

uε(t)(1−
Bv

k′ +Bv
− BJ

T
) > k(

Bv

k′ +Bv
+
BJ

T
),

which yields

BJ + T
Bv

Bv + k′
− T uε(t)

k + uε(t)
< 0,

hence

u′ε(t) < 0.

We finally deduce that

uε(t) 6 max(
kz

1− z
, ū0).
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Remark 2. This condition on an upper bound on J is sufficient but not necessary.
We can actually also consider functions J which do not satisfy (C2.1) but for which,
when uε is large, we can exhibit a better upper bound satisfying (C2.1). It is thus
sufficient to write that uε is bounded from above with a mild (C2.1) condition. For
example, we can take J = Jtest such that, ∀(x, s) ∈ R+ × R+ :

Jtest(s, x) = GJ︸︷︷︸
creation

− LJ︸︷︷︸
consumption

+
CJ

εJ + x︸ ︷︷ ︸
import

,

for positive constants GJ , LJ , Cj and εJ such that GJ > LJ and GJ < LJ + Tk′

k′+Bv
.

The second condition means that the lactate creation of the cell is smaller than its
consumption and purge through the blood, so that the cell is able to manage lactate

excess. Then, for x > Cj

Tk′
k′+Bv

−GJ+LJ
= Ntest, Jtest is bounded by Tk′

k′+Bv
and satisfies

(C2.1). We conclude that, setting z = Bv

k′+Bv
+ BJ

T , then u(t) 6 max(Ntest,
kz
1−z , ū0),

∀t ∈ R+. Even though we cannot assert that such a function J is biologically
relevant, it is improbable to find relevant functions J leading to a fatal lactate
increase in the cell. In fact, it is logical to expect functions decreasing in x, since,
when a cell has more substrate than necessary for it to live on its own, it does not
have to import or create more.

We have already proved that uε and vε are nonnegative functions. We can exhibit
lower bounds by using the same method. Indeed, (2.2) gives, ∀t ∈ R+ :

v′ε(t) > −
F2vε(t)

ε
+
F1L

ε
− T

ε

Bv

k′ +Bv
.

Then, if
F1L−T Bv

k′+Bv

F2
> 0 and for t ∈ R+ such that

vε(t) 6
F1L− T Bv

k′+Bv

F2
,

we have vε(t)
′ > 0, so that, ∀t ∈ R+ :

vε(t) > min(v̄0,
F1L− T Bv

k′+Bv

F2
).

If
F1L−T Bv

k′+Bv

F2
6 0, we cannot find a positive lower bound on vε and we keep vε > 0.

Finally :

vε(t) > min(v̄0,max(
F1L− T Bv

k′+Bv

F2
, 0)) := Mv. (3.2)

Similarly, ∀t ∈ R+ :

u′ε(t) > T (
Mv

k′ +Mv
− uε
k + uε

).

Then uε(t) 6Mv
k
k′ leads to u′(t) > 0. This shows that

uε(t) > min(ū0,Mv
k

k′
) := Mu. (3.3)
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Remark 3. The upper bound Bv on vε can be derived even when the initial data
v̄0 and ū0 depend on ε and are bounded with respect to this parameter. To do so,
we use the same method, adapting the final step so that

vε(t) 6 max(sup v̄0
ε>0

,
T + F2L

F1
).

The lower bounds Mv and Mu can be obtained in the same way for initial data
depending on ε.

Stability of the equilibrium. For constant J and F , an equilibrium for (2.1)-
(2.2) has been found in [4] :

ul :=
k( J

T + vl
k′+vl

)

1− ( J
T + vl

k′+vl
)
, (3.4)

vl := L+
J

F
. (3.5)

It has also been proven that this unique stationary point is a node, hence a locally
stable equilibrium. However, this equilibrium does not always exist. For existence,
the parameters need to satisfy :

J

T
+

LF + J

F (k′ + L) + J
< 1⇔ J2 + JF (L+ k′)− TFk′ < 0. (3.6)

Remark 4. We have already shown that vε(t) 6 L+ T
F = Bv, ∀t ∈ R+. We verify

that the equilibrium vl is such that vl 6 Bv, which requires J 6 T . In fact, under
(2.7), J > T implies:

J2 + JF (L+ k′)− TFk′ > T 2 + TF (L+ k′)− TFk′ = T (T + FL) > 0.

Therefore, the contraposition leads to:

J2 + JF (L+ k′)− TFk′ 6 0 implies J 6 T.

We fix all the parameters but J . Then, we wish to rewrite this condition by
giving it in terms of J . In this way, we have :

∆J = F 2(L+ k′)2 + 4TFk′ > 0

and there is an equilibrium only when J ∈]Jb, Jh[, where :

Jb :=
1

2
(−F (L+ k′)−

√
∆J),

Jh :=
1

2
(−F (L+ k′) +

√
∆J).

Knowing that J is nonnegative, there are only two possible cases :

1. 0 < J < Jh with one steady-state which is a node,
2. J > Jh with no steady-state.

A therapeutic perspective is to have the steady state outside the viability domain
[8]. Therefore playing on cell lactate intake could be worth exploring: a large J
involves an unbounded cell lactate concentration which leads to an exit of the cell
viability domain and, finally, the glioma cell death.
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4. The case ε = 0. We now study the limit system for ε = 0, F (t) := F , J(t, x) :=
J constant, given ∀ t ∈ R+ by :

u′0(t) = J − T (
u0(t)

k + u0(t)
− v0(t)

k′ + v0(t)
), (4.1)

0 = F (L− v0(t)) + T (
u0(t)

k + u0(t)
− v0(t)

k′ + v0(t)
), (4.2)

together with the initial condition :

u0(0) = ū0 ∈ R+.

We first give some preliminary results and then establish bounds on the solutions
and study the well-posedness of the system. We finally compare the original system
(with ε > 0) with this limit system (with ε = 0).

Preliminaries. The function v0 given by (4.2) is defined as long as v0(t) belongs
to I =]−∞,−k′[ ∪ ]−k′,+∞[:= I1 ∪ I2 and is continuous. Taking v0(0) = ṽ0 ∈ I2,
then v0(t) ∈ I2 ∀ t ∈ R+. It is biologically relevant to take v0(0) = ṽ0 as the positive
root of (4.2) for u0(0) = ū0.

We define the function ϕc, for any constant c > 0, by :

ϕc

{
]− c,+∞[ −→]−∞, T [

s 7−→ Ts
c+s .

It is easy to see that ϕc is a monotone increasing function with ϕc(0) = 0. We also
define an inverse function of ϕc :

ϕ−1c

{
[0, T [ −→ [0,+∞[

z 7−→ cz
T−z .

Furthermore, we introduce the function ψc defined by :

ψc

{
]− c,+∞[ −→ R

s 7−→ Fs+ ϕc(s),

where ψc is a bijection from ]− c,+∞[ onto R. It can also be a bijection from R+

onto itself. Its derivative reads :

ψ′c(s) = F +
Tc

(c+ s)2
.

Employing (4.2), we have :

ψk′(v0(t)) = FL+ ϕk(u0(t)).

We rewrite (4.1)-(4.2) as :

v0(t) = ψ−1k′ (FL+ ϕk(u0(t))) := Ψ(u0(t)), (4.3)

u′0(t) = J − T (
u0(t)

k + u0(t)
− Ψ(u0(t))

k′ + Ψ(u0(t))
) := G(t, u0(t)), (4.4)

and set, for y ∈ [0,+∞[ :

Ψ−1(y) = ϕ−1k (ψk′(y)− FL).
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A priori bounds on the solutions. Thanks to (4.4), we have :

G(t, 0) = J +
Tψ−1k′ (FL)

k′ + ψ−1k′ (FL)
> J,

and the system is quasipositive : for an initial condition ū0 > 0, there holds u0(t) >
0, ∀t ∈ R+. A fortiori, we have v0(t) = Ψ(u0(t)) > 0.

Using (4.2), we find an upper bound on v0, ∀t ∈ R+ :

v0(t) 6 L+
T

F
:= Bv,0. (4.5)

We can also obtain an upper bound on u0 using Theorem 2.1. When it exists,
we call it Bu,0.

We now rewrite (4.2) as :

v0(t)2 + v0(t)(k′ − L+
T

F
− z)− k′(L+ z) = 0,

where z = Tu0(t)
(k+u0(t))F

6 T
F .

Noting that v0 is positive, ∀t ∈ R+, we have :

v0(t) =
1

2

(
z + L− T

F
− k′ +

√
(
T

F
+ k′ − L− z)2 + 4k′(L+ z)

)
. (4.6)

Well-posedness. Equation (4.4) gives :

u′0(t) = J − T (
u0(t)

k + u0(t)
− Ψ(u0(t))

k′ + Ψ(u0(t))
) := G(t, u0(t)).

Lemma 1. The function Ψ is Lipschitz continuous in u0, i.e. there exists KL > 0
such that for all u1, u2 ∈ [0,+∞],

|Ψ(u1)−Ψ(u2)| 6 KL |u1 − u2| .

Proof. Let u ∈ R+. We know that :

Ψ′(u) =
1

(Ψ−1)′(Ψ(u))

and : ∣∣(Ψ−1)′(Ψ(u))
∣∣ =

∣∣(ϕ−1k )′(ψk′(Ψ(u))− FL)ψk′(Ψ(u)))
∣∣

=

∣∣∣∣ Tk

(T − ψk′(Ψ(u)) + FL)2
(F +

Tk

(k + Ψ(u))2
)

∣∣∣∣
=

∣∣∣∣ Tk(Tk + F (k + Ψ(u))2)

(T + ϕk(u))2(k + Ψ(u))2

∣∣∣∣ .
It follows from the above that Ψ(u) = v, with :

0 = F (L− v) + T (
u

k + u
− v

k′ + v
)⇒ v 6 FL+ T = Bv,0,

v > 0.

Therefore, Ψ(u) = v ∈ [0, Bv,0] and :

|Ψ′(u)| = 1

|(Ψ−1)′(Ψ(u))|

=

∣∣∣∣ (T + ϕk(u))2(k + Ψ(u))2

Tk(Tk + F (k + Ψ(u))2)

∣∣∣∣



FAST-SLOW SYSTEM FOR LACTATE KINETICS 1233

6 (T +
Tu

k + u
)2(k + Ψ(u))2

6 4T 2(k +Bv,0)2 := KL.

Consequently, G(t, u0) is Lipschitz continuous in u0. Therefore, thanks to the
Cauchy-Lipschitz theorem, we have the existence and uniqueness of the solution to
(4.4), ∀t ∈ R+. Finally we have existence and uniqueness for v0, recalling that Ψ is
a bijection.

Stability of the equilibrium. As proved in [3], (4.1)-(4.2) can have at most
one equilibrium given under the above parameters condition. The Jacobian of the
system at this point gives the eigenvalue :

λ := −T k

(k + ul)2
< 0.

Therefore, ul is locally stable. Moreover, ∀t ∈ R+, v(t) = Ψ(u(t)), where Ψ is a
bijective function. Setting zl = J

T + vl
k′+vl

, we have :

T
ul

k + ul
= T

kzl
1− zl

1− zl
k

= Tzl

=
TJ

T
+ T

vl
k′ + vl

= F (
J

F
+ L− L) + T

vl
k′ + vl

= F (vl − L) + T
vl

k′ + vl
.

Thus :
Fvl + T

vl
k′ + vl

= FL+ T
ul

k + ul
⇔ vl = Ψ(ul),

and the stationnary point vl is locally stable.

Comparison between the original and the limit systems. We wish to bound
the difference between (uε; vε) solution to (2.1)-(2.2) with F (t) := F and J(t, x) :=
J and (u0; v0) solution to (4.1)-(4.2), ∀t ∈ R+. To do so, we choose the same initial
condition for uε and u0 :

uε(0) = u0(0) = ū0.

We set u = uε − u0 and v = vε − v0. Using (2.1), (2.2), (4.1) and (4.2), we have,
∀ t ∈ R+ :

u′(t) = T (
k′v(t)

(vε(t) + k′)(v0(t) + k′)
− ku(t)

(uε(t) + k)(u0(t) + k)
), (4.7)

εv′(t) = −Fv(t) + T (
ku(t)

(uε(t) + k)(u0(t) + k)
− k′v(t)

(vε(t) + k′)(v0(t) + k′)
)− εv′0(t).

(4.8)

It follows from the above that, ∀ t ∈ R+ :

u′0(t) = J − T (
u0(t)

k + u0(t)
− v0(t)

k′ + v0(t)
) ∈ [J − T, J + T ],

v0(t) 6 Bv,0,
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Therefore, differentiating (4.2), we find :

Fv′0(t) = T (
ku′0(t)

(k + u0(t))2
− k′v′0(t)

(k′ + v0(t))2
)⇒ v′0(t)(F +

k′T

(k′ + v0(t))2
) =

Tku′0(t)

(k + u0(t))2
,

hence ∀ t ∈ R+ :

|v′0(t)| 6 kT (J + T )

(F + k′T
(k′+Bv,0)2

)
:= γ.

Next, multiplying (4.7) by u(t) and (4.8) by v(t) gives, ∀ t ∈ R+ :

1

2

d

dt
(u2(t)) 6

T

k′
|u(t)| |v(t)| , (4.9)

ε
1

2

d

dt
(v2(t)) + Fv2(t) 6

T

k
|u(t)| |v(t)|+ ε |v(t)| γ. (4.10)

Noting that

T

k
|u(t)| |v(t)|+ ε |v(t)| γ = (

T

k
|u(t)| 2√

F
)(

√
F

2
|v(t)|) + (|v(t)|

√
F

2
)(

2√
F
εγ)

6
F

2
v2(t) +

4T 2

Fk2
u2(t) +

4γ2

F
ε2

and

T

k′
|u(t)| |v(t)| = (

T

k′
|u(t)|

√
2√
F

)(

√
F√
2
|v(t)|)

6
F

2
v2(t) +

2T 2

Fk′2
u2(t),

summing (4.9) and (4.10) thus yields, ∀ t ∈ R+ :

d

dt
(u2(t) + εv2(t)) 6 (

8T 2

Fk2
+

4T 2

Fk′2
)(u2(t) + εv2(t)) +

8γ2

F
ε2.

Noting finally that :

u2(0) = 0 and u2(0) + εv2(0) = ε(v̄0 −Ψ(ū0))2,

Gronwall’s lemma gives, ∀ t ∈ R+ :

u2(t) + εv2(t)

6 exp
(T 2t

F
(

8

k2
+

4

k′2
)
)
(ε(v̄0 −Ψ(ū0))2 +

k2(J + T )2

(F + k′T
(k′+L+ T

F )2
)2

2ε2

( 2
k2 + 1

k′2 )
)

− k2(J + T )2

(F + k′T
(k′+L+ T

F )2
)2

2ε2

( 2
k2 + 1

k′2 )
.

Remark 5. In the particular case v̄0 = Ψ(ū0), we have ∀t ∈ [0, tm] :

u2(t) + εv2(t) 6 (exp
(T 2tm

F
(

8

k2
+

4

k′2
)
)
− 1)

2γ2ε2

T 2( 2
k2 + 1

k′2 )

which yields that, on the finite time interval [0, tm],

|u(t)| 6 Ctmε, |v(t)| 6 Ctm

√
ε. (4.11)

Remark 6. Setting v0(0) = ṽ1 ∈ I1 the negative root of (4.2) for u0(t) = ū0, we
define a second solution to (4.1)-(4.2) for every t ∈ R+. We strongly think that
we can study this degenerate system with similar mathematical tools, but this does
not make sense from a biological point of view.
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5. Numerical simulations and comparison with experimental data. In this
section, we first present several numerical simulations with relevant values of our
parameters. We also compare the numerical simulations with different values of J
and ε. We finally give and study experimental data. These simulations have been
done with the Matlab software.

Numerical illustration with nonconstant J and F . We first consider the
system given by (2.1)-(2.2). We expect that a cell manages its lactate concentration
by means of its amount but not of the experiment’s duration. Therefore we assume
that it is biologically relevant to take a function J that does not depend of t. Besides,
we expect that a cell imports more lactate when its lactate concentration is low.
In other words J should be monotone decreasing in x. Under this hypothesis we
choose :

J

{
R+ −→ R+

x 7−→ GJ − Lj + Cj
x+εj

,

containing a creation term, a consumption term and an import term. This function
J is a bounded and Lipschitz continuous function which enjoys the mild (C2.1)
condition. We also define, as given in [1] :

F

 R+ −→ R+

t 7−→
{
F0(1 + αf ) if ∃N ∈ N/(N − 1)tf + ti < t < Ntf ,

F0 if not.

The parameters for these two functions are given in Table 1.

Parameter Value Unit
F0 0.012 s−1

αf 0.5 1
ti 50 s
tf 100 s
CJ 5.7*10−5 mM2.s−1

εJ 0.001 mM
GJ 0.002 mM.s−1

LJ 0.001 mM.s−1

Table 1. Parameters for F and J .

We also consider the parameters given in [2] and [8]. In that case, (ū0; v̄0) =
(1.15; 1) and the parameters values are given in Table 2.

Parameter Value Unit
T 0.01 mM.s−1

k 3.5 mM
k′ 3.5 mM
L 0.3 mM
ε 0.001 s−1

Table 2. Parameters values.

The solutions uε and vε remain nonnegative, as shown in Figure 3. Here, we
have an upper bound on vε and J enjoys (C2.1), so that uε has an upper bound
too. Thus, the intracellular and capillary lactate concentrations match with the
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Figure 2. The functions F and J ; F is a periodic function while
J is a monotone decreasing function of u.

Figure 3. Intracellular and capillary lactate dynamics with non-
constant functions J and F . On the left, the intracellular lactate
trajectory is upper bounded. On the right, the capillary lactate
trajectory is upper bounded too, but has an initial dip. At the
bottom the orbit is typical of fast-slow systems.

mathematical analysis. At the beginning, there is a dip for the capillary lactate
concentration. The fluctuations on F are rapidly damped out as time grows.

Numerical simulations with different values of J and ε. We now assume
that J and F are constant in order to compare (2.1)-(2.2) with (4.1)-(4.2). The
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parameters values are given in Table 3, following [2] and [8], and the simulations
are displayed in Figure 4.

Figure 4. Intracellular and capillary lactate dynamics with con-
stant functions J and F . The intracellular lactate trajectory (on
the left) and the capillary lactate trajectory (on the right) are both
upper bounded and reach the corresponding steady state. The
trajectories for the original system (with ε > 0) are also lower
bounded. On the right top corner the capillary lactate of the origi-
nal system has an initial dip, while it does not exist on the capillary
lactate curve of the limit system (right bottom corner).

Parameter Value Unit
T 0.01 mM.s−1

k 3.5 mM
k′ 3.5 mM
L 0.3 mM
J 0.0057 mM.s−1

F 0.0272 s−1

ε 0.1 s−1

Table 3. Parameters values.

Note that, in that case, we have shown the existence of an upper bound on u
and the presence of a locally stable steady state. The limit system has almost the
same dynamics as the initial one. The notable difference is the presence of a hard
initial dip for the dynamics of the capillary lactate with ε > 0. This dip does not
exist in the dynamics given by the limit system.

Using the parameters values given in Table 3, we perform numerical simulations
with various values of ε. The results are given in Figure 5.

While the intracellular lactate trajectories seem not to differ a lot, the capillary
lactate trajectories show different initial dynamics. The smaller ε is, the steeper
the dip is up to ε = 0, where there is no dip.
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Figure 5. Dynamics for different values of ε. On the left intracel-
lular; the lactate trajectories seem not to differ a lot. On the right,
the value of ε is related to the dip stiffness for the capillary lactate
trajectories.

Remark 7. An approach based on singular perturbation theory has been made on
this model by Lahutte-Auboin et al. [7, 8]. There, the authors give a geometrical
explanation for the initial lactate dip and prove the existence of a periodic solution
of the fast-slow system under a repetitive sequence of identical stimuli. In addition,
our approach gives an estimate on the rate of convergence with respect to the
parameters, which is usually not the case with singular perturbation theory.

Using the parameters given in Table 3, we now test different values for J . The
results are given in Figure 6.

There is a limit value of J , denoted by Jlim, such that there is an equilibrium
only for J < Jlim. With these parameters values, we have :

Jlim = 0.00851 mM.s−1.

There are two types of dynamics : those with J < Jlim for which there is a
steady state and those with J > Jlim for which the intracellular lactate trajectory
explodes.

Experimental data. In this section we compare typical results obtained by using
the model (with constant J and F ) with in vivo data. This model is known to give
good results when fitted to experimental data in small time variations (seconds) [2].
We want here to test its robustness on larger time variations (days).

For each five patients we have four lactate concentration measures (only three for
patient 1) separated from each other by more than 80 days. Biological data were
collected from patients exhibiting low grade gliomas (WHO grade 2) histologically
proven, using monovoxel proton MR spectroscopy sequences performed on a same
whole body 3 Tesla magnet (Verio, Siemens Ag) using specific 32 channels head
coil. Raw data have been performed under the JMRUI software for appropriate
quantification of metabolites, especially lactate concentration.
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Figure 6. Dynamics for different values for J . On the right, the
intracellular lactate trajectories are divided into two groups : for
J ∈ {1, 0.1, 0.01}, the concentration seems to explode, while for J ∈
{0.001, 0.0001}, it seems more stable. On the right the capillary
lactate trajectories are devided into these two groups. For the first
one, we can see a dip, while, for the second one, the steady state is
not quickly reached.

We are unable to distinguish between capillary lactate and intracellular lactate
using imaging data. Therefore lactate concentration measures are the sum of the
capillary lactate and intracellular lactate concentrations.

Because lactate concentrations variations are intrinsic and depend on lactate
exchanges, we assume that it is relevant to adjust the initial values (ū0 and v̄0) and
the exchanges with neighboring cells (J) only. We give the other parameters values
in Table 4.

Parameter Value Unit
T 0.1 mM.d−1

k 3.5 mM
k′ 3.5 mM
L 0.3 mM
F 0.0272 d−1

ε 0.1 d−1

Table 4. Parameters values.

The results are given in Figure 7. Fitted values of ū0, v̄0 and J for each patient
are given in Table 5.
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Patient ū0 (mM) v̄0 (mM) J (mM.d−1)
1 0.025 0.329 0.026
2 0.017 0.320 0.010
3 0.034 0.338 0.001
4 0.146 0.460 0.036
5 1.817 2.291 0.007

Table 5. Fitted values of ū0, v̄0 and J .

Our model (with constant J and F ) is consistent with biological data. it is
able to predict what happens after a lactate spike, when the brain sets up a huge
regulation to turn back to an acceptable lactate concentration.

(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

(e) Patient 5

Figure 7. Lactate concentration changes in a local brain part. Lactate concen-
tration is given in mM (vertical axis) and time in days (horizontal axis). The red
dots stand for medical data values, while the model simulations are displayed in
continuous lines. While the four first patients exhibit Grompertz growth of their
brain lactate concentration, patient 5 lactate concentration decreases in time. All
the dynamics simulations tend to the steady state given in section 2.
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6. Discussion. In this study we analyze a model for lactate kinetics first given in
[2]. This model is a first step in view of a better understanding of lactate dynamics
in the brain. Lactate has a key role in neuroenergetics. Therefore studying its
dynamics in the brain is necessary to better understand the energetic breakdown
which is observed, for example in tumors. This model is known to give good results
when fitted with experimental data [2], [8]. However, to the best of our knowledge,
no mathematical analysis has been made to show the existence and uniqueness of the
solution and conditions for bounds on the solution, but also comparisons between
the original and limit systems.

In this paper, we study the original and limit systems and obtain existence,
uniqueness and bounds on the solutions for the two systems. We also give a condi-
tion on J which ensures the existence of a locally stable steady state. Moreover, we
give an upper estimate on the difference between the solutions of the two systems.
We also give several numerical simulations, for different values of ε and J . Finally
we confront the model with in vivo data.

When confronted with imaging data from NMR spectroscopy and perfusion, the
model provides good results. Because there are large time variations, we cannot
ensure that all the parameters remain constant in time. Therefore constant pa-
rameters are not good for explaining hard changes on the lactate concentration
dynamics such as shifting from a decreasing concentration to an increasing one.
Despite this, they can explain what happens after a lactate spike.

Differences in lactate dynamics suggest that there are several glioma profiles with
different typical kinetics. This could indicate that non-agressive low grade gliomas
show an increasing lactate concentration and then move to more agressive form
(WHO II+ to WHO III+). At this stage the glioma will exhibit angiogenesis, mod-
ified proteins and altered transporters, which leads to fluctuating lactate kinetics
[6]. This point should be considered as a critical one because of its therapeutical
management consequences. Yet the patient should be referred to more agressive
therapeutics such as radiotherapy or chemotherapy. Also the imaging control fre-
quency should be restrained as well.

As already mentioned in [10], an initial dip exists in the brain lactate dynamics.
This dip could be mathematically explained by the different initial values of the
capillary lactate concentration between the original and limit systems. Therefore
the dip can be biologically explained by compartment volume modifications.

It cannot be excluded that J stands only because the model is build to explain
a local brain part dynamics. Then lactate exchanges between cells and the extra-
cellular space have to be better studied to find a biologically relevant function J or
other models with a different way to take these interactions into account. Despite
this, the function J is described here with minimal assumptions. Therefore, this
allows us to use this analysis with further choices for J or modified systems.

Indeed one perspective is to build more complex and suitable models for brain
metabolism. Adding oxygen and glucose dynamics to this model can be the next
step in view of a more accurate description of energy dynamics in the brain. It could
also be interesting to build a model with different cell types (such as astrocyte and
neuron), for a better understanding of the brain fuel substrate fluxes.
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