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Abstract. We quantify a recent five-category CT histogram based classifi-
cation of ground glass opacities using a dynamic mathematical model for the

spatial-temporal evolution of malignant nodules. Our mathematical model

takes the form of a spatially structured partial differential equation with a
logistic crowding term. We present the results of extensive simulations and

validate our model using patient data obtained from clinical CT images from
patients with benign and malignant lesions.

1. Introduction. Non-small-cell lung carcinomas (NSCLC) are the most common
epithelial lung cancers. The development of thin slice CT (computed tomography)
scans, coupled with new recommendations for lung cancer screening in high risk
patients, has led to increased detection of subtle pulmonary subsolid or nonsolid
nodules in the lungs [13]. CT scan x-rays measure these nodules, also known as
ground glass opacities (GGOs), as the partial filling of air spaces in the lungs by
exuded fluids. Published recommendations [4], [20], [21], [22] for how to follow
GGOs over time depends only on nodule size and the presence or absence of a solid
component. Recent work has demonstrated the utility of volumetric CT (vCT) for
diagnosis of cancer in solid nodules by measuring growth rate over time. For these
cancers, which include adenocarcinoma, a growth rate given by a volume doubling
time (DT) less than 400 days is predictive of malignancy [12]. However, GGOs
often grow slowly in size, thus giving a high false negative rate when using nodule
volume as the imaging parameter. Additionally, GGOs can be difficult to segment
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on CT, making assessment of growth using vCT problematic. In this work, we
investigate the potential to assess GGO growth based on a quantitative change
in its 3-D density histogram, irrespective of the nodule size or presence of a solid
component.

A recent report correlated five categories of CT histogram with histopathologi-
cal characteristics and recurrence-free survival times [15]. Our objective is to model
these five qualitative GGO measurement histogram categories, and their interpreta-
tions of tumor progression, to a quantitative dynamic mathematical model of tumor
growth, which also allows estimation of tumor DT.

The mathematical model we use for the spatial-temporal evolution of a GGO is
a diffusive logistic partial differential equation. We assume cell mass grows almost
exponentially in an early time phase from an initial condition consisting of a small
nodule, but ultimately slows in growth as time advances. CT scans are quantified
in Hounsfield units (HU), which measure radio-density. Since HU reflect tissue
density as the partial filling of air spaces in the lungs by exuded fluids, it is possible
for the tumor to increase in density without increasing in physical size on CT, by
tumor cells gradually filling in available lung air space (see Figure 1). Therefore,
visually observed CT scans may show boundaries of the tumor that do not change
for a considerable amount of time, but which may increase in density. This change
is reflected in the CT histogram; hence, it may be possible to quantify tumor growth
based on subtle changes in the CT histogram.

We identify the five histogram categories formulated in [15], which are based on
qualitative HU histogram signatures, with the outputs of our mathematical model,
which is based on the time dependent spatial density u(t,x) of tumor cells in a
spatial region Ω of the lung. The identification at a given time t is based on the
fraction of values of CT scan histogram output and model output u(t,x) in specified
subintervals of [0, 1]. The growth and diffusion parameters in the model equation
are used to identify the connection over a time series of the two outputs. The
model output is then used to identify the DT values for the time series of CT scan
histograms. We illustrate the usability of the model for diagnosis of lung cancer
with its comparison to CT lung scan data through four clinical patient case studies.

The Tennessee Valley Healthcare System VA Hospital Institutional Review Board
approved the analysis of the anonymized CT scan data used in this paper and waived
the need for informed consent.

2. Materials and methods.

2.1. Mathematical model. It has been recently documented that spatial intra-
tumor heterogeneity plays an important role in lung cancer development at both
the micro-molecular and at the macro-visible level [4],[20]. At the microscopic level
and at the early stages of pulmonary adenocarcinoma in situ (previously bronchi-
oloalveolar cell carcinoma), cancer cells align along alveolar walls in a so-called
lepidic pattern. As the tumor invades the air spaces, it becomes more dense on CT.

Mathematical models of tumor growth in spatial regions have been developed by
many researchers, including [1],[3],[10],[11],[17],[18],[24],[25]. Many mathematical
models have been designed specifically to connect to CT scan imaging, including
[2],[5],[8], [9],[16],[26],[27]. Our goal is to develop a mathematical model that aids
lung CT scan analysis, and therefore our model captures tumor spatial growth
dynamics at the macro-visible level. Our model has the following form of a diffusion
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partial differential equation with a growth-limiting logistic term:

∂u

∂t
(t,x) =∇ (b∇u(t,x)) + a u(t,x)

(
1− u(t,x) + ub(x)

um

)
, t > 0, x ∈ Ω; (1)

u(t,x)|∂Ω =0, t ≥ 0; u(0,x) = u0(x), x ∈ Ω. (2)

In the model above u(t,x) stands for the density of tumor cells at time t and spatial
position x ∈ Ω, where Ω ⊂ R2 is the observed physical area of the lung (typically
a rectangular or disc-like area). We focus here on the 2-dimensional case, which
exhibits the essential features of the underlying dynamics of lung tumor growth,
and is also comparable to the clinical appearance of CT scan patient data. The
2-dimensional region Ω ⊂ R2 can be viewed as representative thin slice of the
tumor nodule. In future work we will consider a domain Ω ⊂ R3, which is more
realistic, but with numerical simulations much more time consuming. Note that for
simplicity we imposed Dirichlet boundary condition in our model (1)-(2). This is
because we are interested in the short term behavior of solutions, with initial tumor
cell distributions supported at (or near) the center of the domain.

The parameter a is the logistic growth rate. The parameter b is the diffusion
coefficient, which determines the speed of spatial tumor propagation. In the ex-
amples the parameters a and b were qualitatively determined to match the CT
histograms and the model outputs for each patient. In future work we will use
formal optimization methods to specify these parameters. The initial conditions
u0(x) were determined by random choice of clusters of Gaussians and then chosen
for compatibility with the CT data. In future work we will develop formal methods
for assigning these initial conditions specifically to patient data.

The maximum of u(t,x) at any x ∈ Ω is um − ub(x). The units of u(t,x) are
density units of tumor mass per unit area, which we scale to allow comparison with
CT scan GGO) HU values. We take the carrying capacity parameter um = 1100
as the maximum cell density at any location. We convert u(t,x) units into CT
scan HU by subtracting 1000. Most body soft tissue has HU values somewhere
between water (HU=0) and blood (HU ≈ 50) due to the high iron content in
blood; hence the upper limit of our histogram scale of +100 (or 1100 on the u(t,x)
scale). Thus, u(t,x) values range between 0 and 1100, corresponding to HU values
between −1000 and 100.

In the subsequent section when we present our simulation results, the cell density
u(t,x) will be compared to histograms represented in HU , which are volume aver-
aged values of mixtures of air and water, HUair = 1000, HUwater = 0 [14]. Normal
lung histograms are centered around HU = −750, reflecting about 75% air. As a
tumor grows, more tissue density (water) displaces the air and typically shifts the
histogram to the right. Note that Hounsfield units are integer valued.

The spatial growth of the tumor in model (1)-(2) is limited by the normal back-
ground lung cell distribution, denoted by the time-independent background density
function ub(x). Tumor growth concentrates in micro-environmental regions of lung
tissue vascularization [4], where the background density ub(x) is higher. The initial
values and parameters are qualitatively fitted to each patient CT scan histogram
data. In future work, formal optimization procedures will be developed for quanti-
tative fittings based on large numbers of patient data.
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The proof of existence of unique solutions of model (1)-(2) is provided in the
Appendix. Note that, here we are mainly interested in the early transient behavior
of solutions of the model, and not the long-term asymptotic behavior.

2.2. CT scan histogram categories. The five CT scan histogram categories pre-
sented in [15] are summarised in Table 1 below. The classification of these categories
is qualitative and subject to interpretation. The classifications of patient examples
in [15] were each constructed by visual assessment of two expert observers, using a
decision tree algorithm, with disagreements resolved by consensus. The histograms
in the study in [15] were given in terms of continuous smoothed-out renderings of
the histogram bar graphs, which allowed easier determination of category type. In
our study we use actual histogram bar graphs, which preserve more information.
In general, the classification of category for a given patient data set is necessarily
subjective, and in fact, some patient data in our database do not readily fit any
of the classifications. Our main goal is to construct a model that fits patient CT
scan histogram data, rather than a model that fits the interpretation of these data
according to the classification scheme in Kawata et al. We believe that our model
simulations will aid in the designation of these categories for individual patients.

Table 1. The five CT scan histogram categories.

Type Description
α high peak at low HU values and no peak at high HU values

β medium peak at low HU values and no peak at high HU values

γ low peak at low HU values and lower peak at high HU values

δ low peak at low HU values and higher peak at high HU values

ε low peak at low HU values and very high peak at high HU values

To compare model output to patient data for a time series of CT scan histograms
for a given patient, we will use a quantitative determination of the fractions of both
CT scan histogram outputs and model (1)-(2) outputs. The CT scan fractional
histogram outputs are the fractions of histogram bar heights in a given range of
HU . The fractional model outputs are the integrals of the density function u(t,x)
over a given range of values, divided by the integral of all values of the density
function u(t,x), with both integrals over all of Ω. We assign three output ranges as
presented in Table 2 below (other choices are also possible).

Table 2. The three output fractions.

fraction CT scan histogram output at time t model output u(t,x)

f1 < −600 HU < 500

f2 between −600 HU and −100 HU between 500 and 1000

f3 > −100 HU > 1000
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We use the output fractions f1, f2, f3 to compare a time series of CT scan his-
tograms for a given patient with the model (1)-(2) by specifying a time-independent
background density ub(x), an initial condition u0(x) (corresponding to the baseline
histogram), the logistic parameter a, and the diffusion parameter b. We then cal-
culate the doubling time DT of the tumor from the model output.

3. Results. We provide here the results of simulations for four case studies, all
compared to patient data. Our patient data and model simulation codes (developed
in MATHEMATICA) are available upon request to the authors. All histograms, for
both CT scan data and model simulations, are constructed with binning width of 10
HU per bin. We note that for each simulation the initial density u0(x) is formulated
as a 2-dimensional Gaussian, and the background density ub(x) is formulated as an
array of 2-dimensional Gaussians, which are parameterized so that the histogram
of u0(x) + ub(x) corresponds approximately to the baseline CT histogram in each
simulation. These inputs are viewed as representative of the tumor at the macro-
level. In future work these inputs will be formulated at the micro-level as in Figure
1, which requires much greater detail and much more extensive computing resources
for running the simulations.

3.1. Patient 1. Patient 1 is an example of a biopsy proven benign GGO. In Figure
2 we show CT scan images for Patient 1 at five time points. Patient 1 data consists
of CT scan histograms in a series of five time points over approximately two years.
These five histograms, with their category type and fractional values f1, f2, f3, are
given in Figure 3. For the model simulation of Patient 1, we have taken the time
points (in days) as t0 = 0, t1 = 87, t2 = 228, t3 = 643, and t4 = 692, corresponding
to the dates in Figure 3. In Figure 4 we graph the initial tumor spatial density
plus background density u0(x)+ub(x), in alignment with the CT scan histogram at
baseline t = 0, shown in Figure 3, and the tumor spatial density u(t,x) at t = 692.

In Figure 5 we graph the histogram plots (with bin width 10) of the model
simulation of Patient 1 at the five time points as in Figure 3, where the values of
u(t,x) are shifted by −1000 to correspond to HU . The category type and fractional
values f1, f2, f3 at each time point are given in the Figure 5 legend. The histograms
in Figure 3 and Figure 5 show relatively good alignment, all with type β. The
histogram fractions for the CT scan data and the model simulations are compared
in Figure 6. From these histogram plots we see that the tumor does not progress in
category type. The parameters for Patient 1 and the doubling time obtained from
the simulation are shown in Table 3.

3.2. Patient 2. Patient 2 is an example of a benign GGO nodule. In Figure 7 we
show CT scan images for Patient 2 at six time points. Patient 2 CT scan histograms
at six time points, their category type, and fractional values f1, f2, f3, are given
in Figure 8. For the model simulation of Patient 2, we have taken the six time
points (in days) as t0 = 0, t1 = 107, t2 = 198, t3 = 386, t4 = 568, and t5 = 932
corresponding to the dates in Figure 8. In Figure 9 we graph the initial tumor
spatial density plus background density u0(x) + ub(x), in alignment with the CT
scan histogram at baseline t = 0, shown in Figure 8, and the tumor spatial density
u(t,x) at t = 932.

In Figure 10 we show the histogram plots (with bin width 10) of the model
simulation of Patient 2 at the six time points as in Figure 8, where the values of
u(t,x) are shifted again by −1000 so that they correspond to HU . The category
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type and fractional values f1, f2, f3 at each time point are given in the Figure 10
legend. The histograms in Figure 8 and Figure 10 show relatively good alignment,
all with type β. The histogram fractions for the CT scan data and the model
simulations are compared in Figure 11. From these histogram plots we see that the
tumor does not progress in category type. The parameters for Patient 2 and the
doubling times obtained from the simulation are shown in Table 3. The doubling
time obtained from the simulation is in the range of a benign nodule.

3.3. Patient 3. Patient 3 is an example of atypical cells highly suspicious for ade-
nocarcinoma by biopsy. In Figure 12 we show CT scan images for Patient 3 at four
time points. Patient 3 CT scan histograms (with bin width 10 HU) at the four
time points, with their category type and fractional values f1, f2, f3 are shown in
Figure 13. For the model simulation of Patient 3, we have taken the time points
(in days) as t0 = 0, t1 = 574, t2 = 826, t3 = 917 (corresponding to the dates in
Figure 13), and two additional time points beyond the data times as t4 = 1, 217 and
t5 = 1, 517. In Figure 14 we graph the initial tumor spatial density plus background
density u0(x) + ub(x), in alignment with the CT scan histogram at baseline t = 0,
shown in Figure 13, and the tumor spatial density u(t,x) at t = 917.

In Figure 15 we show the histogram plots of the model simulation for Patient 3
at the six time points as shown in Figure 13, where the values of u(t,x) are shifted
by −1000 to correspond to HU . The category type and fractional values f1, f2,
f3 at each time point are given in the Figure 15 legend. The first four histograms
in Figure 13 and Figure 15 show relatively good alignment, with type progression
from β to γ. Through the two additional time points in the simulation we see the
progression of the tumor through type γ. The histogram fractions for the CT scan
data and the model simulations are compared in Figure 16. The parameters for
Patient 3 and the doubling time obtained from the simulation are shown in Table
3. The doubling time obtained from the simulation is in the range of non-small cell
lung cancer.

3.4. Patient 4. Patient 4 is an example of a proven adenocarcinoma that started
as a GGO that increased in density on CT over time. In Figure 17 we show CT scan
images for Patient 4 at four time points. Patient 4 CT scan histograms (with bin
width 10 HU) at four time points, with their category type and fractional values
f1, f2, f3 are shown in Figure 18. For the model simulation of Patient 4, we have
taken the time points (in days) as t0 = 0, t1 = 239, t2 = 423, t3 = 471, and two
additional time points beyond the data times as t4 = 600 and t5 = 750. In Figure
19 we show the graph of the initial spatial density u0(x), the background spatial
density ub(x), and their sum, in alignment with the CT scan histogram at baseline
t = 0 shown in Figure 18.

In Figure 20 we show the histogram plots of the model simulation for Patient 4
at the four time points as shown in Figure 18, where the values of u(t,x) are shifted
by −1000 to correspond to HU . The category type and fractional values f1, f2, f3

at each time point are given in the Figure 20 legend. The first four histograms in
Figure 17 and Figure 20 show relatively good alignment, with type progression from
β to γ. The histogram fractions for the CT scan data and the model simulations
are compared in Figure 21. Through the two additional time points we see the
progression of the tumor through type δ to type ε. The parameters for Patient 4
and the doubling time obtained from the simulation are shown in Table 3. The
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doubling time obtained from the simulation is in the range of non-small cell lung
cancer.

Table 3. Model parameters and simulation doubling times. Units
of a are 1/ time units and units of b are area units2/time units.

Patient a b Doubling time from baseline

1 0.003 0.02 353 days

2 0.002 0.006 687 days

3 0.004 0.001 380 days

4 0.012 0.001 115 days

In Figure 22 we graph the total tumor mass from the model simulations for
each patient over time, where mass is scaled to 1.0 at time 0. Patients 1 and 2
have smaller growth than Patients 3 and 4, corresponding to their smaller growth
parameter a. The model simulations allow calculation of the tumor doubling times,
as well as tracking of the tumor growth over the span of CT scan time series. The
model simulations also allow growth projections for additional times beyond the
CT scan data, as demonstrated for Patients 3 and 4 (see also Figure 22).

4. Discussion. In a recent paper [15], a qualitative five-category classification
method was proposed for analyzing NSCLC, and its utility justified using statistical
tools. The results indicated a satisfactory inter-observer agreement simply through
visual assessment of CT histograms. Our goal here has been to quantify the five
categories in [15] in terms of a dynamic spatial model of tumor growth; and to con-
nect the temporal dynamics of the categories to tumor DT. We have compared CT
scan data and model outputs for four patient studies. For each patient, we see good
agreement between these data and model outputs, in terms histogram categories
and HU fractional ranges.

In the current work we hypothesized that the five categories identified in [15]
actually correspond to temporal tumor progression. Indeed, Kawata [15] already
speculated that change from type α to β and from β to γ may indicate tumor
progression.

Our results show that model (1)-(2) supports the five category classification in
adenocarcinoma in situ. Further, these five categories can be viewed as a hypoth-
esized 5-step lung cancer progression theory. Moreover, since it takes into account
the spatial heterogeneity of the tumor, which is particularly important for irreg-
ular nodules investigated here, the model gives us a tool to estimate tumor mass
doubling times using CT histogram data only.

Major challenges for application of the model (1)-(2)are the identifications of
the initial tumor nodule characteristics, the background non-tumor bias parameter
ub(x), the carrying capacity parameter um, the spatial diffusion parameter b, and
tumor growth parameter a. Our goal here has been to demonstrate that model (1)-
(2) does correlate well with tumor growth data given by CT scan data represented
with GGO histograms. Formal procedures to quantify these identifications of initial
data and parameters for general patient data will be carried out in future work.
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5. Outlook. Our model already shows very good agreement with patient data, and
the 5-category classification of GGOs. Future improvements of the mathematical
model may involve:

• Full 3-dimensional simulations.

• Systematically analyze the simulation outcomes as functions of the model
parameters and initial condition (transient vs asymptotic behavior, is there a
globally stable steady state?).

• Inclusion of nonlinear diffusion to account for a more realistic description of
tumor spatial growth (in particular to model competition effects).

• To include different type of placement processes for the tumor cells (other
than diffusion) to account for the complex spatial structure of the lung.

Estimation of tumor doubling time in GGOs has not been described. This work
offers a method to compute growth rate of GGOs as a predictive biomarker of
malignancy, similar to that used for solid nodules using volumetric CT. Further
work is needed to investigate the impact of different reconstruction algorithms and
reconstructed image quality on the estimate of GGO growth rate.

6. Supporting information. Global behaviour of solutions. The basic math-
ematical theory of general classes of nonlinear reaction diffusion equations of the
type (1)-(2) is well understood. However, for completeness, here we provide a con-
cise proof of the global existence and positivity of solutions of our model in the
biologically relevant state space of Lebesgue integrable functions L1(Ω) =: X . In
particular, to establish the global existence of mild solutions we implement a frame-
work as in [23] for a structured population model, see also [19].

We set K := L1
+(Ω) (the positive cone of L1, which is closed) and we recast

model (1)-(2) in the form of a semilinear abstract Cauchy problem as follows.

du

dt
= Au+ F (u), u(0) = u0 ∈ K, (3)

where

Au = ∇ (b∇u) + au

(
1− ub

um

)
, (4)

D(A) =
{
v ∈W 2,1(Ω) | v(x) = 0 x ∈ ∂Ω

}
, (5)

F (u) = −a u
2

um
. (6)

We say that the abstract semilinear problem (3) satisfies the sub-tangential condi-
tion (see e.g. [23]) with respect to K, if

lim
h→0+

d (K, T (h)u+ hF (u))

h
= 0, (7)

where T is the linear semigroup generated byA, and d is the usual distance function.
We also recall the notation (·, ·)− introduced for a semi-inner product on X . Below
X ∗ denotes the dual of the Banach space X , and (·, ·) the natural pairing between
elements of X and X ∗.

(u, v)− := min
v∗∈X∗

{
(u, v∗) | ||v∗|| = ||v||, (v, v∗) = ||v||2

}
.
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We recall the following result from [23], see also [19].
Let X ,K,A and F as defined above, and assume that F is locally Lipschitz

and bounded. Further assume that the sub-tangential condition (7) holds, and
that there exist ω, κ ∈ R such that (Au, u)− ≤ ω|u|2, for all u ∈ D(A); and
(F (u), u)− ≤ κ|u|2, for all u ∈ K. Then, for each u0 ∈ K, there exists a unique
mild solution u(t) to (3) for all t > 0.

We now apply this result to our model (1)-(2).

Theorem 6.1. Assume that ub ∈ C1(Ω), and a, b > 0. Then, for any initial
condition u0 ∈ K, model (1)-(2) admits a mild (semigroup) solution u(t) ∈ K, for
all times t > 0.

Proof. It follows from the assumptions that the densely defined operator A defined
in (4)-(5) generates a positive strongly continuous semigroup T (t) on L1(Ω). Note
that the nonlinear operator F cannot be defined on the whole state space X , but
F is locally Lipschitz and maps bounded sets B ⊂ K into bounded sets F (B). To
establish the global existence of solutions, note that in our situation since T leaves
K invariant, the sub-tangential condition (7) simplifies as follows (see also Lemma
C in [23]).

lim
h→0+

d (K,u+ hF (u))

h
= 0, (8)

which is easily seen to hold true, as for all u ∈ K we have F (u) < 0.
Next note that in our setting we have

(F (u), u)− = min
u∗∈L∞(Ω)

{
− a

um

∫
Ω

u2 u∗

∣∣∣∣∣ ||u||1 = ||u∗||∞,
∫

Ω

uu∗ =

(∫
Ω

|u|
)2
}
.

(9)
Hence for every u ∈ K we may take u∗ ≡ ||u||1 =

∫
Ω
u (constant function), which

shows that (F (u), u)− ≤ 0 holds. Finally, note that (Au, u)− ≤ ω|u|2, for all
u ∈ D(A) holds with ω := s(A) <∞, the spectral bound of A.

Our model (1)-(2) always admits the trivial steady state u∗ ≡ 0. For a large
enough, the existence of a strictly positive steady state can be established using
the general framework developed in [6]. In particular, we can define a parametrized
family of linear operators as follows:

Φv u = ∇ (b∇u) + au

(
1− ub

um

)
− a u

um
v, (10)

D(Φv) =
{
u ∈W 2,1(Ω) |u(x) = 0 x ∈ ∂Ω

}
, ∀ v ∈ K. (11)

It is then shown that for a large enough, s(Φ0) > 0 holds, and that the function
defined as f : α → s (Φαv) is monotone decreasing for every v ∈ K. This then
allows one to define a fixed point map on the level set S := {v ∈ K | s(Φv) = 0},
which yields the existence of a positive steady state of (1)-(2), see [6] for more
details.

We also note that applying earlier results by Cantrell and Cosner from [7] (see in
particular Theorem 3.1 in [7]) would also allow us to obtain sufficient conditions for
the existence of a globally stable unique positive steady state for a large enough.
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Figure 1. Photomicrograph showing a small lung area at the mi-
croscopic level. Lighter pink areas are representing the thickened
alveolar walls and the darker purple ones are cancer cells lining up
along the walls. As the tumor grows further, it will fill the white
air spaces between the alveolar walls, thereby shifting the density
histogram closer to water.

Figure 2. Patient 1: Five serial CT images spanning 826 days (as
detailed in the text) for a biopsy proven benign GGO (arrow).
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A: CT scan histogram at 9/21/12
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B: CT scan histogram at 12/17/12
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C: CT scan histogram at 5/7/13
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D: CT scan histogram at 6/26/14
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Figure 3. CT scan histograms of Patient 1. A: 9/21/12, type β,
f1 = 0.94, f2 = 0.06, f3 = 0.0. B: 12/17/12, type β, f1 = 0.92,
f2 = 0.08, f3 = 0.0. C: 5/7/13, type β, f1 = 0.94, f2 = 0.06,
f3 = 0.0. D: 6/26/14, type β, f1 = 0.92, f2 = 0.08, f3 = 0.0. E:
8/14/14, type β, f1 = 0.95, f2 = 0.05, f3 = 0.0.

Figure 4. Patient 1 model simulation. A: the initial tumor spatial
density u(0, x, y). B: the initial spatial density of the tumor plus
the background spatial density u(0, x, y) + ub(x, y). C: the tumor
spatial density u(692, x, y) at time t = 692 days.
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A: model histogram at 9/21/12
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B: model histogram at 12/17/12
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C: model histogram at 5/17/12
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D: model histogram at 6/26/14
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E: model histogram at 8/14/14

Figure 5. Model simulation histograms of Patient 1. A: 9/21/12,
type β, f1 = 0.97, f2 = 0.03, f3 = 0.0. B: 12/17/12, type β,
f1 = 0.98, f2 = 0.02, f3 = 0.0. C: 5/7/13, type β, f1 = 0.98,
f2 = 0.02, f3 = 0.0. D: 6/26/14, type β, f1 = 0.95, f2 = 0.05,
f3 = 0.0. E: 8/14/14, type β, f1 = 0.94, f2 = 0.06, f3 = 0.0.
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Figure 6. Histogram fractions f1, f2, f3 of Patient 1 for CT scan
data and model output.
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Figure 7. Patient 2: Six serial CT images over a span of 932 days
for a stable GGO (arrow), clinically considered benign due to lack
of change in size or density.
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A: CT scan histogram at 5/22/12
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B: CT scan histogram at 9/6/12
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C: CT scan histogram at 12/6/12
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D: CT scan histogram at 6/12/13
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E: CT scan histogram at 12/11/13
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F: CT scan histogram at 12/10/14

Figure 8. CT scan histograms of Patient 2. A: 5/22/12, type β,
f1 = 0.94, f2 = 0.06, f3 = 0.0. B: 9/6/12, type β, f1 = 0.91,
f2 = 0.09, f3 = 0.0. C: 12/6/12, type β, f1 = 0.93, f2 = 0.07,
f3 = 0.0. D: 6/12/13, type β, f1 = 0.92, f2 = 0.08, f3 = 0.0. E:
12/11/13, type β, f1 = 0.89, f2 = 0.11, f3 = 0.0. F: 12/10/14,
type β, f1 = 0.90, f2 = 0.10, f3 = 0.0.
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Figure 9. Patient 2 model simulation: A: The initial spatial den-
sity of the tumor plus the background spatial density u(0, x, y) +
ub(x, y). B: The initial tumor spatial density u(0, x, y). C: The
tumor spatial density u(932, x, y) at time t = 932 days.
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A: model histogram at 5/22/12
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B: model histogram at 9/6/12
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C: model histogram at 12/6/12
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D: model histogram at 6/12/13
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E: model histogram at 12/11/13
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E: model histogram at 12/10/14

Figure 10. Model simulation histograms of Patient 2. A: 5/22/12,
type β, f1 = 0.92, f2 = 0.08, f3 = 0.0. B: 9/6/12, type β, f1 =
0.91, f2 = 0.09, f3 = 0.0. C: 12/6/12, type β, f1 = 0.91, f2 = 0.09,
f3 = 0.0. D: 6/12/13, type β, f1 = 0.89, f2 = 0.11, f3 = 0.0. E:
12/11/13, type β, f1 = 0.87, f2 = 0.13, f3 = 0.0. F: 12/10/14,
type β, f1 = 0.84, f2 = 0.16, f3 = 0.0.
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Figure 11. Histogram fractions f1, f2, f3 of Patient 2 for CT scan
data and model output.

Figure 12. Patient 3: Four serial CT images spanning 917 days
for atypical cells (arrow) highly suspicious for adenocarcinoma by
biopsy.
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A: CT scan histogram at 10/20/10
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D: CT scan histogram at 5/16/12
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C: CT scan histogram at 1/23/13

-
1
0
5
0

-
1
0
0
0

-
9
5
0

-
9
0
0

-
8
5
0

-
8
0
0

-
7
5
0

-
7
0
0

-
6
5
0

-
6
0
0

-
5
5
0

-
5
0
0

-
4
5
0

-
4
0
0

-
3
5
0

-
3
0
0

-
2
5
0

-
2
0
0

-
1
5
0

-
1
0
0

-
5
0

-0.01

0.00

0.01

0.02

0.03

0.04
D: CT scan histogram at 4/24/13

Figure 13. CT scan histograms of Patient 3. A: 10/20/10, type
β, f1 = 0.74, f2 = 0.23, f3 = 0.03. B: 5/16/11, type β, f1 = 0.69,
f2 = 0.24, f3 = 0.07. C: 1/23/13, type γ, f1 = 0.69, f2 = 0.22,
f3 = 0.09. D: 4/24/13, type γ, f1 = 0.63, f2 = 0.24, f3 = 0.13.

Figure 14. Patient 3 model simulation: A: The initial spatial
density of the tumor plus the background spatial density u(0, x, y)+
ub(x, y). B: The initial tumor spatial density u(0, x, y). C: The
tumor spatial density u(917, x, y) at time t = 917 days.
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A: model histogram at 10/20/10

-
10
50

-
10
00

-
95
0

-
90
0

-
85
0

-
80
0

-
75
0

-
70
0

-
65
0

-
60
0

-
55
0

-
50
0

-
45
0

-
40
0

-
35
0

-
30
0

-
25
0

-
20
0

-
15
0

-
10
0

-
50 0

0.01

0.02

0.03

0.04
B: model histogram at 5/16/12
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C: model histogram at 1/23/13

-
10
50

-
10
00

-
95
0

-
90
0

-
85
0

-
80
0

-
75
0

-
70
0

-
65
0

-
60
0

-
55
0

-
50
0

-
45
0

-
40
0

-
35
0

-
30
0

-
25
0

-
20
0

-
15
0

-
10
0

-
50 0 50

0.01

0.02

0.03

0.04
D: model histogram at 4/24/13
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E: model histogram at 4/24/13 + 300 days
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F: model histogram at 4/24/13 + 600 days

Figure 15. Model simulation histograms of Patient 3. A:
10/20/10, type β, f1 = 0.78, f2 = 0.22, f3 = 0.0. B: 5/16/12, type
β, f1 = 0.62, f2 = 0.38, f3 = 0.0. C: 1/23/13, type γ, f1 = 0.55,
f2 = 0.42, f3 = 0.03. D: 4/24/13, type γ, f1 = 0.52, f2 = 0.43,
f3 = 0.05. E: 4/24/13 + 300 days, type δ, f1 = 0.44, f2 = 0.43,
f3 = 0.13. F: 4/24/13 + 600 days, type δ, f1 = 0.37, f2 = 0.40,
f3 = 0.23.
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Figure 16. Histogram fractions f1, f2, f3 of Patient 3 for CT scan
data and model output.
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Figure 17. Patient 4: Four CT image recordings of a suspicious
nodule spanning 471 days (arrow).
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A: CT scan histogram at 10/2/13
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B: CT scan histogram at 5/28/14
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C: CT scan histogram at 11/28/14
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D: CT scan histogram at 1/15/15

Figure 18. CT scan histograms of Patient 4. A: 10/2/13, type
β, f1 = 0.72, f2 = 0.24, f3 = 0.04. B: 5/28/14, type γ, f1 = 0.54,
f2 = 0.35, f3 = 0.11. C: 11/28/14, type γ, f1 = 0.56, f2 = 0.33,
f3 = 0.11. D:1/15/15, type γ, f1 = 0.46, f2 = 0.36, f3 = 0.18.
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Figure 19. Patient 4 model simulation: A: The initial spatial
density of the tumor plus the background spatial density u(0, x, y)+
ub(x, y). B: The initial tumor spatial density u(0, x, y). C: The
tumor spatial density u(471, x, y) at time t = 471 days.
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A: model histogram at 10/2/13
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B: model histogram at 5/28/14
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C: model histogram at 11/28/14
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D: model histogram at 1/15/15
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E: model histogram at 1/15/15 + 130 days
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F: model histogram at 1/15/15 + 280 days

Figure 20. Model simulation histograms of Patient 4. A: 9/21/12,
type β, f1 = .90, f2 = 0.10, f3 = 0.0. B: 12/17/12, type γ,
f1 = 0.66, f2 = 0.34, f3 = 0.0. C: 5/7/13, type γ, f1 = 0.47,
f2 = 0.40, f3 = 0.13. D: 6/26/14, type γ, f1 = 0.43, f2 = 0.39,
f3 = 0.17. E: 8/14/14, type δ, f1 = 0.33, f2 = 0.37, f3 = 0.30. F:
10/20/15, type ε, f1 = 0.23, f2 = 0.33, f3 = 0.44.
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Figure 21. Histogram fractions f1, f2, f3 of Patient 4 for CT scan
data and model output.
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Figure 22. Total tumor mass growth curves from model simula-
tions. Black dots are time points corresponding to CT scan data
for patients 1,2,3,4. Red dots are for two additional time points for
Patients 3 and 4. The values are scaled to 1.0 at time 0.
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1224 JÓZSEF Z. FARKAS, GARY T. SMITH AND GLENN F. WEBB

for the management of subsolid pulmonary nodules detected at CT: A statement from the
Fleischner Society, Radiology, 266 (2013), 304–317.

[22] National lung screening trial research team, Reduced lung-cancer mortality with low-dose

computed tomographic screening, N. Engl. J. Med., 365 (2011), 395–409.
[23] J. Prüss, Equilibrium solutions of age-specific population dynamics of several species, J. Math.

Biol., 11 (1981), 65–84.
[24] R. Rockne, E. C. Alvord, Jr., M. Szeto, S. Gu, G. Chakraborty and K. R. Swanson, Modeling

diffusely invading brain tumors: An individualized approach to quantifying glioma evolution

and response to therapy, in Selected Topics in Cancer Modeling: Genesis, Evolution, Immune
Competition and Therapy, Modeling and Simulation in Science, Engineering and Technology
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