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ABSTRACT. Recent experience of the Ebola outbreak in 2014 highlighted the
importance of immediate response measure to impede transmission in the early
stage. To this aim, efficient and effective allocation of limited resources is cru-
cial. Among the standard interventions is the practice of following up with
the recent physical contacts of the infected individuals — known as contact
tracing. In an effort to understand the effects of contact tracing protocols
objectively, we explicitly develop a model of Ebola transmission incorporating
contact tracing. Our modeling framework is individual-based, patient—centric,
stochastic and parameterizable to suit early—stage Ebola transmission. No-
tably, we propose an activity driven network approach to contact tracing, and
estimate the basic reproductive ratio of the epidemic growth in different sce-
narios. Exhaustive simulation experiments suggest that early contact tracing
paired with rapid hospitalization can effectively impede the epidemic growth.
Resource allocation needs to be carefully planned to enable early detection of
the contacts and rapid hospitalization of the infected people.

1. Introduction. Contact tracing is a mitigation strategy that aims at immedi-
ately detecting, testing, and treating the next-generation cases during the spreading
of an infectious disease. Such local targeted control measure is very effective when
the number of cases is limited, for example at the early stage of an outbreak. In
2014, West Africa experienced the most widespread Ebola epidemic in the history
with more than 28,000 reported cases. Secondary infections were reported in sev-
eral European countries and the United States. The Ebola virus is transmitted via
physical contact with the infected individuals or their body fluids; the infected ones
can transmit the virus to their contacts after becoming symptomatic [4]. In the case
of the Ebola epidemic, the objective of contact tracing is to identify and monitor
the individuals who have been exposed to the infectious ones for 21 days [27]. This
procedure allows for a prompt isolation of the contacts of an infectious individual as
soon as he/she becomes symptomatic. Contact tracing has shown effectiveness in
several cases. In 2014, there was an Ebola virus disease (EVD) outbreak in Nigeria
due to a traveler who returned from Liberia. An extensive contact tracing effort
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took place starting from day 3 and a total of 894 contacts were traced, all linked to
the single index case [21]. Compared to other regions of West Africa, the outbreak
of Nigeria was better contained with only 19 confirmed and 1 probable EVD cases
out of which 8 died. The improved outcomes can be attributed to the early detec-
tion of the index case and effective isolation of infectious individuals due to contact
tracing [6]. In September 2014, a person in Dallas - TX, returning from Liberia,
was diagnosed with EVD. All of his contacts were traced and monitored for 21 days.
Two healthcare workers who provided care for the index case were also diagnosed
positive and one of them took a round trip to Cleveland, OH before detection. This
prompted the Centers for Disease Control and Prevention (CDC) to trace all the
passengers of the two flights. Another case was detected when a person returned to
New York from Guinea in October 2014 and contacts of that individual were traced
as well. A total of 458 contacts were traced in Texas, Ohio, and New York [26].
Contact tracing was an appropriate approach to stop the transmission of Ebola in
the USA as the number of cases reported was quite small [5]. In this paper, we
attempt to quantify the effect of contact tracing such early stages of the epidemic.

In general, contact tracing can be carried out using different protocols, depending
on the characteristics of the pathogen transmission. Definition of contact, duration
and frequency of monitoring, are some examples of variables to consider while imple-
menting contact tracing. Additionally, delays in implementing the contact tracing
process are possible in realistic scenarios. Predicting the effectiveness of contact
tracing as a function of the disease characteristics, disease stage, and protocol char-
acteristics is a challenging task. Eames and Keeling have proposed a formula to
correlate the effectiveness of contact tracing and the basic reproductive ratio by
using detailed pairwise equations for a susceptible-infected-removed (STR) model
[5]. The basic reproductive ratio, Ry, is a key indicator in epidemiology and repre-
sents the expected number of secondary infections over all possible initial infections
during their infectious period [8][3]. This ratio is a crucial tool for a quantita-
tive measurement of the severity of a disease outbreak and helps the public health
authorities to evaluate the risk of an outbreak in the emergence of an infectious
disease.

Klinkenberg et al., evaluated the impact of time-related characteristics of the in-
fection and the tracing process on the success of contact tracing [11]. They showed
why contact tracing is effective for control of smallpox and SARS, only partially
effective for foot-and-mouth disease and likely not effective for influenza [11]. The
impact of contact pattern on the efficacy of contact tracing has also been studied.
Researchers have concluded that not only the disease properties but also the con-
tact network properties are crucial for the success of contact tracing. For example,
Eames and Keeling indicated that contact tracing effectiveness increases with net-
work clustering [5]. Kiss et al., showed that contact tracing is typically ineffective
for random contact networks with high average node degrees and small clustering
coefficients [10].

Researchers have also attempted to analyze the impact of intervention strate-
gies on the recent Ebola epidemic using mean—field compartmental models, which
can be either stochastic or deterministic in nature. Browne et al., used a deter-
ministic version of the compartment models and separated the infected individuals
into different compartments based on whether they are hospitalized or unreported.
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They evaluated the impact of relevant epidemiological properties of Ebola on con-
tact tracing efficiency and presented a formula to determine the minimum num-
ber of contacts to be traced per identified infectious individual in order to bring
down the effective reproductive ratio below one [1]. In [16], Rizzo et al., adopted
a susceptible-exposed-infected—removed (SEIR) compartmental model with addi-
tional compartments for hospitalized and dead people who had traditional funerals.
Then, they adopted activity driven networks (ADN), where each individual has a
network of contacts which depends on an activity potential and vary with time.
ADN describes contact processes that evolve over time-varying networks [14]. The
analysis of Rizzo et al., showed that contact tracing and other intervention poli-
cies adopted later in the West Africa would have drastically mitigated the epidemic
spreading if used promptly.

Despite being a relatively new area of research, there have been several works in-
volving ADNs. Starnini et al., used ADNs to study temporal percolation properties
and showed how SIR models can be mapped to the percolation problem [22]. In
another work, they explored the relation between network topology and activity po-
tential distribution to obtain analytical expressions for several topological properties
of the integrated social networks [23]. Mata et al., studied a power law distribution
of activity potentials and found very slow relaxation dynamics and aging in random
walks [13]. Sun et al., investigated ADNs with Markovian and non-Markovian dy-
namics and found that memory slows down the spreading process in SIR model and
boosts the spreading process in SIS models [24]. Perra et al., experimented random
walks in time-varying networks and found that results vary significantly. They con-
cluded that the network dynamics should be considered to avoid misleading results
in practical situations [15].

For a realistic study of contact tracing effectiveness in the early-stage of an Ebola
outbreak, stochastic and individual-level models are needed. When considering a
small number of cases, the localized and highly-structured contacts of infected in-
dividuals prominently influence the numbers, the timings, and the locations of the
future cases. In this scenario, the accuracy of meta-population models, character-
ized by high levels of aggregation, dramatically deteriorates. The challenge is that
successful modeling approaches to evaluate the effectiveness of contact tracing need
to take into account the highly structured network of contacts and data on the
network of contacts is often not available or too large. The real world networks are
not static. The set of people with whom a person remain in contact changes with
time. Temporal networks can incorporate these changes and accurately represent
real behaviors in human populations. Agent-based models are accurate but compu-
tationally expensive. However, ADNs provide a tractable way to produce accurate
results [18]. Our work focuses on the microscopic processes that occur at the begin-
ning of an Ebola outbreak. We use ADNs to capture the contact dynamics using
a constant underlying stochastic process. We also estimate the basic reproductive
number of the disease spread in different scenarios.

In this paper, we evaluate the effectiveness of contact tracing using a novel model-
ing framework. Our modeling framework has several features to characterize early—
stage Ebola transmission: 1) the network model is patient—centric because when
the number of infected cases is small, only the myopic networks of infected indi-
viduals matter and rest of the possible social contacts are irrelevant, 2) the Ebola
disease model is individual-based and stochastic because during the early stages
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of a spreading process, the random fluctuations are significant and should be cap-
tured appropriately, 3) the contact tracing model is parameterizable to incorporate
different critical aspects of the contact tracing protocols.

Our model is built on susceptible—exposed—infected—hospitalized-removed com-
partments (SETHR), where susceptible, exposed and infected individuals may be-
come monitored—susceptible, monitored—exposed, and monitored—infected respec-
tively as a consequence of contact tracing. We propose an activity driven network
approach to consider the inherent time—varying nature of the contagion process in
a host population, in the form of variations in connectivity pattern of contacts.
Activity driven networks are characterized by an activity firing rate assigned to
each node at each time step, so that a fraction of the nodes create new links with
others and the contagion process develops over those new paths. This is a general
model for evaluating contact tracing, intertwined within the transmission model,
which can be applied to a wide variety of diseases beyond the specific case of Ebola.
Using this modeling framework, we perform extensive simulations varying impor-
tant delays: identification delay (local), starting delay (global), and hospitalization
delay. Through simulations, we quantify the effectiveness of contact tracing and
compute Ry.

The remainder of this paper is organized as follows. In section 2, we propose a
compartmental model for Ebola transmission incorporating contact tracing, discuss
an overview of activity driven network (ADN) and explain it based on the proposed
compartmental model. Section 3 presents a method to compute the basic repro-
ductive number in a heterogeneous network. In section 4, we define true positive
and false positive ratios based on the proposed model to plot the receiver operating
characteristic (ROC') curve. Section 5 summarizes the main results of this article
and section 6 contains the concluding remarks.

2. Mathematical modeling of Ebola disease spreading incorporating con-
tact tracing. Spreading of an infectious disease is a complex event with many
interacting variables. One of the primary tools to analyze and predict the disease
diffusion as well as the severity of infectious disease is the compartmental model.
Compartmental models are the mathematical frameworks that can capture some
major features of epidemic spreading such as pathogen transmission probabilities
and host transition rates from one state to another [2]. In this work, we employ
a discrete—time expression of the susceptible, exposed, infected, hospitalized and
removed (SEIHR) compartmental model. Such model is compatible with the epi-
demiology of Ebola.

2.1. Compartmental model. SEIHR model is an extension of susceptible, ex-
posed, infected and removed (SFEIR) model [9] with an additional compartment H,
where H stands for hospitalized. Each compartment variable denotes a fraction of
individuals who belong to one of the following states: susceptible (.9), exposed (E),
infected (I), hospitalized (H) or removed (R). An individual can undergo transi-
tions from one state to another during the disease evolution. To evaluate the impact
of contact tracing for the detection of new Ebola patients, we add three more com-
partments: traced—susceptible (S7), traced-exposed (Fr) and traced—infected (Ir)
to the (SETHR) model. We follow the contact tracing implementation guideline
published by the World Health Organization (WHO) and the Centers for Disease
Control and Prevention (CDC). In the guideline it is mentioned that when an infec-
tious individual enters a hospital and his/her laboratory results come out positive,
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any person who had contact with him/her in the last 21 days should be traced
[27]. Therefore, in our proposed model, whenever an infectious individual enters
the hospitalized (H) state, all the individuals exposed to the infected one will be
identified and followed up for 21 days.

We classify transitions between different epidemiological compartments of the
proposed model into two groups: node-based transition and edge-based transition.
In a node-based transition, a node moves from one state to another individually
and the transition does not depend on the states of the node’s neighbors. Contrary
to the nodal transition, the edge—based transition is dependent on the states of a
node’s neighbors. Based on these definitions, we describe the transition processes
of our proposed model as follows:

e Edge-based transition: When a susceptible individual has contact with an
infectious or hospitalized one, he/she moves to exposed state with probability
. The probability is multiplied if there are multiple infected or hospitalized
individuals in contact.

e Node—based transition: An exposed individual undergoes an average incuba-
tion period of 1/ before proceeding to the infected (I) state [19]. An infected
individual moves to the hospitalized (H) state with average delay of proba-
bility 1/~ and their susceptible, exposed and infectious contacts move to St,
FEr and Ir compartments respectively, with an average identification delay
period of 1/a. Since a portion of the the contacts of the hospitalized individ-
uals might be inaccessible or a portion of them might be unwilling to report
all their contacts immediately, we assume that there is a delay to identify
those contacts. An exposed individual who is traced, (referred to as the Ep
compartment) undergoes an average incubation period 1/\ days before pro-
gressing to the infectious compartment where infections are traced (I7). An
infectious individual who is traced enters the hospitalized compartment with
an average delay of 1/yr where v > ~. Finally, a hospitalized individual
moves to the removed compartment with an average delay of 1/4.

A schematic of the epidemiological transition processes of the proposed model is
depicted in figure 1.

O

FIGURE 1. Schematic of the transition processes in the Ebola pro-
gression with contact tracing model.

In our model, we ignore demography and since the population is much greater
than the number of infected people, we assume that S ~ 1. In addition to that, we
assume that no individual will die or recover without hospitalization, despite the
fact that Ebola has shown high mortality rates in the West African outbreaks. This
is a realistic scenario for small-scale outbreaks in the United States. We implement
stochastic transitions in our simulation program, based on the above—mentioned
state transition rules.
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Based on the proposed model, we develop a quantitative approach to measure
the effectiveness of contact tracing implementations. To asses the impact of contact
tracing protocols in Ebola disease spreading before the epidemic phase, we propose
two measures: missed-detection probability and contact tracing cost.

Definition 2.1. To assess the risk detection capabilities of contact tracing efforts
for Ebola, we introduce the missed—detection probability. Missed—detection proba-
bility denotes the probability that a secondary infected individual is not detected
before transmitting the virus to others. Based on our model, we propose the missed—
Ng_1
Ng o gr + Neog

number of individuals who move from one compartment to another indicated by
the arrow.

detection probability as follows:

, where, N, represents the total

Definition 2.2. The aim of contact tracing is to facilitate the detection of sec-
ondary infections from the contacts of an infected person. However, a large propor-
tion of an infectious individual’s contacts could remain uninfected (susceptible). We
define contact tracing cost as the number of detected individuals who had contact
with infections but were not infected. Based on the proposed model, the defini-
tion of contact tracing cost is: Cost = Ng_,g,., where, Ng_, s, represents the total
number of susceptible individuals who move to the Sp compartment.

2.2. Activity driven network. Disease contagious process and network structure
are two important elements which can have significant impacts on disease spread-
ing [5]. Many intervention strategies such as contact tracing, target strategy and
egocentric strategy aim at controlling the contagious process based on interactions
between individuals in a social network [12] [1]. In particular, the contact tracing
strategy or the identification of individuals who have contact with infections is fun-
damentally linked to potential transmission paths in the network [10] [5]. The goal
of contact tracing is to identify all the potential routes in the network and isolate
all the new infected individuals, before they become infectious [10]. Here, we im-
plement activity driven network (ADN) to capture interactions between nodes in
a network over a specific period of time and assess effectiveness of contact tracing
strategy for a temporal network based on Ebola contagious process. Activity driven
network is a random and memoryless process which can capture structural features
of a network such as the evolution of contact patterns over time [14].

Activity driven network considers an activity firing rate a; for each node which is
the probability of establishing links with other nodes per unit of time [12]. Activity
firing rates are assigned according to a probability distribution F'(a), which can
describe network dynamics and the corresponding structure [12]. Typically F(a) is
a heavy tail density function: F(a) « a™¢, where, 2 < ¢ < 3 and a € [¢, 1] with
e = 1073 [14]. At each time increment At, an active node generates m links with
m other nodes that are selected randomly. The generative network process in an
increment time At is listed as follows [12],

o At time ¢, the network G, (NN, m) has N disconnected vertices.

e Each node i, with probability p; = a;n;At, becomes active and generates m
links with m other nodes. Here, 7; is a constant scaling factor for node i.

o At time t + At, all the edges in network G, are removed and the process
is repeated. The activity potentials (a;) of nodes remain the same, so the
underlying generator does not change.
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2.3. ADN for Ebola contagion process. We implement the activity driven net-
work (ADN) to generate a random network at each time step At. Then, we simulate
Ebola contagion process using the proposed compartmental model. In our network
generation process, we take discrete time steps with At = 1, and at each step
only the nodes which are in susceptible, infected, exposed or hospitalized states
can generate new links with probabilities denoted by p;’s. Here, p; € P, where
P is the set of activation probabilities of the nodes that can become active. The
contact tracing mechanism is constructed based on “CDC emergency guidelines of
implementation and management of contact tracing” for Ebola virus disease [27].
Based on the guideline, any person who has a potential exposure to an Ebola Virus
Disease (EVD) case, should go under observation for 21 days [27]. To implement
contact tracing strategy in a temporal network such as ADN, we capture all the
nodes that become neighbors of an infectious node j from the beginning. We also
keep track of the time since the latest contact. We implement contact tracing after
a delay of Ter since the first case is identified. It runs until all the infected people
have recovered and the contacts have been monitored for 21 days. Algorithm 1 sets
the rules to produce and simulate Ebola virus spreading in a host population for
discrete time 1 < ¢t < T, where T is the end time of the simulation. All the steps
and transitions shown in algorithm 1 are done in a stochastic manner to simulate
realistic disease dynamics.

3. Reproductive number in heterogeneous network. The basic reproductive
ratio, Ry, is a descriptor of epidemic potential in the mathematical modeling of
infectious diseases. This quantity helps the public health authorities to assess the
risk of an outbreak in the emergence of an infectious disease [19]. Furthermore, early
estimation of the basic reproductive number helps the healthcare authorities to plan
appropriate control measures. A general definition of basic reproductive number is
the expected number of secondary infections over all possible initial infections during
their infectious period [8] [3]. Based on the general definition of reproductive number
and characteristic of the heterogeneous network, we propose a suitable definition for
Ry in a heterogeneous network. In heterogeneous network, contact patterns tend
to have a high variability in prevalence and so, besides high degree nodes, there are
some low degree nodes which may have no contacts with others [20]. Based on this
characteristic, to compute Ry in a heterogeneous network, we only consider those
initial infected nodes which establish links with other nodes and transmit infections.
Therefore, we define Ry as follows:

Definition 3.1. The basic reproductive number (Ry) is the expected number of
secondary infectious cases over all initial infections that establish interaction with
others during the infectious period. In our activity driven network which is a het-
erogeneous network, we compute Ry as:

R Total number of hosts infected by Iy (1)
0 Active subset of Iy

where, [y is the set of initially infected nodes at time ¢ = 0. We take care of the
fact that every infected node may not be able to transmit infection due to network
heterogeneity. The infected nodes that do not have any links to others will not
be able to transmit infection. We do not include them in our calculation and only
count the active subset (infected nodes with links to others) of the initially infected
hosts.
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Algorithm 1 : ADN for Ebola Contagion Process

1: Set No = ¢, Nt = ¢, INcigh = ¢ and tinitia1 = 0

2: while ¢t <T do

3. if 3|z, € {S,E,I,H} then

NA —1
end if
where x; represents the state of node i. And N4 is the set of active nodes.
6: 1. Network generation:

Generate a network G,(N,m), w.r.t (P,Na)

7. 2. Contact identification:
8: if 34|z; € {H} then

9: tinitial = tinitial + 1
10: Ny +1
11: end if

where Ny is the set of identified nodes. t;,;1ia1 keeps track of the time since
the first identified case.

12: 3. Contact tracing:

13: if tinitiar = Tor then

14: for all i € N; do

15: Update the states of node #’s current contacts and untraced past contacts

in (Ineign) since it became infectious to their respective new states with
probability « (S — St, E — Ep, I — Ip).

16: end for

17.  end if

18: 4. Edge—based transition: Find susceptible nodes in contact with infec-
tious nodes and update their state based on edge—based transition rule. Add
all nodes that are neighbors of infected nodes to the set Ineigh.

19: 5. Node—based transition: Update the states of nodes other than suscep-
tible; i|z; # S based on node-based transition rules.

20: 6. Tracing removal: Remove nodes belonging to Iycign which were traced
for 21 days but not detected. Return these nodes from St and Ep compart-
ments to S and F compartments respectively.

21: t=t+1

22: end while

4. Receiver operating characteristic. A receiver operating characteristic or
ROC curve is a fundamental method to illustrate the performance of a system such
as separating true positive results from false positive results in a test or comparing
two alternative tasks [7]. In a ROC' curve, we plot Sensitivity or true positive ratio
(TPR) as a function of (1 — Specificity) or false positive ratio (FPR). TPR is
defined as the fraction of samples that are detected correctly and FPR is defined
as the fraction of samples that are identified as positive, incorrectly.

The major aim of contact tracing is to identify exposed individuals before they
become infectious, in order to halt the chain of pathogen transmission. We define
the positive samples as those secondary infectious individuals who had contact with
infections during the disease evolution. The true positives in the context of contact
tracing are defined as the secondary infectious individuals who were traced. Simi-
larly, false positives are defined as those individuals who were not infected but traced
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as possible secondary infections. Therefore, based on the different epidemiological
compartments in our proposed model, we define Sensitivity and 1 — Speci ficity as
the following;:

Definition 4.1. We define the true positive ratio (T PR) or Sensitivity as,

TPR— Number of exposed hosts traced

(2)

Total exposed hosts
Definition 4.2. We define the false positive ratio or 1 — Speci ficity as,

Number of susceptible hosts traced

FPR (3)

A point (p,q) in the ROC shows that with probability p, the susceptible indi-
viduals who had contact with infections could be identified as healthy and with
probability ¢, the infected individuals who had contacts with infections could be
identified as infectious.

~ Total susceptible hosts with infectious neighbors

5. Results. To generate realizations for Ebola disease spreading without any im-
munization strategy, parameters of our proposed model for contagious process are
given in table 1. The parameter values used in our proposed model were inspired
from the works of Rizzo et al.[16]. The time unit is day, and all the rate/probability
parameters are given as day~! values. We assume that the number of initially in-
fected individuals is, Iy = 2 and each active node can generate m = 7 links with
other nodes where the total number of nodes is, N = 1000. In a usual case, sickness
from infection causes a reduction in an individuals social interaction. Therefore, we
assume the scaling factors of the activity firing rates for the hospitalized, infected,
and susceptible individuals as following: ng << nr < ns. Activity driven network’s
parameters are shown in table 2.

TABLE 1. Time-invariant parameters of Ebola contagion process

Parameter Value
Transmission probability(3) 0.11
Incubation rate (\) 0.095
Recovery /removal probability (6) 0.1
Hospitalization probability in existence of contact tracing (vyr) 0.9
Hospitalization probability (v) 0.33

To assess the effectiveness of contact tracing in the early stage of the epidemic,
we assume three different implementation—time scenarios for contact tracing. The
first one is when we implement contact tracing from the beginning (T = 1), the
second scenario is when contact tracing is started on day 9 (Ter = 9), and the third
one is when contact tracing is implemented on day 22 (Ter = 22). To evaluate
the effectiveness of contact tracing in a more realistic situation, we consider five
identification delay times, a~! € {1,2,5, 10,20} days for the three above mentioned
scenarios of contact tracing implementation.

5.1. Effectiveness of contact tracing. To measure the effectiveness of contact
tracing, we use the term epidemic attack rate (AR), which is the cumulative total of
exposed /infected individuals during the disease evolution. In figure 2, we plot the
attack ratio, AR“/AR? as a function of the identification delay, a~!. Here, ARV is
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TABLE 2. Parameters of activity driven network generator

Parameter Value
Density function exponent (c) 2.2
Links per active node (m) 7
Scaling factor for susceptible (ng) 2.2
Scaling factor for infected (n;) 1.1
Scaling factor for hospitalized (ng) 0.005

the mean attack rate when no contact tracing strategy is used and AR is the mean
attack rate for a contact tracing strategy with an identification delay of a~'. The
plots are the averaged results of 10,000 simulations. Figure 2 shows that contact
tracing is more effective in the first and the second scenario when the identification
delay, a™1, is less than 10 days. In the third scenario, we still observe a reduction
in the attack ratio, although not as influential as in the first two. Making the
identification rate faster could bring the attack ratio down significantly if contact
tracing is started early (< 10 days), otherwise, it is not so effective in controlling
the epidemic.

0.2 —k— Contact tracing is started at day 1 4
—E— Contact tracing is started at day 9
o1 | | | | —e— Contact tracing is started at day 22

0 20 40 60 80 100 120 140 160 180 NOCT oo
Identification Delay (')

FIGURE 2. The epidemic attack ratio as a function of a~! . The
results are the averages of 10,000 simulations.

In figure 3, we study the impact of hospitalization delay, v~ on ARY/AR®. Once
again we perform 10,000 simulations and compute the average. Here, no contact
tracing strategy has been used. AR” is the mean attack rate with a hospitalization
probability of v and AR? is the mean attack rate for the hospitalization probability
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given in table 1. The hospitalization delay is the average time it takes to hospi-
talize an infectious individual. Figure 3 shows the importance of immediate access
to hospitals for infected individuals. From the figure, we can see that quick hos-
pitalization can bring down the attack ratio significantly. Comparing figure 3 and
figure 2 shows that the epidemic is more sensitive to the hospitalization delay, y~!
than the identification delay, a~'. Immediate hospitalization can keep the Ebola
epidemic progression under control while contact tracing could be ineffective if it is

started once the disease has progressed.

35

AR"/AR'

| 1
1 1.5 2 25 3 3.5 4 45 5
Hospitalization Delay (7 1)

FIGURE 3. The epidemic attack ratio as a function of y~!. The
results are the averages of 10,000 simulations.

5.2. Contact tracing performance. To evaluate the performance of contact trac-
ing on the Ebola contagious process, we employ the ROC' curve approach. To plot
the ROC curve, we compute the Sensitivity or TPR and (1 — Speci ficity) or FPR
in each iteration from equations 2 and 3. We compute the average of these two
ratios in 10,000 simulations. Figure 4 shows T'PR as a function of FPR for the 5
identification delays, o=t € {1,2,5,10,20} days, in the three contact tracing im-
plementation scenarios. We project the 3-D ROC plot to get a 2-D ROC plot,
as shown in figure 5. In all those three scenarios, when o~ ! increases, the proba-
bility to identify secondary infected individuals produced by an infectious individ-
ual decreases. Missed—detection probability is the number of exposed individuals
who are not traced as defined previously. Therefore, missed—detection is equal to
(1 — Sensitivity). Figure 5 clearly shows that an increase in identification delay
can increase the missed—detection probability. Furthermore, early implementation
of contact tracing is needed for improving efficiency and reducing cost. It is evident
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from the figure that the second and third scenarios produce a lot more false posi-

tives than the true positives. This implies that the costs of contact tracing could
overshadow its benefits if contact tracing is started late.

ROC Curve

9|é Contact tracing is started at day 1
O  contact tracing is started at day 9
Contact tracing is started at day 22

0.8 E3
*
0.6 o)
a o
& 04 *

5

Identification Delay (')

FIGURE 4. 3-D ROC curve of contact tracing with 5 identification
delay implemented in three different scenarios. The results are the
averages of 10,000 simulations.

5.3. Basic reproductive number. Using equation 1, we compute the basic re-
productive number in a set of 10,000 simulations. In figure 6, we plot the average of
the computed Ry. It shows that for the same identification rate, «, earlier contact
tracing implementations allow better reductions in the value of Ry. However, even
with the earliest contact tracing strategy, we never obtain a value of Ry smaller
than 1. In figure 7, the basic reproductive number is plotted as a function of the
hospitalization delay, y~!. Figure 7 shows that a rapid hospitalization strategy can
bring the value of Ry below 1. If we can hospitalize infected individuals within 2
days (y~! < 2), the epidemic can be controlled effectively.

6. Discussion and conclusion. In this paper, we have simulated contact tracing
on a compartmental model of Ebola in an activity driven network (ADN). We have
performed simulations to analyze the effects of contact tracing initiation delay,
contact identification delay, and hospitalization delay. Our results suggest that it is
critical to start contact tracing within a few days (< 10 days), if not immediately
after the disease emergence. In addition to that, quick identification of contacts
can reduce the epidemic attack ratio up to 50% compared to delayed identification,
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FIGURE 5. 2-D ROC curve of contact tracing implementation in
three different scenarios. The area under the curve (AUC) values
for contact tracing starting on day 1, day 9 and day 22 are respec-
tively 0.6550, 0.4060 and 0.1207. The results are the averages of
10, 000 simulations.

as shown in figure 2. Contact tracing is very effective when paired with immediate
hospitalization in bringing down the reproductive ratio below one.

The contacts are usually traced up to the maximum incubation period for the
disease [27]. The duration of incubation period has counteracting effects on con-
tact tracing. The contacts need to be monitored longer for diseases with longer
incubation periods, which is expensive in terms of resources required. When the
incubation time is long, we do not gain much by allocating all resources on immedi-
ate identification and monitoring of contacts. On the other hand, longer incubation
period provides the tracing agencies more time to identify the potential exposed
contacts before they become infectious and start to spread pathogens to other peo-
ple. On this regard, a long incubation period has a positive impact on the disease
control. In our model, “identification” and “monitoring” of contacts happen simul-
taneously. However, these two processes can be separated. A long incubation time
will help better identification. However, monitoring individuals for a longer time
is expensive. Due to the long incubation period of Ebola, contact tracing could be
inefficient. Hence, immediate hospitalization of the infected cases could be a crucial
factor in disease control and infection containment.

A good collaboration between public health authorities and people can lead to
rapid identification of secondary infections. Public health authorities should also
keep the host population alert and run awareness campaigns to educate people about
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FIGURE 6. Ry as a function of the identification delay, ! in three
scenarios. The results are the averages of 10,000 simulations.

the disease. Since contact tracing protocols need to monitor all the contacts of the
infected and hospitalized people, it cannot separate the exposed contacts from the
healthy ones. Therefore, contact tracing might increase the financial burden on the
public health authorities when many people are needed to be traced, as happened
in the West African countries in 2014. Contact tracing is therefore, economically
efficient during the early stage of the epidemic.

Our work can be extended in the future by modifying the activity potentials based
on the states of nodes. Hence, the behavioral changes of individuals in response to
the disease can be incorporated and properly modeled. It has been found that these
changes have a controlling effect on the epidemic [17]. The model can be made even
closer to the reality by using temporal networks with memory (non-Markovian link
creation process). There is an alternative approach that can be used with ADNs.
Instead of using continuous distribution of activity potential and discrete time-steps,
we can use a discrete activity potential distribution with continuous time-steps. This
can overcome some limitations of the continuous distribution discrete time ADNs
and enhance our capabilities. For example, non-exponential inter-event times can
be incorporated, and the partition of nodes in several classes based on their activity
potentials can help studying the non mean-field dynamics [25].

When it comes to controlling invasion of a disease within a population, the best
option is to contain the propagation processes in the early stage and at its source.
Contact tracing is one of the important strategies towards this goal; and this applies
to many diseases besides Ebola. Behavior of the early-stage dynamic process is very
different from large scale outbreak. When number of cases are high, the infection
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FIGURE 7. Ry as a function of the hospitalization delay, y~!. The
results are the averages of 10,000 simulations.

process possesses a stable momentum for spreading which in turn makes modeling
easier because mean-field assumption applies. When the number of cases are low,
however, the infection process is characterized by extreme randomness and dynamic
fluctuations. Furthermore, contact network dynamism is very influential. As a
result, mean-field models or models based on quenched/averaged contact networks
are not viable candidates. Our modeling effort in this paper and the use of ADN
framework calls for further work on efficient and accurate modeling of epidemic
processes in heterogeneous populations during early stages after introduction of the
infection.
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