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Abstract. Current climate change trends are affecting the magnitude and
recurrence of extreme weather events. In particular, several semi-arid regions

around the planet are confronting more intense and prolonged lack of precip-
itation, slowly transforming part of these regions into deserts in some cases.

Although it is documented that a decreasing tendency in precipitation might in-

duce earlier disappearance of vegetation, quantifying the relationship between
decrease of precipitation and vegetation endurance remains a challenging task

due to the inherent complexities involved in distinct scenarios. In this paper we

present a model for precipitation-vegetation dynamics in semi-arid landscapes
that can be used to explore numerically the impact of decreasing precipitation

trends on appearance of desertification events. The model, a stochastic differ-

ential equation approximation derived from a Markov jump process, is used to
generate extensive simulations that suggest a relationship between precipita-

tion reduction and the desertification process, which might take several years

in some instances.

1. Introduction. Relatively large areas in the western region of the United States
are classified as arid or semi-arid environments, which are characterized in part by
their limited and variable precipitation. Semi-arid regions are expected to receive
around 10 to 30 inches of average annual precipitation (≈ 254-762 mm year−1)
but climate change is predicted to increase the intensity and frequency of droughts
globally [24]. For instance, in August of 2016, abnormally dry to moderate drought
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conditions were observed in several locations of the western region of the United
States, with ranges between severe to extreme drought occurring in the northern
portions, and severe to exceptional drought extending from California into Nevada
[20]. The lack of precipitation puts indigenous species of plants and animals in
semi-arid environments under unusual stress and the parallel habitat loss might
pose a threat to local biodiversity [16]. Under these circumstances, having educated
guesses of the potential vegetation biomass responses in semi-arid landscapes to long
term changes in precipitation could serve to put forward the design of adaptation
and conservation policies [9]. The estimation of the expected time of transition to
a desert state (or bare-soil), as a conceivable measure of those responses, presents
difficulties due to the complexities associated with specific water-vegetation systems.
For instance, the inherent non-linear characteristics of semi-arid landscapes may
trigger desertification in response to slow changes [23]. Results from simulations
of simple mathematical models could still offer a hint of the relationship with the
parameters that might be driving decline.

Extensive mathematical modeling and analysis of semi-arid water-vegetation sys-
tems emerged for at least the past twenty years, especially since the appearance of
deterministic ecohydrological models with broad developments focused on vegeta-
tion pattern formation, see for instance [5, 12, 19, 22, 25, 26, 27]. The effects of noise
on dryland ecosystems that are usually described by deterministic models showing
bistability have also been analysed, [6, 21], suggesting the possibility of creation
or disappearance of vegetated states in the form of noise-induced transitions, [11].
In contrast, the goals in this paper are to present a stochastic differential equation
approximation for an idealized water-vegetation (non-spatial) discrete system and
the estimation of mean transition times into a desert state. We emphasize that our
model is not obtained by adding “noise” to a differential equation as previously
done [6, 21], but by the construction of a diffusion approximation.

As a first step, we set up a Markov jump process that incorporates the inter-
actions in an idealized water-vegetation system. Similar conceptual models have
been used successfully in other biological contexts, see for instance [17] and [18, 15].
The model involves only water and vegetation biomass, in an environment of lim-
ited capacity. When this capacity (or “system size”) increases it gives rise to a
deterministic system of differential equations for the mean densities. We deduce an
intermediate mesoscale stochastic model between the jump process and the differ-
ential equations obtained for the means. Using estimated parameters for vegetation
and precipitation in semi-arid landscapes from the literature, and data for state
precipitation anomalies in California as baseline, we estimate the mean times for
a system to reach desertification in a range of realistic precipitation anomalies, i.e.
departures from long term mean. With these results we finally quantify, for this
simple model, the dependence between changes in precipitation anomalies and mean
transition times to the desert state.

2. Theoretical framework for water-vegetation dynamics.

2.1. The stochastic and ODE models. We start by defining a Markov jump
process that represents a simplified version of the real interactions between water
and vegetation at a small scale. We do this through the discretization of (alive) veg-
etation biomass and water volume in small units (individuals), for which a specific
set of stochastic events can be explicitly characterized. Naturally, as we transition
into larger scales discreteness is lost, and the continuous state space takes place.
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Event Transition Jump Jump rate
Vegetation biomass loss (n,m)→ (n− 1,m) (−1, 0) d
Incoming water (n,m)→ (n,m+ 1) (0, 1) s
Water evaporation (n,m)→ (n,m− 1) (0,−1) v
Increase vegetation by (n,m)→ (n+ 1,m− 1) (1,−1) b
water take up

Table 1. Possible transition events with their associated jumps
if the system is at state (n,m), where n and m represent units of
biomass and water, respectively.

We first consider a patch with finite capacity, say N , containing three types of
individuals: (i) vegetation biomass units; (ii) water volume units; (iii) empty loca-
tions. The dynamics of plant biomass and water interactions is driven by events
involving a few processes: vegetation biomass loss, incoming water, water evapora-
tion, and increase vegetation yield by taking up water. If we represent the state of
the system, i.e. the number of biomass units, n, and the number of water volume
units, m, by the pair (n,m) then these events correspond to the transitions detailed
in Table 1.

It is then straightforward to find the probability rates of transition from a state
(n,m) to (n′,m′), T (n′,m′|n,m):

(a) T (n+ 1,m− 1|n,m) = b n
N

m
N−1

(b) T (n− 1,m|n,m) = d n
N

(c) T (n,m+ 1|n,m) = sN−n−mN
(d) T (n,m− 1|n,m) = vm

N

Using these rates we can write the associated Kolmogorov equation (see [7] for
instance),

dP (n,m, t)

dt
= T (n,m|n− 1,m+ 1)P (n− 1,m+ 1, t)

+T (n,m|n+ 1,m)P (n+ 1,m, t)

+T (n,m|n,m+ 1)P (n,m+ 1, t) + T (n,m|n,m− 1)P (n,m− 1, t)

− (T (n+ 1,m− 1|n,m) + T (n− 1,m|n,m) + T (n,m− 1|n,m)

+T (n,m+ 1|n,m))P (n,m, t).

where P (n,m, t) is the probability that the system is at the state (n,m) at time
t. Imposing zero boundary conditions, multiplying the Kolmogorov equation by n,
and summing over m and n gives the expression for the rate of change of the mean
biomass,

d 〈n〉
dt

=

N∑
n,m=0

[T (n+ 1,m− 1|n,m)− T (n− 1,m|n,m)]P (n,m, t)

= b
〈n〉
N

〈m〉
N − 1

− d 〈n〉
N
, (1)

where the correlations between the random variables are neglected under the as-
sumption of a large N . Writing the mean density of vegetation as ρv = 〈n〉 /N
finally gives

dρv
dt

= b̃ρvρw − d̃ρv, (2)
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where b̃ = b/(N − 1) and d̃ = d/N . Similarly,

d 〈m〉
dt

=

N∑
n,m=0

[T (n,m+ 1|n,m)− T (n,m− 1|n,m)]P (n,m, t)

= s− s 〈n+m〉
N

− b 〈n〉
N

〈m〉
N − 1

− v 〈m〉
N

(3)

Similarly, writing the mean density of water by ρw = 〈m〉 /N then

dρw
dt

= s̃(1− (ρv + ρw))− b̃ρvρw − ṽρw, (4)

where s̃ = s/N and ṽ = v/N . We remark at this point that water infiltration in
the soil is generally improved by the presence of vegetation. As a consequence,
the process of taking up water by plants gets more efficient. This fact can be
incorporated into the model by letting the rate for taking up water be density
dependent, that is, to the jump (1,-1) we associate a new rate bn/N . This leads

to having T (n + 1,m − 1|n,m) = b n2

N2
m

N−1 , which replaced into the equation for

d 〈n〉 /dt produces
dρv
dt

= b̃ρ2vρw − d̃ρv (5)

instead of equation (2). A similar change happens in equation (4), which is now

dρw
dt

= s̃(1− (ρv + ρw))− b̃ρ2vρw − ṽρw. (6)

Equations (5) and (6) constitute a system of differential equations that serves as ap-
proximation to the dynamics of the mean densities for large values of N , also known
as mean field equations in the Physics literature. We remark that for N relatively
large the factor 1− (ρv + ρw) is close to one, making our equations an approxima-
tion to the reaction part of Klausmeier’s reaction-diffusion-advection equations for
water-vegetation systems, [12].

2.2. The diffusion approximation. The diffusion approximation to our model
(the mesoscale model) describes the system as an intermediate approximation that
emerges between the Markov jump process model (microscale model) and the differ-
ential equations for the mean densities (macroscale model). For this approximation
the state variables are continuous but include random fluctuations. We expect the
new model to incorporate the differential equations and terms that express random
fluctuations around the mean densities.

To obtain a representation of the Markov jump process as a diffusion process one
can follow either Kurtz’s method [14], or find the same equations via the Fokker-
Planck equation [18, 7]; see [4] for a nice introduction. In Kurtz’s approach, which
is the one we use here, the jump process is represented by

X(t) = X(0) +
∑
r

rN (r)

(∫ t

0

NΦ

(
1

N
X(s); r

)
ds

)
, (7)

where r is a jump (see the third column in Table 1), N (r)(t) is a collection of
independent rate 1 scalar Poisson processes and NΦ

(
1
NX(s); r

)
is the rate at which

a transition with jump r occurs. Kurtz showed that the process X(t)/N can be
approximated by a process Y (t) that satisfies the stochastic differential equation

dY (t) =
∑
r

rΦ(Y (t); r)dt+
1√
N

∑
r

r
√

(Φ(Y (t); r)dW (r)(t), (8)
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Figure 1. Simulations corresponding to the Markov jump pro-
cess (left) and the diffusion approximation (right). For comparison
purposes the paths in both panels were generated using the same
parameters and the same scaled time.

where the W (r) are the Brownian motions associated with the jump types of the
Markov jump process. The error introduced on bounded intervals of time by re-
placing X(t)/N with Y (t) is O(logN/N) as N →∞. The first term in the sum of
the right hand side of (8) corresponds to the vector field of mean densities, that is,

A =

[
Av

Aw

]
=

[
b̃ρ2vρw − d̃ρv,

s̃(1− ρv − ρw)− b̃ρ2vρw − ṽρw,

]
.

If we denote by B the covariance matrix

B =

[
Bvv Bvw

Bwv Bww

]
,

where

Bvv = b̃ρ2vρw + d̃ρv,

Bvw = Bwv = −b̃ρ2vρw,
Bww = b̃ρ2vρw + s̃(1− ρv − ρw) + ṽρw,

and factor it as B = ggT for some g, then the stochastic differential equations
system (8) can be written as

dY (t) = Adt+
1√
N

gdW, (9)

where dW is a two dimensional Brownian motion. Figure 1 compares several paths
that correspond to the Markov jump process and the diffusion approximation, gen-
erated with the same set of (arbitrarily chosen) parameters. It is apparent that the
stochastic differential equation provides a good approximation to the jump process.

3. Simulations. We use the stochastic differential equation (9) to simulate the
water-vegetation system and obtain averages of the expected time to desertification
(see [10] or [13] for a quick or an extensive introduction respectively to the numerical
solution of stochastic differential equations).

By identifying the parameters of the nondimensional deterministic (non-spatial)
model in [12] with the mean field system obtained above (Av = Av(ρ) and Aw =

Aw(ρ), where ρ = (ρv, ρw)) we obtain S = AR1/2J/L3/2 and d̃ = M/L, with
the meaning and realistic values for these parameters listed in Table 3. Thus, for
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Parameter Definition Estimated values Units
R uptake rate of water 1.5(trees) - 100(grass) mm year−1 (kg dry mass)−2

J yield of plant biomass 0.002(trees) - 0.003(grass) kg dry mass (mm)−1

M mortality rate 0.18(trees) - 1.8(grass) year−1

A precipitation 250 - 750 mm year−1

L evaporation rate 4 year−1

Table 2. Parameters for semi-arid landscapes, taken from [12].

instance, Klausmeier’s parameter ranges for S are [0.077, 0.23] and d̃ = 0.045 for

trees, and [0.94, 2.81] and d̃ = 0.45 for grass. Also, the corresponding value for

b̃ and ṽ in both cases is one. Regarding the average evaporation rate, we follow
Klausmeier assuming that the equilibrium of water (in his deterministic model) is
at w∗ = 75 mm, and then computing the associated evaporation rate given the
averaged annual precipitation, [12]. For example, with A = 300 mm year−1 the
evaporation rate is A/w∗ = 4 year−1.

Precipitation anomalies records, i.e. records of the deviations from a long term
precipitation mean, have a negative trend in specific geographic drought events.
In the state of California for instance, which experienced unusually long drought
conditions, the (state) average of the precipitation anomalies for the past 16 years
is ≈ −2.07 (inches year−1) (i.e. -52.58 mm year−1), see Figure 2. Although there is
a lot of variability across the state, we use this value for illustration purposes, and
plot the data as if this negative deviation from the long term precipitation average
were steady in time.

The results of the simulations are shown in Figure 3, portraying a roughly linear
relationship between the time to desertification and the anomalies in precipitation
in the range selected. The simulations were run using parameters for trees (top
panel) and grass (low panel), with system capacity N = 500. If we denote by T the
average time to desertification and by P the average annual precipitation we can
define the (dimensionless) sensitivity index S0 as the ratio S0 = (∆T/T )/(∆P/P ),
where ∆T and ∆P represent the absolute change in the variables T and P , i.e. S0

measures the relative change in T with respect to the relative change in P , see for
instance [2]. Direct computation from the averaged results gives S0 ≈ 2. Similar
results were obtained with the larger system capacity N = 104.

4. Conclusions and discussion. A traditional approach for modeling interact-
ing populations at the macroscopic level assumes that the terms in the equations
that drive the dynamics represent the average effects of individual interactions in a
general, all-inclusive way. Subsequent developments use those models as departing
points for building theoretical extensions by incorporating further complexity to the
equations, like the inclusion of spatial dependence by adding diffusion, or the intro-
duction of “noise” terms. A different modeling approach is to start at the individual
level, with explicit rules describing the interactions between individuals and their
environment, [17]. This alternative implies the definition of a Markov jump pro-
cess that constitutes the foundation for developing definitive model approximations
that relate macro and microscopic dynamical levels. In this paper we have taken
the latter approach for constructing a stochastic differential equation (continuous
state space) that approximates the dynamics of an idealized water-vegetation sys-
tem, initially conceived as a Markov jump process (with discrete states as a proxy
for small scale). Thus, our work complements the existing literature on modeling
noise in drylands, [21].
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Figure 2. State averages of precipitation anomalies for 2000-
2016 in California (inches year−1). The averaged anomaly (dif-
ference from long term average) during that period is ≈ -2.07
(inches year−1) (-52.58 mm year−1). The precipitation increase
expected from El Niño for the winter 2015-2016 was scarcely
above the long term state average. Data/image provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their
Web site at http://www.esrl.noaa.gov/psd/

The diffusion approximation obtained, together with parameter values for vege-
tation and precipitation for semi-arid landscapes extracted from the literature, and
data on decreasing precipitation trends in California, were used to estimate average
times for desertification. For a fixed system capacity (N = 500) the simulations
for trees and grass suggests that the sensitivity of the time to desertification from
the annual precipitation is roughly similar, and approximately equal to 2, i.e. the
relative change in the transition time into a desert state is equal to twice the relative
change in precipitation. Repeating the simulations, for different initial conditions
and for a larger capacity (N = 104), provided the same approximate numerical rela-
tion. The simulations (see Figure 3) suggest, for instance, that a decrease of roughly
0.4 inches of precipitation (10 mm year−1) might reduce times to desertification in
some cases by more than 25 years for the case of trees, and around 5 years in the
case of grass. Put another way, current trends of desertification could be signifi-
cantly boosted if the patterns of increasing precipitation anomalies are maintained.
However, looking at the basic transition mechanisms considered in formulating the
Markov jump process, it is clear that the model should be used with care to draw
any conclusions on specific vegetation-water systems.

We remark that extended droughts may resemble desertification, but the return
of seasonal precipitation events may recover the vegetation (see for instance [1]
where desertification was limited to spatially localized areas). This suggests that the
inclusion of patterns of precipitation anomalies restricted to relatively small areas
would provide more reliable results. For systems with relatively small capacity we
notice that the times to desertification may be reduced dramatically (see Figure 4).

http://www.esrl.noaa.gov/psd/
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Further work should also include long term variations of other climate related pa-
rameters. For instance, it has been documented that higher temperatures increase
evapotranspiration rates [3], which have been observed over most of the United
States, [8]. Another aspect that deserves attention is the inclusion of changes in
the vegetation dynamics during dry periods, where vegetation mortality could be
exacerbated. As is clearly pointed out in [28], neglecting the effects of intermit-
tent precipitation on vegetation dynamics may influence the results considerably.
Finally, the understanding of desertification will demand treatment with insightful
stochastic space-time models.

Acknowledgments. The authors are grateful to C. Kribs and three anonymous
reviewers for comments and suggestions that led to significant improvement of the
paper.
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[9] U. Helldèn, Desertification: Time for assessment?, Ambio, Forestry and the Environment, 20

(1991), 372–383.

[10] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential
equations, SIAM Review , 43 (2001), 525–546.

[11] W. Horsthemke and R. Lefever, Noise-Induced Transitions: Theory and Applications in

Physics, Chemistry and Biology, Springer, Berlin, 1984.
[12] C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999),

1826–1828.

[13] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer-Verlag, Berlin, 1992.

[14] T. G. Kurtz, Strong approximation theorems for density dependent Markov chains, Stochastic

Processes and Applications, 6 (1978), 223–240.
[15] C. A. Lugo and A. J. McKane, Quasicycles in a spatial predator-prey model, Physical Review

E, 78 (2008), 051911, 15pp.
[16] C. S. Mantyka-Pringle, T. G. Martin and J. R. Rhodes, Interactions between climate and

habitat loss effects on biodiversity: a systematic review and meta-analysis, Global Change
Biology, 18 (2012), 1239–1252.

[17] A. J. McKane and T. J. Newman, Stochastic models in population biology and their deter-
ministic analogs, Physical Review E , 70 (2004), 041902, 19 pages.

[18] A. J. McKane, T. Biancalini and T. Rogers, Stochastic pattern formation and spontaneous
polarization: The linear noise approximation and beyond, Bulletin of Mathematical Biology,
76 (2014), 895–921.

http://dx.doi.org/10.1016/j.jaridenv.2005.03.007
http://dx.doi.org/10.1016/j.jaridenv.2005.03.007
http://dx.doi.org/10.1007/978-90-481-2313-1_10
http://dx.doi.org/10.1007/978-90-481-2313-1_10
http://www.ams.org/mathscinet-getitem?mr=MR2824976&return=pdf
http://dx.doi.org/10.1007/s00285-010-0376-2
http://dx.doi.org/10.1007/s00285-010-0376-2
http://dx.doi.org/10.1029/2007RG000256
http://dx.doi.org/10.1029/2007RG000256
http://dx.doi.org/10.1073/pnas.0502884102
http://www.ams.org/mathscinet-getitem?mr=MR2676235&return=pdf
http://dx.doi.org/10.1029/2000GL012851
http://dx.doi.org/10.1029/2000GL012851
http://www.ams.org/mathscinet-getitem?mr=MR1872387&return=pdf
http://dx.doi.org/10.1137/S0036144500378302
http://dx.doi.org/10.1137/S0036144500378302
http://www.ams.org/mathscinet-getitem?mr=MR724433&return=pdf
http://dx.doi.org/10.1126/science.284.5421.1826
http://www.ams.org/mathscinet-getitem?mr=MR1214374&return=pdf
http://dx.doi.org/10.1007/978-3-662-12616-5
http://www.ams.org/mathscinet-getitem?mr=MR0464414&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2551374&return=pdf
http://dx.doi.org/10.1103/PhysRevE.78.051911
http://www.ams.org/mathscinet-getitem?mr=MR2130390&return=pdf
http://dx.doi.org/10.1103/PhysRevE.70.041902
http://dx.doi.org/10.1103/PhysRevE.70.041902
http://www.ams.org/mathscinet-getitem?mr=MR3195515&return=pdf
http://dx.doi.org/10.1007/s11538-013-9827-4
http://dx.doi.org/10.1007/s11538-013-9827-4


A STOCHASTIC MODEL FOR WATER-VEGETATION SYSTEMS 1163

Figure 3. Examples of how average time to desertification might
be affected by a reduction in average annual precipitation. Param-
eters for trees were used in panel (a) and for grass in panel (b). The
average of negative anomalies similar to that observed for the last
years in California is around ≈ 50 mm year−1. The model suggests
that the sensitivity index S0 ≈ 2, i.e. relative changes in the mean
time to desertification are roughly twice the relative changes in av-
erage annual precipitation. For the simulations, N = 500 and the
initial conditions were ρ(0) = (0.1, 0.1) (squares), ρ(0) = (0.5, 0.5)
(stars) and ρ(0) = (0.9, 0.1) (triangles). Each time average was
obtained from 50000 simulations. Panel (c) shows the histograms
corresponding to the simulated times to desertification with an av-
erage annual precipitation of 200 and 250 mm year−1 (for grass)
on the left and right, respectively. The simulations used the same
initial conditions ρ(0) = (0.1, 0.1).
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Figure 4. Left: time to desertification for A = 250 (dashes) and
A = 200 (dot-dashes) as function of the system capacity N . The
sensitivity of the time to desertification from the annual precipi-
tation was computed for N = 10000 showing to be the same as
when N = 500, i.e. ≈ 2. As N increases both times to deser-
tification also increase, but they get reduced dramatically as N
gets smaller. Right: Difference between the curves in the contigu-
ous plot. Although the difference increases, the sensitivity of the
time to desertification from the annual precipitation is apparently
similar in relatively large systems.
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