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ABSTRACT. The aim of a drug eluting stent is to prevent restenosis of arteries
following percutaneous balloon angioplasty. A long term goal of research in this
area is to use modelling to optimise the design of these stents to maximise their
efficiency. A key obstacle to implementing this is the lack of a mathematical
model of the biology of restenosis. Here we investigate whether mathematical
models of cancer biology can be adapted to model the biology of restenosis and
the effect of drug elution. We show that relatively simple, rate kinetic models
give a good description of available data of restenosis in animal experiments,
and its modification by drug elution.

1. Introduction. Arterial disease, in particular atherosclerosis, is a significant
cause of mortality and morbidity in the western world [1]. A standard treatment
for the acute form of the disease, in which an artery is almost entirely occluded
by atheroma, is percutaneous balloon angioplasty in which the narrowed artery is
opened by inflating a balloon inside the region. To prevent restenosis (re-narrowing
of the artery) a drug eluting stent—a metal framework with a drug infused polymer
layer on its surface—is often deployed. The stent mechanically holds the artery open,
while the drug released from the surface prevents inflammation and cell proliferation
from inducing restenosis.

While percutaneous balloon angioplasty with drug eluting stent implantation is
an effective treatment for acute atherosclerosis it has long been suspected that there
is scope to greatly increase the efficiency of the treatment [13]. These gains could
be driven by patient specific modelling of the disease and its treatment allowing
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personalised treatments to be developed. However, there is a significant gap in the
models that have been developed.

Modelling studies of arterial disease have focussed on two areas. These are: (1)
Studies of the fluid mechanics of blood flow within the artery before and after a
stent has been deployed, motivated by the observation that wall shear stress plays
a critical role in the initiation of arterial disease (e.g. [6], [9], [12], [17]); and (2)
Studies of the transport of drugs within the arterial wall motivated by a need to
better understand the dose and spatial distribution of the drug delivered to the
artery wall (e.g. [8], [13], [14], [18], [22], [25]). Both effects in combination have
been considered as well (e.g. [3], [4]). In particular, the readers attention is drawn
to Part I of this paper, [21]. Less attention has been directed to the cellular response
to treatment, in particular the growth response of cells to stent implantation and
drug release. One exception to this is agent based lattice modelling of the cellular
structure of the arterial wall [19, 5] embedded in a multiscale model of restenosis.
This discrete treatment of individual cells contrasts with the continuum approach
presented here.

In order for a model to be used to optimise a drug eluting stent design it must
be capable of modelling the process the stent is deployed to prevent: restenosis.
Current models on their own are not enough because they do not directly address
the question of restenosis. To directly model restenosis, these models must be
coupled to models of the cellular processes occurring within the artery wall that
lead to restenosis. That is the focus of this paper.

Experimental results which can be used to validate such a model are very sparse.
The only relevant study is that by [7], who studied the neointimal thickening of
a healthy rabbit iliac artery under implantation of a bare metal stent and a drug
eluting stent. The results of the study are summarised in Figure 1.

In this paper we develop models of the biological response of the cells within the
arterial walls to stent deployment and drug elution. We do so by adapting models
already developed in the context of tumour growth, prompted by the fact that some
of the drugs used in drug eluting stents (e.g. Paclitaxel) are also used as anti-tumour
drugs [11]. Our aim in doing so is to show that such models are consistent with the
(relatively sparse) experimental data available and to encourage experimentalists to
carry out experiments that could be used to further validate and refine such models.

As figure 1 shows, there is an inflammation response to stent implantation leading
to a thickening of the intimal layer of the artery. This response can however be
substantially reduced by the release of drugs. Thus the mathematical model we
develop must be able to describe cell proliferation via a thickening of the artery
wall and its reduction by the action of drugs.

2. A cellular model. To develop a mathematical model of the cellular response
of the artery wall to stent implantation and drug elution we adapt ideas from two
models of tumour growth. The first is a model of the response of breast and ovarian
cancer to Paclitaxel (as mentioned above, a drug also used in stents) by [16]. This
model employs a pair of differential equations to describe the dynamics of quiescent,
Q, and proliferative, P, populations of cells. In this treatment, (-cells do not
multiply, while P-cells multiply at some known rate. Thus, the growth of a tumour
depends on both the rate at which P-cells multiply and the relative fractions of P-
and @Q-cells, as shown in Figure 2. The action of Paclitaxel is modelled as selectively
killing cells in the proliferative phase.
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FIGURE 1. Experimental data: neointimal thickness in rabbit iliac
artery. Reproduced from [7]. Each data point denotes the mean
value across several experiments, with 23 rabbits in total for each
the bare-metal and the drug-eluting stents. The lines joining the
dots are a linear interpolation. In practice, the behaviour of the
intima for times between these data points has not been experi-
mentally determined, and it is a major point of this work to better
elucidate the dynamics over the entire post-implantation time.
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FIGURE 2. The modelled cell cycle is shown. Rates of change from
Q@ to P and back are denoted § and « respectively. Loss rates from
the two phases are denoted by Ap and Ag. Finally, the growth rate
in the proliferative phase is denoted with ~.

The second model is of tumour cords: cylindrical layers of tumorous tissue sur-
rounding blood vessels [2]. This model describes the effect of growth on the increas-
ing thickness of the layer via a radial velocity field.
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2.1. The proposed model. Our mathematical model takes the form

%Jra%(up):(7—a—)\p—up)P+(ﬂ+n—uQ)Q (1)
%—? + %(u@) =(@P = (B+n+2rg— 1)@ (2)

P+Q+FE=1 (3)
where:

P(z,t) = proliferating cell fraction

Q(z,t) = quiescent cell fraction

u(z,t) = cell velocity

« = transition rate from P to @)

[ = transition rate from @ to P

~v = growth rate of cycling cells

Ap = proliferative cell loss rate

Aq = quiescent cell loss rate

n(t) = transition rate from @ to P induced by inflammation
wp(x,t) = effectivity of the drug against P-cells
po(z,t) = effectivity of the drug against Q-cells
E = volume fraction of extracellular fluid

Equation (1) describes the volume fraction of the arterial wall occupied by cells
in the proliferative phase. The left-hand side is a material derivative, as we are
concerned with describing the time rate of change of material elements of cellular
tissue which are subjected to a velocity field which varies in both space and time.
As a consequence of this, the cell velocity is a function of both space and time.
The right-hand side describes an increase in the number of proliferative cells by cell
division at a rate -y, and by quiescent cells transitioning to proliferative at a rate
B which is enhanced by 7 (the inflammation rate due to stent implantation) and
reduced by pg due to eluted drug blocking the transition. The proliferative fraction
also decreases due to transitions from the proliferative to quiescent phase at a rate
« and due to proliferative cell death at a natural rate of Ap and a drug induced
rate of up.

Similarly, equation (2) describes the rate of change of the volume fraction of
quiescent cells. The left hand side is again a material derivative. The right hand
side describes an increase in the number of quiescent cells due to proliferative cells
transitioning to quiescence at a rate a as well as a decrease in the number of
quiescent cells due to cell death at a rate Ao and transitioning to the proliferative
state at a rate 8 + 1 — ug, describing a base rate enhanced by inflammation and
reduced by the action of drugs.

The final equation describes the relationship between cells in the various prolifer-
ative phases and the extra-cellular fluid surrounding the cells. We may consider the
volume fraction of cells to be V' =1 — F, noting that the volume fraction implicitly
describes the radial velocity, u, of cells throughout the arterial wall. The radial
velocity arises from the accumulation of new cells and is used to describe the model
the change in thickness of the arterial wall.

We take = to be a spatial coordinate through the intimal layer, with z = 0
corresponding to outermost extent of the intima which is in contact with the lumen
and x = L corresponding to the innermost part. For simplicity we assume that
the intimal layer is thin and neglect curvature correction to the advection terms,
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following [15]. The system of equations requires one boundary condition on u which
we take to be u(z = 0,¢) = 0. As the inner boundary remains fixed by the stent, the
size of the domain, i.e. the thickness of the vessel wall, satisfies a Stefan condition

in velocity, i.e.

dr
— =ul(l). (4)

To solve these equations we take initial conditions for P = Py, Q@ = Qg, u = 0,
L= LO at t =0.

It should be noted that we restrict our model to the initial post-implantation
period, i.e. that before the contraction of the vascular thickness. Noting that it
is the early post-implantation phase which has the largest implications for patient
care and the dynamics of cell proliferation at this stage are dominated by the in-
flammatory response and pharmaceutical effects, we thus consider it reasonable to
investigate only this phase of a stent life-cycle.

3. Parameter estimation. The difficulties presented by this model lie not in its
solution but rather in the fixing of the parameters. It is hoped that, by elucidating a
path through which these parameters may be fixed from experimental data, we may
guide experimentalists to provide exactly this type of data. As it stands now, the
fixing of parameters is a non-trivial task as there exists a paucity of experimental
data of the requisite type. We may first simplify the above model in order to reduce
the number of undetermined constants which must be fixed.

In order to simplify the notation we notice that the growth and death rates of
the cycling cells may be combined linearly, as we presume that the death rate is in
general smaller than the growth rate. We thus combine them, forming the effective
growth rate, '

Y =7-Ap (5)
We further linearly combine the rates governing the () — P transition, such that v
is the net transition rate:

v=PB+n (6)
Thus, we have reduced our system to:
orP 0 Py = (~ p .
E+%(u )= —a—pup)P+ (¥ —puq)Q (7)
0 0
22 T wQ) = aP — (b + o — Q)@ )

The challenge now lies in determining the behaviour of the drug effectiveness rates,
pip and pg. These two constants sufficient to describe the behaviour of a drug
which acts to control inflammation. This implies that we may determine the other
constants through experiments on bare-metal stents, i.e. stents where no drug is
present. This control-group approach has in practice been taken in experiments (cf.
[7], [23]). Our proposed method of parameter-fixing then begins by considering the
case where pp = g = 0.

In this section we consider two slightly different steady states. The first steady
state corresponds to the uninflamed case. This corresponds to a steady state in
which P and @ are constants and the velocity field u is zero (technically we only
require % = 0). In this case the thickness of the artery is not changing. The second
steady state we discuss occurs in the inflamed case. In this steady state P and Q
are constants, however the thickness of the artery is increasing so we do not have a
constraint on u.
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Firstly, we consider the steady-state case where inflammation is not present. As
there must be a steady-state proliferative fraction and thickness towards which the
vasculature tends after the implantation of a stent, the implanted device represents
a perturbation from a steady-state. At this steady-state, the rate of the @ —
P transition is very small, i.e. ¥ ~ 0 as t — oo. This is a necessary physical
condition to maintain a constant thickness of the artery in the absence of any
external inflammatory or pharmaceutical effects. By summing equations (7 - 8)
and assuming constant porosity, i.e. that E is a constant, we obtain:

ou
V—=+"P-\ 9
3 = Q@ (9)
Where V =1— F = P+ @ and, by the constant porosity assumption is a constant.
As the vessel wall is assumed to have constant thickness at steady state, g—; =0,

and we find that there exists a steady-state P as well as L, i.e.:

AQV
Peq - ,Y/ + >‘Q .
We may assume that during the inflammatory phase, Ag < 9, i.e. the dynamics
are dominated by the transition to proliferation as opposed to necrosis. This is a
necessary condition for an increase in the thickness of the vessel wall. It may also
be shown by considering the volume fraction of cells that when 9 is relevant and
Aq is assumed to be negligible, the rate of change of P is governed by the following
ordinary differential equation:
/
%:—%P2+(7'—a—¢)P+¢V (11)

This equation is derived by taking equation 7, using the equation V = P + @
to eliminate @, using equation 9 to eliminate the spatial derivative in u and, as
discussed above, setting Ag = up = pig = 0. Finally we assume that P is uniform
across the thickness of the artery wall so that its spatial derivative is zero.

On the other hand, in the case with no inflammation, i.e. prior to implantation of
the stent or after significant time has elapsed, 1 is effectively zero and equation (11)
reduces to:

(10)

P /
667 = —%PQ — (Y —a)P (12)
We see the two possible graphs in Figure 3, where the higher of the two parabolae
is the inflamed case (eq. 11) and the lower is the uninflamed case (eq. 12). Thus,
there exist two steady state values (where %—f = 0) for the uninflamed case: one
when P = 0 and the other when it is very small but positive, as previously discussed
(i.e. Peg heaithy)- In order to enforce this, 4’ and « should be very similar, although
a must be slightly larger. If these two constants are the same, the expression
for steady state behaviour in the absence of external forcing reduces to a simple
parabola, with a double root at P = 0.

The values of Py impg and V may be estimated from experimental data. Using
this, we may estimate the value of ¥ during the inflammatory phase through the
distance between the two solutions, indicated with a double-headed arrow in Fig-
ure 3. As labelled, the distance here is ¥(V — P). For known values of V' and P, ¢
may therefore be estimated.

From conservation of volume, it follows that:

ou dL 1
9% AL (13)
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FIGURE 3. Phase plot of proliferative cell fraction. %—f vs. P is
shown for both the healthy and inflamed arteries. The distance
between these solutions may be used to estimate the net transition
rate, ¥. This distance is shown on the plot with a double-headed

arrow.

Recalling equation (9) and that we have shown immediately above that Ao < ¢ in
the inflammatory limit allows us to write:

V dL
= —— 14
T IPd (14)
We then assume that % is constant on the initial, highly inflamed response (cf. Fig-

dL

ure 1). Using a fit through the data in this region to approximate %7, 7" may be
determined as well. As a first estimate, it was assumed that o takes the same value,
but it was found in practice that this leads to significant issues with simulation. To

explain this, consider equation (14), which may be re-written as:
dL ,LP
at vV
We see that the rate at which the thickness, L, of the layer changes is proportional
to both the proliferative fraction, P, and the thickness of the cell layer. If P does not
go to zero quickly enough, these terms balance each other and cause % to achieve
a non-zero, positive steady state, resulting in unchecked growth of the artery. A
value of « slightly larger than that of +' is necessary to prevent this. In practice,

the value of @ may be determined from equation (12).

(15)

3.1. Inclusion of drug effects. The equations governing the growth of the cell
wall in response to the implantation of a stent in the absence of anti-proliferative
agent may be broken down onto two temporal domains. On the first domain which
follows the implantation of the sten, inflammatory effects are relevant, i.e. n > 0
This directly implies that the P — @ transition rate is relevant. After some time
has passed the dynamics of the problem change, and on the second domain, the
inflammatory response has died away, i.e. 7 = 0. Here, the dynamics of the system
are dominated by the return of the P-fraction to its normal value. We shall assume
for this section that 1 takes some constant value on this first domain, and therefore
so does .
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We begin by considering the equation on the first domain, where the inflamma-
tory P — ( response is present, i.e. ¢ # 0. In this case, equation (11) may be
rewritten in terms of its two roots, denoted Py and P_, with P, being the positive
root. This yields:

/
O T(P-P)PtP) (16)
We now rescale in the region where P ~ P, , yielding:
O =P 1)(P+) a7)
where:
P=P,P (18)
=g
V' Py
and
p= ot (19)

We proceed by expanding the right-hand side of equation (17) in a Taylor series
about P = 1. To leading order, we have:

opP _ _
rie —(p+1)(P - 1)+ O(P?) (20)
that is: )
P)~1+4 (Py—1)ePtDt a5 P -1 (21)

We require an initial value of P, i.e. Py, in order to find the particular solution.
Recall that this equation describes the initial response of the vasculature to the im-
plantation of the stent, thus at £ = 0, P and @ take their ‘normal’, i.e. unstimulated
values. We have already discussed that, in the absence of stimulus, P takes a very
small positive value. We shall here assume that this value is small enough to set
Py = 0 and, upon applying this initial condition, we obtain the particular solution
describing the fraction of P-cells on the first domain, denoted P, i.e. that where 1
is relevant.

Py(t) =1— e (P11 (22)
On the second temporal domain, we consider the case where 1) = 0, resulting in the
following, simplified form of equation (11):

oP ~'
—=P|——=P-9$ 23
o =r(-5r ) @
where § is defined as:
d=a—+ (24)
In this case, we rescale as follows:
oV ~
pP= 7P (25)
=1
)
resulting in the rescaled version of the equation on this domain:
oP _ _ _
=-P(P+1)=-P+0O(P? (26)

ot
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working to the same order of accuracy as above. The general solution on the second
domain, Ps, is then:
Py(t) = Ppet (27)

where P,, acts as the initial condition on this domain, and is the maximum value
achieved on the first domain as seen in Figure 4. This value is the steady state to
which equation (22) tends as ¢ — oco. In effect, the proliferative fraction on the first
domain very quickly reaches a steady state value where is remains until ¥ becomes
zero. At this point, P begins to decline as above, tending back to its original value,
as shown in Figure 4, where the solution on the first time domain is shown in red

and on the second in blue.

--=- Inflammatory Response Present
Praz | o=- Lo e Post-Inflammatory Response

-

i to
time (days)

FIGURE 4. Proliferative fraction, P, in response to drug-free stent
implantation. Note the presence of two temporal domains. On
the first, depicted with a dashed line, there is an inflammatory
response to the implantation of a stent (¢f. Pp, equation (22)).
On the second, indicated with a dotted line, the vasculature is
returning to its normal state (cf. P, equation (27)).

It is notable that after the inflammatory response (in the sense of a positive value
for ) is present, inflammation is still observed in the form of residual P-cells. The
P-fraction takes several weeks to return to its healthy steady-state value, leading
to difficulties in describing exactly the nature of the inflammatory response.

Of particular interest is the thickness of the arterial wall, or perhaps some portion
thereof. From conservation of volume it follows that we may describe this thickness
through a Stefan condition. We have re-written this condition such that it depends
on the proliferative fraction directly instead of the cell velocity at the boundary
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(eq. 14). We may now write it in dimensionless form as:

dL
— =CL)P() (28)
dt
where the constant, (, depends on the relevant time- and P-scales. Noting that we
have dropped the use of overbars for rescaled P and ¢, and are using the convention

of letting square braces denote a scale, ( is:

paulls
=7 (29)
The general solution to equation (28) is:
L(t) = LS Jo P(1)dr (30)

It is then a simple matter to show that the change in length with respect to time is
defined as follows on the first time domain:

(1+p)t+e (Pt 1
1—p

where Lg is the initial thickness before implantation; and as follows on the second

domain:

Li(t) = Loexp (c (31)

Ls(t) = Ly, exp (C(In(e" (P, + 1) — Py,) — 1)) (32)

where L,, is the thickness at the end of the inflammatory phase. The above may
be simplified to yield:

Ly(t) = Ly (P (1 — e ) +1)¢ (33)

Thus, we see that the presence of the i response causes the thickness of the
vessel wall to increase without limit. Considering the second domain, however, it
is clear that the subsequent decline in the proliferative fraction to its undisturbed
value causes the thickness to tend towards some steady limit, i.e.:

Linf = Lm(Pm + 1)C (34)

As with the proliferative fraction, the two solutions are shown together in Figure 5.
The reader will note the presence of an inflection point between the two domains
as the thickening response changes nature in keeping with the inception of decline
in the P-fraction.

We are ultimately concerned with fitting a descriptive model for the vascular
response after the implantation of a stent which considers the effects of drug elution
from the stent into the vasculature. The problem is now to determine the drug
effectiveness constants ;1p and pg. In practice, the determination of these constants
is largely through a comparison with the analytical results above and requires that
quality experimental data of both the bare-metal and drug eluting cases exists.

We begin by assuming that the rate constants which have been determined earlier
still hold, i.e. that the effect of the drug is to suppress the un-medicated proliferative
behaviour of the vasculature. Thus, we are able to compartmentalise our earlier
work. We use the drug delivery model to describe the concentration of drug present
in the intima, noting that we consider herein only the case with binding to the cells
and restricted diffusion in the stent coating. The task of coupling the models then
falls to including the effects of the drug as a function of concentration in the cell
proliferation model.
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FIGURE 5. The increase in the intimal thickness, L(t), in response
to drug-free stent implantation. As with Figure 4, note the presence
of two temporal domains. On the first, the increase in thickness
corresponding to the inflamed response given in equation (31) is
shown with a dashed line. The second corresponds to the return
to steady state corresponding to equation (33).

3.2. Consideration of drug effectivity. We now return to the drug effectivity
constants, tp and p1g. The effects of the drug have been considered by some authors
(e.g. [16]) to be proportional to the concentration of the drug. See [20] for a different
perspective on this in which the efficacy of the drug is taken to depend on stair step
regions of saturation. In order to enable analytical results, we shall assume a smooth
mapping. For example, the effectiveness of the drug may be defined as:

pw=Ce~ = (35)
where C and 7 are constants of proportionality and a; is the total drug concentra-
tion, scaled with the maximum possible concentration which depends on the amount
of drug present in the stent and the elution rate such that 0 < a; < 1, shown in
Figure 6, following [2].

Of analytical difficulty is the fact that effectiveness of the drug is taken as a func-
tion of the total drug concentration in the intima. This concentration is, in turn,
a function of both position and time. According to [21], the mass transfer Fourier
number is very large when considering the intima, and so we make the approxima-
tion that the concentration of drug is approximately independent of position, and
thus somewhat reduce the complexity of the problem. We also note from numer-
ical studies that the concentration of drug appears to vary slowly in time as well
as position in the intima, due largely to the restricted diffusion out of the stent
coating [21]. Thus, in order to make analytic progress, we shall assume that the
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Drug Concentration

FIGURE 6. Example of drug effectiveness, u.

concentration of drug in the intima may, for small timescales, be assumed to be
constant.

Two of the main drugs with which drug eluting stents are loaded are Pacli-
tazel and Sirolimus (Rapamycin) with many of the others, such as Zotarolimus and
Everolimus being analogues [10]. The effect of these drugs is to somehow inhibit the
proliferation of cells in order to prevent restenosis, although it should be noted that
at higher concentrations they may induce cell death, as in the case of Paclitaxel
when used for cancer treatment [24].

The mode of action of Paclitaxel is to polymerise the a- and S-units of tubulin,
this preventing cells in the G2 phase from entering the M phase. Sirolimus is a
macrocyclic antibiotic with potent immunosuppressive properties, which works by
binding to specific cytosolic proteins and blocking cell proliferation. It is further a
strong inhibitor of inflammation and is not toxic to cells in low doses.

3.3. A growth-inhibiting model. It then makes sense to consider some general
anti-proliferative agent as acting exclusively on P-cells as a first approximation,
following [16]. Thus, a model of drug action which acts on the cells in the prolifera-
tive phase only was considered. Drug action was considered to be a function of the
total (i.e. free plus bound) drug concentration in the intima. Consider our general
system for the cell proliferation with the inclusion of the drug effects, up:

P
%7 + a%wP) = (Y —a—up)P+4Q (36)
0 0
aif + 5, (UQ) = aP —¥Q (37)

Referring to equation (36), it may be seen that the effect of the drug, up, is to
inhibit the net growth of the vasculature by reducing the effective value of 7/, thus
reducing the growth rate of P-cells. Consider that we may group terms as per:

%—f + %(uP) =[(+' —up) = o|P +9Q (38)
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This should hopefully make it clear that the effect of up may change character
somewhat depending on its magnitude. For pup < 7/, we see it has the effect of
reducing the growth rate observed in the intima. However, when pup > v/, the
growth rate of cells becomes negative. Effectively, the drug at this concentration
appears to be killing cells off, rather than simply inhibiting their growth.

It has been suggested by [18] that there exists some therapeutic range of delivered
concentration for anti-proliferative agents in drug-eluting stents, below which the
drugs are ineffective and above which they are toxic. The point at which the growth
rate of the cells becomes negative may be understood to be the upper bound of the
therapeutic range. We shall see that this point has some interesting mathematical
ramifications for our model as well.

The intention is to describe which values are permissible or plausible for up to
take. Thus, we assume that up may be approximated as constant at discrete points
in time and that we may then approximate the behaviour of the system in response
to this. The analysis may be extended to the more general case where yp is not
constant, nor is .

We may write the change in the P-fraction with respect to time in a similar
fashion to equation (11), but we include the effects of the anti-proliferative drug
here, yielding;:

aP r_ )
mz—(”VW)P"’Hv—a-w—up)Pwv (39)

B _qu,healthy \\Eeq,inf P

-7 RN P N
P . eq?N N
~ \
N \
N \

FIGURE 7. Phase plot of proliferative cell fraction, pu; > 0.

The origin of the quadratic term is in equation (9), which describes u in terms
of P and permits us to eliminate w from the second term on the left-hand side.
Importantly, we have that g—g o P and so a positive prefactor on the quadratic
term (once it has been moved to the right-hand side) would imply a contraction
of the cellular region. This is something we wish to avoid as in this model such a
scenario has no stable, real solutions, as can be seen in the case of the bold curve
shown in Figure 7.

We note that the right-hand side considered as a function of P forms a parabola
which opens downwards. In order to agree with experimental results, we require
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that %—}t) remains positive (i.e. the proliferative fraction and thickness continue to
increase) during the initial, 1-positive phase.
We thus require that in order for physically valid solutions to exist:

pp <7 (40)

We now seek the value of the positive steady state, recalling that the drug-free
model had been developed in order to yield a steady state in the first domain at
P =0.96V. From experiments [7] we seek a steady state at P = 0.29V. Application
of the quadratic formula to equation (39) yields a positive root at:

(w+up)+\/(¢+up)2+4¢(7/_up>

P, = v 41
" 2 = k) IV ()

We expect that pp must be close in size to v/, so we define:

Y —pp=ex1 (42)

We exploit the smallness of € and perform a binomial expansion of equation (41),

yielding:

_ Y
Y+ pp

Using the estimation procedure outlined in Fig. 3 applied to data from Ref. [7] we

can estimate ¥ ~ 23~+'. In addition, as discussed in Section 3 pp < ~'. Thus,

!

Pzt =

(23+ 1)y 24

Effectively, the drug may suppress the growth rate enough to keep P constant with-

out inducing a significant increase in the intimal thickness. However, the existence

of the critical value in equation (44) justifies the physical requirement given in

equation (40), i.e. a growth-inhibiting drug cannot go beyond a certain point of
effectivity without leading to a decline in the wall thickness.

+ O(€?) (43)

P,

(44)

3.4. A transition-blocking model. We now turn our attention to an alternate
model of drug action, wherein the drug is taken to be effective against Q-cells,
namely in preventing their transition to the proliferative phase. This is of mathe-
matical interest as we have not found any result which would prohibit large-scale
inhibition of the rate constant, .

A physical justification for this model may be presented as well. Recall that the
individual phases of the overall proliferative phase were not considered in detail.
Rather, the entire phase was considered together. However, the effect of some
drugs is to block the transition into the mitotic portion of the proliferative cycle,
wherein cell division occurs. Blocking the () — P transition is effectively the same,
from the perspective of this model, as blocking the G1 — M transition.

Consider the modified system of equations where we consider the drug to act
against @)-cells through transition blocking rather than against P-cells through
growth inhibition, hence the consideration of jig instead of up:

%]; + %(up) — (7 — )P+ (¢ - 10)Q (45)
9@, g(uQ) =aP — (Y —puq)Q (46)

or Ot
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where pq is defined in the same fashion as up, i.e.:
_l-ay
pQ = thoe 7@ (47)

where 7g is a constant and 1) is the activated value of ¥ such that 0 < pg < .
This is a necessary condition, as values greater than v no longer represent blocking
of the  — P transition, but rather lead to a boundless proliferation of Q-cells.

Considering equation (47), we may redefine ¢ as follows, such that it considers
the effect of the drug:

_ ot

Y =ve "o (48)
Equation (48) clearly takes a value of 1y during the inflammatory phase if no drug
is present, and of 0 after the inflammatory phase, as seen in Figure 8.

Yo

¢/

Drug Concentration

FicURE 8. Example of modified ¢ value, considering drug effects.

Thus, we may write the change in the proliferative fraction, following equa-
tion (11) as:
or 7 e
— =—=P "—a -y )P % 49
=L —a- )P+ (19)
In this case, we may easily compute the positive steady state value of P to be:

/ ) /! l/
—' 4 [92 + 4y <V>

24|V
We note that all rate constants remain non-negative at all times, and thus solutions
which yield a non-negative steady state exist for all allowable values of ¢’. Thus,
it is reasonable to use a p1g-model to induce the requisite P-fraction at some given
time. Again, this result agrees with what one would expect as the presence of the
blocking drug does not kill off cells with an associated possibility of negative %’
but rather slows the Q — P transition leading to — at its most severe — no change
in the intimal thickness.

P, = (50)
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We have shown here a method by which the rates both 7/ and a, i.e. the effective
growth rate and the P — @ transition rate, may be determined from experiments
involving bare metal stents. We have further outlined a method by which the
effective ) — P transition rate, 1/, as well as the effectivities of the drug on
both the quiescent and proliferative phases may be determined, albeit under fairly
strong assumptions about their behaviour. In order for this method to be put into
practice, it is required that experimental data be developed which yields a detailed
and reliable view of both the proliferative fraction and the thickness at various times
throughout the course of treatment, both with and without the presence of some
anti-proliferative agent.

4. Discussion. The cell proliferation model was based on a consideration of three
phases: quiescent and proliferative cells and extracellular fluid. Constant porosity
was assumed, eliminating the need for detailed consideration of the extracellular
fluid. It was also assumed that the four sub-phases of the proliferative phase could
reasonably be combined. The drug was taken to act independently on the prolifer-
ative and quiescent phases and to be a function of the concentration at any point
in the intima. Another important assumption was that the various rates associated
with the cell proliferation combined linearly, i.e. the effects of the drug could be
added directly to the underlying rates of () — P transition, cell mitosis, etc.

We have shown that it is possible to obtain results with this model which ap-
pear to correspond to the experimental results over the initial inflammatory re-
sponse period. There does not exist, however, sufficient experimental data to fix
the parameters and perform a dimensional simulation of the response. A method
to estimate the various rate constants from easily-obtained experimental data is
presented herein in the hopes that it motivates further experimental research and
drives development of this field of research.

With regards to the experimental results, the proliferative fraction and thickness
at a reasonable temporal resolution should be considered the bare minimum exper-
imental requirement for the determination of the parameters of this model. Should
it be possible to determine any of the rate constants in equations (1 - 2) experi-
mentally, this would certainly be the preferred option. Of particular importance
is the determination of the ) — P transition rate, v, and the effectivities of the
anti-proliferative and anti-inflammatory agents pp and pq.

Also notably lacking from experimental results is the response in the period
immediately following implantation. A simple stepped function was assumed for
this response, 1)’, in the interest of making analytical progress, but it is reasonably
unlikely that this assumption is accurate in practice. It is suspected, rather, that it
takes the form of some decaying function of time. The method outlined above, while
suitable to determine the other constants is insufficient to determine the behaviour
of this rate. Progress may likely be made on the determination of ¢’ by solving the
inverse problem, but this will again require a reasonable amount of experimental
data, in particular for several points in time.

With improved experimental data, it is hoped that significant progress may be
made on this topic. It is already apparent that this model wields significant pre-
dictive power. The ultimate outcome of this area of research should be in greatly
improved predictive capabilities with respect to the biophysical and biochemical
responses of the body to a drug-eluting stent. Such information would, it is hoped,
lead to an ability to develop designer stents or, at the very least, improve currents
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designs with an eye towards reducing the rates of restenosis which are currently
observed.

5. Conclusion. Drug eluting stents have been very successful in preventing resteno-
sis following treatment of atherosclerosis by percutaneous balloon angioplasty. How-
ever there is scope for improvement, and a holy grail of the research community
has been to use modelling to optimise the design of these stents to maximise their
effectiveness. To use modelling to predict whether a new design of stent will prevent
restenosis it is essential that the model can describe the processes leading to resteno-
sis. Research in this area has focussed on the mechanical and chemical aspects of
the problem: calculating fluid mechanical stresses on the artery, and modelling the
transport of drugs through the artery wall. To complete the picture a model of the
biology of restenosis is also required. We have shown that mathematical models of
cancer biology can be adapted to describe the cellular processes of restenosis. Fu-
ture work should focus on collecting experimental data which can be used to refine
the model, and incorporating mechanical effects into the model.
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Appendix A: Tables of equations.

TABLE 1. The equations of state for the various models considered herein

oP 0

o+ oo (uP) = (y—a = Ap = pp) P+ (B 41— 1Q)Q
Full System

0oQ 0 _

a1 T 9 Q) = (@)P = (B+n+Ag — uo)d

o°P 0 o

E*’@(UP)* (V' —a=pp)P+ (¢ — ng)@
Reduced System

0oQ 0 _

a + %(UQ) =aP — (1/)+)\Q —,U,Q)Q

or 0 ,

o Ty UP)=0"—a—pup)P+9Q
Growth-Inhibiting Model

oQ 0 _

at %(UQ) =aP —¢Q

o°P 0

o T ) =0 = )P+ (W~ p)Q
Transition-Blocking Model

29 1 D) =aP ~ (0 - o)

ar ot T v Hq
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TABLE 2. The equations describing the thickness of the intimal
layer over the course of inflammation and return to normal.

Inflammatory Phase Ly(t) = Lopexp (C%)

Post-inflammatory Phase L (t) = Ly, (P (1 — e ) + 1)¢
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