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ABSTRACT. We concern with a vector-borne disease model with horizontal
transmission and infection age in the host population. With the approach
of Lyapunov functionals, we establish a threshold dynamics, which is com-
pletely determined by the basic reproduction number. Roughly speaking, if
the basic reproduction number is less than one then the infection-free equilib-
rium is globally asymptotically stable while if the basic reproduction number is
larger than one then the infected equilibrium attracts all solutions with initial
infection. These theoretical results are illustrated with numerical simulations.

1. Introduction. Vector-borne diseases such as malaria, dengue, schistomiasis,
Chagas disease, and yellow fever are illnesses that are transmitted by vectors, which
include mosquitos, ticks, and fleas. They account for over 17% of all infectious
diseases and are great threat to the health of human and animal. Every year there
are more than 1 billion cases and over 1 million deaths from vector-borne diseases.

Mathematical modeling has been successfully used to better understand the
mechanisms underlying vector-borne disease spread and to provide efficient con-
trol strategies. The Ross-Macdonald model on vector-borne diseases was described
by ordinary differential equations [14, 19, 20]. Macdonald [14] established a thresh-
old condition on the invasion and persistence of infection, which is determined
by the basic reproduction number (defined as the average number of secondary
cases produced by an index case during its infectious period). Most of the existing
vector-borne disease models, especially those on malaria that investigate compli-
cations arising from host superinfection, immunity, and other factors, are based
on this fundamental model [3, 5, 8, 12, 18, 21, 23, 24]. In particular, Lashari and
Zaman [12] considered the following vector-borne disease model with horizontal
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TABLE 1. Biological meanings of parameters in (1)

Parameter Meaning

Ah Per capita host birth rate

L Host death rate

51 Rate of horizontal transmission of the disease

Ba Rate of a pathogen carrying mosquito
biting susceptible host

ap Inverse of host latent period

on Disease related death rate of host

Yh Recovery rate of host

A Per capita vector birth rate

k Biting rate of per susceptible vector per host
per unit time

o Vector death rate

Qy Inverse of vector latent period

O Disease related death rate of vectors

transmission in the host population,

%Lt(t) = An— UnSnh — B1Suln — B2Sply,
D = 318 + BaSnIy — (i + i) B,
%fﬂ = apBp — (un + 0n +0)In,
%Zt(t) = Yulp — pn Ry, (1)
Zzgljtit; = Ao = kSulp — puSu,
W)
T ; ZSvE{h_ ((0% +6;U'U)Ev7
dt vy oy + U)Iv,

where Sy, Ey, I, and Rj, denote the susceptible, exposed, infectious, and recovered
epidemiological classes in the host, respectively, while S,, E,, and I, denote the
susceptible, exposed, and infectious epidemiological classes in the vector, respec-
tively. There is no recovered class for the vector (mosquitos) because no infected
mosquito can recover from the infection. The biological meanings of the parameters
in (1) are summarized in Table 1.

It is well known that the infectivity varies during the infectious period and
hence the time passed since being infected, called infection age, affects the num-
ber of secondary infections. In recent years, epidemic models with infection age
have been extensively studied. For works on vector-borne diseases, not much has
been done [10, 13, 17, 25], where only the host has infection age. In [10], an
SI(host)SI(vector) model is proposed, which incorporated horizontal transmission.
Under additional condition besides the basic reproduction ratio Ry < 1, it is shown
that the disease-free steady state is globally asymptotically stable. Moreover, only
the local stability of the endemic steady state is discussed. In [13], Lou and Zhao
considered a periodic SEIRS(host)SEI(vector) model with standard incidence. It
is shown that there exists at least one positive periodic state and that the disease
persists when the basic reproduction ratio Ry > 1 while the disease will die out if
Ro < 1. One of the models in [25] is an SIR(host)SI(vector) model with constant
vector population and a threshold dynamics characterized by the basic reproduction
number is obtained.
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The purpose of this paper is to modify (1) by introducing infection age into
the host and study the dynamics of the resulted model. The remaining part of
this paper is organized as follows. In the next section, we introduce the model
and state some preliminary results on solutions. Then, in Section 3, we study the
existence of equilibria and their local stability. Section 4 is the main part of this
paper, where we establish a threshold dynamics with the approach of Lyapunov
functional. The threshold dynamics is characterized only by the basic reproduction
number. Here, to obtain the stability of the infected equilibrium, we need the
existence of a global attractor and the uniformly strong persistence. The theoretical
results are illustrated with numerical simulations in Section 5. The paper concludes
with a brief summary.

2. The model and preliminary results. Our model is based on model (1). To
build it, we further subdivide the infectious host according to the infection age a.
Let i (¢, a) be the density of infectious hosts at time ¢ with infection age a. Then
f @2 in(t, a)da is the number of infectious hosts with infection ages between ay and as

at time ¢ and the total number of infectious hosts at time ¢ is I, (¢ fo in(t,a)da.
We assume that the infectivity of infectious hosts, the biting rate of an infectious
host by a susceptible vector, disease-induced death rate of infectious hosts, and the
recovery rate of infectious hosts all depend on the infection age a and denote them by
B1(a), k(a), 0n(a), and 7(a), respectively. Then the rate of horizontal transmission
of the disease from infectious hosts to susceptible hosts is [ 81(a)ix(t, a)da and
the force of infection of the host to susceptible vectors is [ k(a)in(t,a)da. Since
the recovered hosts have permanent immunity, there is no need to consider the
evolution of Ry, in time. Based on our assumptions and model (1), the vector-borne
disease model with infection age in host to be studied in this paper is as follows,

%(”:A — Su(t) [ B1(@)in(t, a)da — BySn(t) I, () — pnSh (D),

D — S0 (1) [ Br(@)in(t, a)da + BaSh ()1 (t) = (cn + pn) Bn(b),

et + 3“;9% ) = 5( Jin(t,a).

el = Xy = J57 k(@)Su(B)in(t, a)da — 1, S, (t),

dE;t“) = [ k(a)S, (t)zh(t, a)da — (aw + 1) Ey (1), (2)
el = 0, By (t) — piudult),

ih(ta O) = ahEh(t)at >0,
Sp(0) = Sho € Ry, En(0)=Ep € Ry, in(0,:) =ipo € L}r(o, 00),
SU(O) = S»UQ S R+, E’U(O) = EvO S R+, I»U(O) = IUO € R+,

where 6(a) = pp +0p(a)+v(a), Ry =[0,00), and L (0,00) is the nonnegative cone
of L1(0,00).

To continue our discussion, in the sequel, we assume that k(-) € L5(0,00) \ {0}
and £1(-), v(-) € LL(0,00), where L(0,00) is the nonnegative cone of L>(0,00).
Clearly, 6(a) > pp for a € Ry. For (2), there should be an inherent relationship
between the initial value and the boundary value for the partial differential equation,
that is, 4,(0,0) = ix0(0). Therefore, we always assume that the initial values satisfy

ahEho = iho(O).
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Note that the partial differential equation in (2) is a linear transport equation
with decay. With integration along the characteristic line ¢ — a = const., one can
solve

iy (t, Dip (t .
gugpel + ol = —5(a)in(t, )

ih(t, O) = OzhEh(t), t Z 0

to get
o(a)apEx(t — a) ift>a>0,

ih(t7a’) =
(a) 7yin(0,a — ) ifa>t>0,

o(a—
where o(a) = exp(— [y 6(s)ds) represents the probability that an infectious host
survives to infection age a. Then we obtain the following equivalent system of
integro-differential equations to (2),

B8 = Ny — Sn(t) [5° Bu(a)in(t, a)da — BaSk(t) Lo (t) — pnSn(t),

dE;; = S (t) J3° Bi(a)in(t,a)da + BaSu(t)Lu(t) — (e + pn) En(t),

in(t,a) = a(a)ahEh(t — ) isa + 5025000, 0 — ) 1g5s, -
Bl — - fo )Su()in(t, a)da — 1,5, (t),

dE <” ="k (t)in(t, a)da — (aw + o) Eo(t),
%@:%&O—Mmm

where

1 ift>a>0 0 ift>a>0,
lisg = and 1,5: =
0 ifa>t>0 1 ifa>t>0.
Let
Xy =R% x L1 (0,00) x RY,
which is the nonnegative cone of the Banach space X = R?x L(0, 00) x R? equipped
with norm || - || defined by

2]l = la1] + |o| + l[zs]ly + [2a] + 5] + |26]

for = (21,22, T3, x4, T5,x6) € X. With a reasonable modification of the proofs of
Theorem 2.1 and Lemma 2.2 in Browne and Pilyugin [1], we can prove the existence
and nonnegativeness of solutions to (3) and hence to (2).

Theorem 2.1. For any x € X, system (2) has a unique solution on R, which
depends continuously on the initial value and time. Moreover, (Sp(t), En(¢),in(t,-),
Sv(t)7EU(t),Iv(t)) S X+ fO’Ft S R+.

In fact, every solution is bounded. On the one hand, let

Ni(t) = Si(t) + En(t) + /0 it a)da.

th()

Then we have < Ap — upNp(t) and hence limsup,_, .o Np(t) < An/pn. On

the other hand, let
Nv(t) = Sv<t) + Ev(t) + Iv(t)'
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Then %“t(t) = Ay — lyp Ny (t), which implies that lim;—, o N, (t) = Ay /. Denote

IN
>
=

Sh+ En + |linl:

Sy + By + I, = 3

'

Q= (ShaEhvihvsvaEvu-[v) €X+

Then we have shown that € is an attracting set for (2). Moreover, one can easily
see that ) is also a positively invariant set for (2).

3. The existence of equilibria and their local stability. In this section, we
study the local dynamics of (2). We first consider the existence of equilibria. It
turns out that this only depends on the basic reproduction number Ry, which is
defined as
_ A€o (cy + Nv)ﬂg + Badpanag]
pon 2 (o + o) (0 + fi)

where n = [ k(a)o(a)da and € = [;° B1(a)o(a)da.

Clearly, (2) always has the infection-free equilibrium E° = (S?,0,0,5%,0,0) € €,
where S = A, /un, SO = Xy /pp. Let E* = (S5, B}, i3, Sk, EX, I*¥) be an equilibrium.
Then we have

Ry

)

M — 1S — BoSiTz — St [ Bi(a)is (a)da = 0,
S Jo- Bila)iz(a)da+ B2 Sy = (an + pn) Ex;,

Gl — _5(a)i; (a),
i%(0) = anEj, (4)

Ay — fooo k(a)Syiy (a)da — Sy =0,
o7 k@)Syin(a)da = (ay + o) B,
QW Er = pyI*.

It is easy to see that an equilibrium other than E° must be infected, that is, all

components are positive. For an infected equilibrium, it is not difficult to deduce
from (4) that

Ay — (an + pn) Ef;

Si = Hh ’
in(a) = apo(a)Ey,
A
SF = —r 5
Mo + UOéhEZ ( )
B = )\vnahE}t
Y (v + po) (fho "*‘770‘hE;;)7
[ Avaynop By

Moy (av + Mv)(ﬂv + WhE?Z) '
where E} is a positive zero of H with

H(x) = )‘h[fah(av + /‘v)(ﬂv + napx) oy, + ﬁzavkvnah]
—Hyh (O‘h + ﬂh)(av + ,Uv)(,uv + 7704h$)

—Baay Aynapz (o, + fin)
—(an + pn) (o + o) po€anz(py + napz).
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Theorem 3.1. (i) Suppose Ry < 1. Then (2) only has the infection-free equilib-
rium E°.

(ii) Suppose Ry > 1. Then, besides E°, (2) also has a unique infected equilibrium

E* = (S}, Er, i, Sk, ES L IY), where Ef is the unique positive zero of H defined

by (6) and the other components are determined by (5).

Proof. (i) Since Ry < 1, we have \p&ayp, < pp(ap + ). Note that H is a quadratic
function with negative coefficient for 2. Moreover, the coefficient of x in H(x) is

An&an (0 + fo)Nap iy — fofin (n + pn) (e + )0t
—Baapy Ayno (an + pn) — (o + ) (0 + o) o &0t fho
< pnlan + pr)(ow + fe)nant, — topn(an + pn) (0w + te)nan
=0

and H(0) = ppp(an + pn)(cw + po)(Ro — 1) < 0. Tt follows that H(z) has no
positive zeros and hence there is no infected equilibrium.

(ii) Now, since Ry > 1, we have H(0) = ppp?(an + pn)(ow + po)(Ro — 1) > 0.
Then H(z) has a unique positive zero since H(z) is a quadratic polynomial with
negative coefficient for 22. Therefore, there is a unique infected equilibrium as

described in the statement. This completes the proof. O

Now, we study the stability of the equilibria by linearization. For more detail,
see Tannelli [9].

Theorem 3.2. (i) The infection-free equilibrium E° of (2) is locally asymptoti-
cally stable if Ry < 1 and it is unstable if Ry > 1.
(ii) If Ry > 1, then the infected equilibrium E* of (2) is locally asymptotically
stable.

Proof. (i) The characteristic equation at E° is

0 F(1)

>l

(7 + an + ) (T + o) (T + @y + 1)

onSY [v )+ an ) | " Bi(@)o(a)e " da

+haa,8? | h k(a)a(a)e”‘da} |
0

First, assume Ry > 1. Then F(0) = py(ap + pn)(oy + po)(1 — Rp) < 0 and

lim F(7) = co. By the Intermediate Value Theorem, F' has a positive zero and
T—>00

hence E° is unstable if Ry > 1.

Next, assume Ry < 1. It suffices to show that all zeros of F' have negative real
parts. If this is not true, then F has a zero 7o with Re(rg) > 0. It follows that
laon S [(To+10) (Totaw+ie) [° Bi(a)o(a)e” 0% dat B0y S [ k(a)o(a)e™ 0% da]|

[(To+an+un)(To+ru) (ToFaw+io)]
anSpe | BaShananSyn
op + Un (ah +/1'h),uv(av +/-LU)
= Ry,

]_ =

IN

which contradicts with Ry < 1. Therefore, E° is locally asymptotically stable if
Ry < 1.
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(ii) For the infected equilibrium E*, the associated characteristic equation is,

(7 + A)(T + an 4 pn) (T + o) (7 + A2)(7 + @ + )
—(7 4 pn)onSi [(T + o) (T + o + 1) [y Br(a)o(a)e " da(T + As) (7)

+ Boc Sy (T + o) [ k(a)o(a)e™"da] =0,

where Ay = pu, + B2 I + [ B1(a)ij; (a)da and Ay = py + [ k(a)i}; (a)da. We claim
that (7) has no root with a nonnegative real part. If the claim is not true, then (7)
has a root 7 with Re(#) > 0. On the one hand,

|(F+1n) (F+i)on Sh[(F+aw+iw) [0 Bi(a)o(a)e™ " da(7+Az)+B200 S} [° k(a)o(a)e™ "*dal|
[(T+AL) (THan+pn) (T+py) (T+A2) (T+ay +py) |

[(7+pn)an Sy [ Bi(a)o(a)dal + [(F+pn) (F+po)anSy Baaw Sy [o° k(a)o(a)dal

[(T+AL)(TH+oan+pn)l [(T4+ALD) (THan+pn) (T ) (FHA2) (THay+py)]
< lan Sy, fo‘x’ B1(a)o(a)dal + |an Sf B2y S fooc k(a)o(a)dal

[(7+an+hn)l [(F+an+pn) (F+ue) (FFow+pe)]

_ oS onSifhonSin
Taptpn o (an A+ pn) (o F )

On the other hand, it follows from (4) that

1=

<

A e _ 0 155;(0)

I: - v
Ho Mo av""_/’bv
and
ih0) = anE;
S3ir (0 SyI*
_ ah-g hlh()+a .52 htv

ap + g h ap + fp
§5:i(0) . BaSi  ounSii(0)

= qp —++= h .
ap + U Qp + b Py O+ [y

This implies that g:fﬁi + (ahaff :)B:OZZL:T;L) = 1, a contradiction with (8). There-

fore, the infected equilibrium E* of (2) is locally asymptotically stable when Ry >
1. O

4. Global stability. We first study the global stability of the infection-free equi-
librium E°.

Theorem 4.1. If Ry < 1, then the infection-free equilibrium E° of (2) is globally
asymptotically stable.
Proof. Define
pr(a) = [ k(@)e 2o,
pala) = [ Bu(B)e S 2.

Obviously, p1(0) = n and p2(0) = £. Moreover, p1(a) and ps(a) are bounded and
satisfy

(9)

pi(a) = pr(a)d(a) —k(a)  and  phla) = pa(a)é(a) — Bu(a)
for a € R4, respectively. Define the Lyapunov functional

L = L(Sh, Ep,in, Sv, Ev, Iy) = L1 + L2 + L,
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where
L = (Sh 59— g9 mﬁ) B,
s9 AT AT R
B201, S /°° . /°° .
Ly = ——2t— t,a)da + t,a)da,
2 (o T 11o)its Jo p1(a)in(t,a)da ; pa(a)in(t,a)da
Baawy 0 w0. Su Bac, By B
Ly = —2v (g, — 80— g0 2u) y 2% | PR
’ (o +uu)uv( SO) - (ovy =+ fto) o - o

Clearly, L(-) is non-negative and L(z) = 0 if and only if z = E°.
Now, we calculate the time derivatives of L1, Lo, and L3 along solutions of (2)
one by one. First,

Ly
dt

1S SN
= (=) (-5 [ B@intta)da - aSi - i)

1 e .
+@ Sh/ Bi(a)in(t,a)da + B2Spl, — (on + ,Uh,)Eh)
h

= (1 — gZ) (1 - %) 1-— ng S% /00 B1(a)in(t, a)da

st (1- ) <5 [ m@intto

SO
+52L;Sh B Oéh;rouhEh
= uh(2—§§— / Bi1(a)ip(t,a)da + B21, — ah;é'uhEh.
Next, applying integration by parts gives

oo LS 7 (- 22 i)

_ /0 ~ o) (ai’}gi’ D 4 s(a)int, ))da
= 25 [ ) - )it a)da
@fﬁﬁMm@mwm

+/ﬂ%u pa(a)3(a))in(t, a)da + p2(0)in(t,0)

0
= ﬂzavS’u/ k(a zhtada—/ B1(a)in(t,a)d

(o + fiy)
/62041)5
—c v FE Ey.
(o £ o)t napEy + apEp
Finally,
dL3 ﬁgO&U SO e .
s _ P2 (1 Pe _ _
e e U [ Akmwmm@m S,
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Baavy e .
o () Mot a)do — (au + ) )
+@(ava — pply)
7

v

Bacvy Sy (2 Sy Sv)

Qy + [y Sy 58
ﬂQavSO /oo .
— k(a)ip(t,a)da — Bo1,.
(e + ) tw Jo (@)int, ) 2

Here we have used \, = 11,S0.
In summary, we have shown that

dL dLy dLy = dL3

E E TIE) W 0 0
= (e E %)
Jr(mTlah +&ap — %Ttglth)Eh
SR I )
Lot mmin g,

An
It follows that & < 0 if Ry < 1. Furthermore, the equality 4 = 0 holds if and only
if Sp(t) =59, Sy(t) = SY, and Ey(t) =0 for t € Ry. It is easy to see that {E°} is
the largest invariant set in {% = 0}. By the LaSalle invariance principle [11], EY is
globally attractive. This, combined with Theorem 3.2, implies that E° is globally
asymptotically stable. O

In order to study the global stability of the infected equilibrium E*, we need the
following preparation.
According to Theorem 2.1, there is a continuous solution semiflow of (2), denoted
by ®: Ry x X4 — X4, where
D(t,x) = (Sp(t), En(t),in(t,-), Su(t), Ey(t), I,(t)) for (t,z) € Ry x X4
with (Sy(t), Ep(t),in(t, "), Su(t), Ey(t), I,(t)) being the solution of (2) with the ini-
tial value (Sho, Eno,@ho, Svos Evos Ioo) = @. The semiflow & is also written as

{®(t)}er, -
Define p: X4 — R4 by

p(Shy Enyin, Sv, By, Iy) = Sh/ B1(a)in(a)da + B2Sp1,
0

for (Sh, En,in, Sy, Ey, I,) € X1. Let
X9 = {x € X|there exists ty € Ry such that p(®(to,z)) > 0}.

Clearly, if z € Xy \ X then ®(t,z) — E° as t — co. With the help of Lemma 3.2
of Hale [7] and Theorem 2.3 of Thieme [22], one can obtain the following results
with standard arguments (see, for example, Chen et al. [2]).

Theorem 4.2. Suppose Ry > 1. Then the following statements are true.
(i) There exists a global attractor A for the solution semiflow ® of (2) in X{.
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1) System (2) is uniformly strongly p-persistent, that is, there exists an €9 > 0
Y p
(independent of initial values) such that

lim inf p(®(t,z) >e9  forxze X,
— o0

Note that the global attractor A only can contain points with total trajectories
through them since it must be invariant. A total trajectory of ® is a function
X : R — X such that (s, X(t)) = X(t+s) forall t € R and all s € R;. For a
total trajectory,

in(t,a) =ip(t — a)o(a) forallt € Rand a € Ry.
The alpha limit of a total trajectory X (t) passing through X (0) = X is
Q(Xo) = mtgousgt{X(S)} Q Aﬁ X_?_

Corollary 1. Suppose Ry > 1. Then there exists an g9 > 0 such that Sy (t), Ep(t),
in(t,0), Sy(t), Ey(t), I,(t) > eo for all t € R, where (Sy(t), En(t),in(t, "), Sy(t),
E,(t),1,(t)) is any total trajectory in A.

Proof. First, since () is attracting and invariant, there exists 7' € R such that, for
t>T,
3An

Sh(t>7Eh(t),/0 in(t,a)da < o
and .
Su(), Bo(t), Ln(t) < 5=

v

Then, for ¢t > T, it follows from the first equation of (2) that

dSp(t) 3AnllBilloe | 3XuBo
>\ — Sn(t),
a = h wn + 2 + 2 n(t)
. . . .. A A . .
which implies htrggjlf Sp(t) > Mh+3xh’2”f;ﬁ°°+33252 = 1. By invariance, Sp(t) > 1

A\, A

—r—— =¢eg fort € R.
EEVNIL]

I R Tra

Next, by Theorem 4.2 and invariance, there exists e3 > 0 such that S, (t) [, 81 (a)
in(t,a)da + B2Sp(t)I,(t) > e3 for t € R. This, combined with the second equation
of (2), gives

for t € R. Similarly, S,(t) >

dE,(t
c?t( ) > e3 — (o, + pn)En(t) for t € R.
It follows that litm inf E,(t) > ahEJrSuh EY g4 and hence Ej(t) > e4 for t € R by
—00 . .

invariance again. Therefore, i5(¢,0) = apEp(t) > apey = g5 for t € R. Then, for
teR,

dE,(t)
dt

v

o /  k(@)in(t — a,0)o(a)da — (g + 1) Eo(2)
0

Y

€95 /000 k(a)o(a)da — (o + i) By (t)

= €&26&5MN — (av + M?))Ev(t)a

which implies that F,(t) > ;LJF’IZJ 2 g¢ for t € R. Finally, from dl;t(t) > yEg —

wy I, (t) for t € R, we can similarly get T, (t) > a;f"‘ 2 g7 for t € R.

v

Letting o = min{ey, e2,€4, 5,26, €7} finishes the proof. O
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Now, we are ready to establish the global stability of the infected equilibrium E*
with the approach of Lyapunov functionals.

Theorem 4.3. If Ry > 1, then the infected equilibrium E* of (2) is globally
asymptotically stable in X_?_.

Proof. By Theorem 3.2, it suffices to show that A = {E*}. To build a Lyapunov
functional, we need the function g : (0,00) > 2z =+ z — 1 —Inz € R. Note that
g(z) > 0 for z € (0,00) and g(z) = 0 if and only if z = 1.

Let X(t) = (Sn(t), En(t),in(t,-), Su(t), Ey(t), I,(t)) be a total trajectory in A.
Note that all Sp(t), En(t), in(t,0), Sy(t), E,(t), and I,(t) are bounded above.
Moreover, by Corollary 1, they are also bounded away from 0. Therefore, there

exists an €9 > 0 such that 0 < g(z) < gg for z = Sg%t), Eg%t), if{fb(;), Sg%t), Eg(:t)7
and I”I—(t) for all t € R. Noting Zf(éa‘i) = ihgizg)’o), we have 0 < g(%) < gg for all
tERavndaERJr. " " "

Define a Lyapunov functional

W = W(Sh, En,in, Sv, By, I,) = Wi + Wy + W,

= o(2) (B

 BoIy [ " in(t, a)
Wy = M/@ pl(a)zh(a)g( - )da

+ [T i@ ),

ir(a)
B20,S%  (Su

Baow B E,
wy S Sy BBy
(Ot + po) o :;> (a0 + po) o™ N E

I /1,
ﬁzivg(j),
P TN

where

Here p; and py are those functions defined by (9). Then W is well-defined and is
bounded on X(¢). In the following, we calculate the time derivative of the compo-
nents of W along solutions of (2) one by one.

Firstly,
dWq
dt
_ 1 Sh > .
- 5 ( — S—h) ()\h — Sh/o Bi1(a)ip(t,a)da — BaSkT, — MhSh)
+§Z( - E*:) (Sh/o Bi(a)ip(t,a)da + B2SpI, — (ap + uh)Eh).

This, combined with
A = Sp(§anEy + pn + B21y),

ap + Ly * *
M ConEr + Bol?,

Sh
(an + pn)En +En
57 Sap, h+ﬁ2UE;:,
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gives

s % (1 = 28) (17— S + Si(Ean i+ T0))

- 1——Sh/ B1(a)in(t,a)d

1 S*

—?;< E B2Sply + = / Bi(a)in(t, a)d
EiSh
EnS; Sz

AoSKLE} _aptpp ap, + pn

— E
Baly VIrSYE,  S; nt Sy

St Sy

- oG- i~

/51 )in(t, a)da+52[

By

+ / Bi(a)in(t, a)da + Ba1,
0

> ‘ E}:Sh s ShE;;
/0 ﬂl(a)zh(t7a)E S*d /82 v I*S*

«En
—CapEy — Bl E* +&anEj + BoI.

Secondly,
AWy

dt
ek 00 R (- 5 s

' ia) )(- W00 s(ayintr ))da.

Oa

Note that p;(0) = n and
i) (gl = (1= T (OB) i, 1, a)).

Oa i (a) in(t,a) Oa
Then, with integration by parts, we obtain

/O - pr(a) (1 - A )(6”8(2’ %) + 8(a)in(t.0) )da

in(t,a)

Il
S—
3
)
[y
—
Q
a2
=
=
—
S
a2
o5
SIS
A~
Q
S
<
e
K|~
|
&l
S~—
N—
N—
<N
S
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Similarly,

/OOO PQ(a)(l - Z:;E ¢

E, c)a) (&ha(i’ Y 4 s(ayint a))da

= pz(a)iz(a)g(“;:ia))

+ /000 B1 (a)ifl(a)g(izz(i;?) )da

Therefore, with the help of i, (¢,0) = o, Ej, and i} (0) = ap B}, we get

a=0oo

- 2073 0 ()

dWs
dt
_ « (EnY Bl " in(t, a)
- ﬁQI <E*> nahEZpl(a)lh(a)g( ZZ(G) ) a—oo
B2y

_ﬁahEZ /Oook(a)i,’;(a)g(i:; )))da+§ahEhg( g)

e |y B @0( )

i (a)
Finally,
dW3
dt
Ba1y Sx /°° .
= B —— 1 _ — — _
(o +uu>E:;( 5) O | k(@)Suin(t, a)da 5y
BaI; Ex o ,
m( N EU) (/0 k(a)Svin(t, a)da — (o J’_Nv)Ev)
52 I
(1= )@= ul,).
Since
Ao = WS, +narErSy,
nan kS, (e + po) B3,
Boly; _ Bal}
(ay + o) B} nonE; S’
we have
dWs Bl S¥
= " 1- o US: - ’L)Sv
dt nahE;;S;( Sv)(“ o Sv)
Bl S
v 1 v E S*
nahE;;S;j( S, )”O‘h h
B2l Sk /"O ‘
__"=v 1 _ v . k t, d
UOéhE;';S;f( SU)S o (a)in(t, a)da
P21y E /°° _
— T k ¢
nahE;;S:;( E,,)S“ ) (a)in(t, a)da
. EXN Ey « By B, .
81 (1- E)E— + oIy = Baly = BoLi g + Bal

1111
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_ Balip (2_§_i) _52I;($_1)

napE; Sy, S¥ S,
3,1} /0 b k(a)ip(t, a)da — niﬁféz gg h k(a)in(t, a)da
R
To summarize, we have obtained
dCT‘:/ = ( —%—%)—(&aﬂﬁﬁﬂi)(?—l—l %)
- [T i (s -1 OB
BTl g — (€on B+ L)) (1 - )

+alio(e) +conBio( )

_< Ba I3 pl(a)+p2(a))i2(a)g(i}?§’c)‘))

T’ahE;: a=00
ni]Eh /O*k(a)i*(a)<mll m>da
+m(2_§—i) le*(i,: —1—1n%§)
_5215;(25* —1—1In ?‘g )_'_52[*(1_’_1 ;g%g}z)

= (2 - )~ (coni+ Lo )

& % ih(t,a)E;‘;Sh * IvShE;:
- A0 da — Byl
/O Bu(a)iz @)g( ir(a)En Sy )da =52 “g(I;S;Eh)

~( BQg*m )+ pala) )i (@)g ()

i
- *k<a>z;<a>g(£§a§g 2t )da

o 05 5 () - memia()

< o
Therefore, W is nonincreasing. Since W is bounded on X (-), the alpha limit set of
X (-) must be contained in the largest invariant subset of {thV = 0}, which is easily
identified to be {E*}. Tt follows that W(X(t)) < W(E*) for all ¢ € R. This gives

X(t) = E* and hence A = {E*}, which completes the proof. O

a=0oo

5. Numerical simulations. In this section, we illustrate the theoretical results
obtained in Section 4 with numerical simulations. For this purpose, we take k(a) =
k. For the form of 1 (a), we give some explanation. In general, when the infection
age a is relatively small, the age-dependent horizontal transmission rate $1(a) of
the disease from the infectious hosts to susceptible hosts is relatively small. With
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the increase of the infection age, the infection rate also increases and then tends to
a constant. When the infection age is very large, the infection rate is reduced to 0
due to the loss of infectivity. Similar explanation can be given for the form of the
age-dependent recovery rate y(a). For some more details, we refer readers to [4, 6].
Therefore, we take the following forms for 8; and « in the simulations.

c1, 0<a<10,
¢1 + ca(a — 10)e~0-009(a=25) 10 < a < 25,
Pr(a) =
e, 925 < a < 50,
0, a > 50,
and
0, 0<a<10,
1 (arctan 50) (a — 10), 10 < a < 25,
(a) =
cs arctan(75 — a), 25 < a < 50,
cs arctan(25), a > 50.

We first set parameters A, = 10, A\, = 500, p, = 0.008, By = 1.81 x 1077,
ey = 0.05, aj, = 0.833, o, = 0.05, k = 4.1665 x 1075, ¢; = 0.00003, c; = 0.00005,
and c3 = 5.6 x 1076, which are chosen from some recent studies [4, 6]. With
these parameters, the basic reproductive number is Ry = 0.8286 < 1. Thus,
the infection-free equilibrium E° is globally asymptotically stable by Theorem 4.1.
Fig. 1 shows the time evolution of the solution with the initial value (1000, 100, 5(a+
3)e~0-2(¢+3) 10000, 100, 1000).

Next, we take another set of parameter values, A\, = 10, A, = 500, pup = 0.008,
By = 1.81 x 1076, p, = 0.01, oy, = 0.08333, v, = 0.05, k = 4.1665 x 107°, ¢; =
0.00003, co = 0.00005, and c3 = 5.6 x 107°. In this case, Ry = 9.2655 > 1. Then
Theorem 4.3 tells us that the infected equilibrium E* is globally asymptotically
stable. Fig. 2 supports this with the time evolution of the solution with the initial
value (1000, 100, 0.5(a + 3)e~°2(¢+3) 10000, 100, 1000).

6. Conclusion. Infection age is a very important factor in the transmission of
infectious diseases such as malaria, TB, and HIV. In this paper, we incorporated
infection age into a vector-host epidemic model with direct transmission. In the
model, we also took into account the exposed individuals in both human and vector
populations. We assumed that the level of contagiousness and the rate of removal
(recovery) of infected hosts depend on the infection age. Therefore, our model
is described by a system of ordinary differential equations coupled with a partial
differential equation, which is very challenging to study because it is an infinitely
dimensional system. With the approach of Lyapunov functionals and some recently
developed techniques on global analysis in [15, 16], we have established a threshold
dynamics completely determined by the basic reproduction number. That is, the
infection-free equilibrium is globally asymptotically stable if the basic reproduction
number is less than one while the infected equilibrium is globally asymptotically
stable if the basic reproduction number is greater than one. Numerical simulations
are conducted to illustrate the stability results.

Our result supports the claim that infection age can affect the number of av-
erage secondary infections, that is, the effect of infection age is embodied in the
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FIGURE 1. When Ry < 1, the infection-free equilibrium E° of (2)
is globally asymptotically stable. Here since E}(t) converges to 0
very fast, we use the time interval [0, 100] different from the interval
[0,1000] for other components.

expression of the basic reproduction number Ry. By appropriate control measures,
one can decrease the survival probability to infection age a, o(a), the horizontal
transmission rate /31 (a), and the biting rate k(a). This will decrease the value of
Ry and possibly will eliminate the disease. Even if we cannot eliminate the disease,
from the expression of the infected equilibrium one can easily show that this will
decrease the levels of Ej, i} (0), EY, and I;;. Because of the globally asymptotical
stability of E*, we can keep the infection at a tolerance level.
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