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Abstract. We concern with a vector-borne disease model with horizontal
transmission and infection age in the host population. With the approach

of Lyapunov functionals, we establish a threshold dynamics, which is com-

pletely determined by the basic reproduction number. Roughly speaking, if
the basic reproduction number is less than one then the infection-free equilib-

rium is globally asymptotically stable while if the basic reproduction number is

larger than one then the infected equilibrium attracts all solutions with initial
infection. These theoretical results are illustrated with numerical simulations.

1. Introduction. Vector-borne diseases such as malaria, dengue, schistomiasis,
Chagas disease, and yellow fever are illnesses that are transmitted by vectors, which
include mosquitos, ticks, and fleas. They account for over 17% of all infectious
diseases and are great threat to the health of human and animal. Every year there
are more than 1 billion cases and over 1 million deaths from vector-borne diseases.

Mathematical modeling has been successfully used to better understand the
mechanisms underlying vector-borne disease spread and to provide efficient con-
trol strategies. The Ross-Macdonald model on vector-borne diseases was described
by ordinary differential equations [14, 19, 20]. Macdonald [14] established a thresh-
old condition on the invasion and persistence of infection, which is determined
by the basic reproduction number (defined as the average number of secondary
cases produced by an index case during its infectious period). Most of the existing
vector-borne disease models, especially those on malaria that investigate compli-
cations arising from host superinfection, immunity, and other factors, are based
on this fundamental model [3, 5, 8, 12, 18, 21, 23, 24]. In particular, Lashari and
Zaman [12] considered the following vector-borne disease model with horizontal
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Table 1. Biological meanings of parameters in (1)

Parameter Meaning
λh Per capita host birth rate
µh Host death rate
β1 Rate of horizontal transmission of the disease
β2 Rate of a pathogen carrying mosquito

biting susceptible host
αh Inverse of host latent period
δh Disease related death rate of host
γh Recovery rate of host
λv Per capita vector birth rate
k Biting rate of per susceptible vector per host

per unit time
µv Vector death rate
αv Inverse of vector latent period
δv Disease related death rate of vectors

transmission in the host population,

dSh(t)
dt = λh − µhSh − β1ShIh − β2ShIv,

dEh(t)
dt = β1ShIh + β2ShIv − (αh + µh)Eh,

dIh(t)
dt = αhEh − (µh + δh + γh)Ih,

dRh(t)
dt = γhIh − µhRh,

dSv(t)
dt = λv − kSvIh − µvSv,

dEv(t)
dt = kSvIh − (αv + µv)Ev,

dIv(t)
dt = αvEv − (µv + δv)Iv,

(1)

where Sh, Eh, Ih, and Rh denote the susceptible, exposed, infectious, and recovered
epidemiological classes in the host, respectively, while Sv, Ev, and Iv denote the
susceptible, exposed, and infectious epidemiological classes in the vector, respec-
tively. There is no recovered class for the vector (mosquitos) because no infected
mosquito can recover from the infection. The biological meanings of the parameters
in (1) are summarized in Table 1.

It is well known that the infectivity varies during the infectious period and
hence the time passed since being infected, called infection age, affects the num-
ber of secondary infections. In recent years, epidemic models with infection age
have been extensively studied. For works on vector-borne diseases, not much has
been done [10, 13, 17, 25], where only the host has infection age. In [10], an
SI(host)SI(vector) model is proposed, which incorporated horizontal transmission.
Under additional condition besides the basic reproduction ratio R0 < 1, it is shown
that the disease-free steady state is globally asymptotically stable. Moreover, only
the local stability of the endemic steady state is discussed. In [13], Lou and Zhao
considered a periodic SEIRS(host)SEI(vector) model with standard incidence. It
is shown that there exists at least one positive periodic state and that the disease
persists when the basic reproduction ratio R0 > 1 while the disease will die out if
R0 < 1. One of the models in [25] is an SIR(host)SI(vector) model with constant
vector population and a threshold dynamics characterized by the basic reproduction
number is obtained.
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The purpose of this paper is to modify (1) by introducing infection age into
the host and study the dynamics of the resulted model. The remaining part of
this paper is organized as follows. In the next section, we introduce the model
and state some preliminary results on solutions. Then, in Section 3, we study the
existence of equilibria and their local stability. Section 4 is the main part of this
paper, where we establish a threshold dynamics with the approach of Lyapunov
functional. The threshold dynamics is characterized only by the basic reproduction
number. Here, to obtain the stability of the infected equilibrium, we need the
existence of a global attractor and the uniformly strong persistence. The theoretical
results are illustrated with numerical simulations in Section 5. The paper concludes
with a brief summary.

2. The model and preliminary results. Our model is based on model (1). To
build it, we further subdivide the infectious host according to the infection age a.
Let ih(t, a) be the density of infectious hosts at time t with infection age a. Then∫ a2
a1
ih(t, a)da is the number of infectious hosts with infection ages between a1 and a2

at time t and the total number of infectious hosts at time t is Ih(t) =
∫∞

0
ih(t, a)da.

We assume that the infectivity of infectious hosts, the biting rate of an infectious
host by a susceptible vector, disease-induced death rate of infectious hosts, and the
recovery rate of infectious hosts all depend on the infection age a and denote them by
β1(a), k(a), δh(a), and γ(a), respectively. Then the rate of horizontal transmission
of the disease from infectious hosts to susceptible hosts is

∫∞
0
β1(a)ih(t, a)da and

the force of infection of the host to susceptible vectors is
∫∞

0
k(a)ih(t, a)da. Since

the recovered hosts have permanent immunity, there is no need to consider the
evolution of Rh in time. Based on our assumptions and model (1), the vector-borne
disease model with infection age in host to be studied in this paper is as follows,

dSh(t)
dt = λh − Sh(t)

∫∞
0
β1(a)ih(t, a)da− β2Sh(t)Iv(t)− µhSh(t),

dEh(t)
dt = Sh(t)

∫∞
0
β1(a)ih(t, a)da+ β2Sh(t)Iv(t)− (αh + µh)Eh(t),

∂ih(t,a)
∂t + ∂ih(t,a)

∂a = −δ(a)ih(t, a),

dSv(t)
dt = λv −

∫∞
0
k(a)Sv(t)ih(t, a)da− µvSv(t),

dEv(t)
dt =

∫∞
0
k(a)Sv(t)ih(t, a)da− (αv + µv)Ev(t),

dIv(t)
dt = αvEv(t)− µvIv(t),

ih(t, 0) = αhEh(t), t > 0,

Sh(0) = Sh0 ∈ R+, Eh(0) = Eh0 ∈ R+, ih(0, ·) = ih0 ∈ L1
+(0,∞),

Sv(0) = Sv0 ∈ R+, Ev(0) = Ev0 ∈ R+, Iv(0) = Iv0 ∈ R+,

(2)

where δ(a) = µh+δh(a)+γ(a), R+ = [0,∞), and L1
+(0,∞) is the nonnegative cone

of L1(0,∞).
To continue our discussion, in the sequel, we assume that k(·) ∈ L∞+ (0,∞) \ {0}

and β1(·), γ(·) ∈ L∞+ (0,∞), where L∞+ (0,∞) is the nonnegative cone of L∞(0,∞).
Clearly, δ(a) ≥ µh for a ∈ R+. For (2), there should be an inherent relationship
between the initial value and the boundary value for the partial differential equation,
that is, ih(0, 0) = ih0(0). Therefore, we always assume that the initial values satisfy
αhEh0 = ih0(0).
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Note that the partial differential equation in (2) is a linear transport equation
with decay. With integration along the characteristic line t − a = const., one can
solve 

∂ih(t,a)
∂t + ∂ih(t,a)

∂a = −δ(a)ih(t, a)

ih(t, 0) = αhEh(t), t ≥ 0

to get

ih(t, a) =

 σ(a)αhEh(t− a) if t > a ≥ 0,

σ(a)
σ(a−t) ih(0, a− t) if a ≥ t > 0,

where σ(a) = exp(−
∫ a

0
δ(s)ds) represents the probability that an infectious host

survives to infection age a. Then we obtain the following equivalent system of
integro-differential equations to (2),

dSh(t)
dt = λh − Sh(t)

∫∞
0
β1(a)ih(t, a)da− β2Sh(t)Iv(t)− µhSh(t),

dEh(t)
dt = Sh(t)

∫∞
0
β1(a)ih(t, a)da+ β2Sh(t)Iv(t)− (αh + µh)Eh(t),

ih(t, a) = σ(a)αhEh(t− a)1t>a + σ(a)
σ(a−t) ih(0, a− t)1a>t,

dSv(t)
dt = λv −

∫∞
0
k(a)Sv(t)ih(t, a)da− µvSv(t),

dEv(t)
dt =

∫∞
0
k(a)Sv(t)ih(t, a)da− (αv + µv)Ev(t),

dIv(t)
dt = αvEv(t)− µvIv(t),

(3)

where

1t>a =

 1 if t > a ≥ 0

0 if a ≥ t ≥ 0
and 1a>t =

 0 if t > a ≥ 0,

1 if a ≥ t ≥ 0.

Let

X+ = R2
+ × L1

+(0,∞)×R3
+,

which is the nonnegative cone of the Banach space X = R2×L1(0,∞)×R3 equipped
with norm ‖ · ‖ defined by

‖x‖ = |x1|+ |x2|+ ‖x3‖1 + |x4|+ |x5|+ |x6|

for x = (x1, x2, x3, x4, x5, x6) ∈ X. With a reasonable modification of the proofs of
Theorem 2.1 and Lemma 2.2 in Browne and Pilyugin [1], we can prove the existence
and nonnegativeness of solutions to (3) and hence to (2).

Theorem 2.1. For any x ∈ X+, system (2) has a unique solution on R+, which
depends continuously on the initial value and time. Moreover, (Sh(t), Eh(t), ih(t, ·),
Sv(t), Ev(t), Iv(t)) ∈ X+ for t ∈ R+.

In fact, every solution is bounded. On the one hand, let

Nh(t) = Sh(t) + Eh(t) +

∫ ∞
0

ih(t, a)da.

Then we have dNh(t)
dt ≤ λh − µhNh(t) and hence lim supt→∞Nh(t) ≤ λh/µh. On

the other hand, let

Nv(t) = Sv(t) + Ev(t) + Iv(t).
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Then dNv(t)
dt = λv − µvNv(t), which implies that limt→∞Nv(t) = λv/µv. Denote

Ω =

(Sh, Eh, ih, Sv, Ev, Iv) ∈ X+

∣∣∣∣∣∣ Sh + Eh + ‖ih‖1 ≤ λh
µh
,

Sv + Ev + Iv = λv
µv

 .

Then we have shown that Ω is an attracting set for (2). Moreover, one can easily
see that Ω is also a positively invariant set for (2).

3. The existence of equilibria and their local stability. In this section, we
study the local dynamics of (2). We first consider the existence of equilibria. It
turns out that this only depends on the basic reproduction number R0, which is
defined as

R0 =
λh[ξαh(αv + µv)µ

2
v + β2λvαvηαh]

µhµ2
v(αh + µh)(αv + µv)

,

where η =
∫∞

0
k(a)σ(a)da and ξ =

∫∞
0
β1(a)σ(a)da.

Clearly, (2) always has the infection-free equilibrium E0 = (S0
h, 0, 0, S

0
v , 0, 0) ∈ Ω,

where S0
h = λh/µh, S

0
v = λv/µv. Let E∗ = (S∗h, E

∗
h, i
∗
h, S

∗
v , E

∗
v , I
∗
v ) be an equilibrium.

Then we have 

λh − µhS∗h − β2S
∗
hI
∗
v − S∗h

∫∞
0
β1(a)i∗h(a)da = 0,

S∗h
∫∞

0
β1(a)i∗h(a)da+ β2S

∗
hI
∗
v = (αh + µh)E∗h,

di∗h(a)
da = −δ(a)i∗h(a),

i∗h(0) = αhE
∗
h,

λv −
∫∞

0
k(a)S∗v i

∗
h(a)da− µvS∗v = 0,∫∞

0
k(a)S∗v i

∗
h(a)da = (αv + µv)E

∗
v ,

αvE
∗
v = µvI

∗
v .

(4)

It is easy to see that an equilibrium other than E0 must be infected, that is, all
components are positive. For an infected equilibrium, it is not difficult to deduce
from (4) that

S∗h =
λh − (αh + µh)E∗h

µh
,

i∗h(a) = αhσ(a)E∗h,

S∗v =
λv

µv + ηαhE∗h
, (5)

E∗v =
λvηαhE

∗
h

(αv + µv)(µv + ηαhE∗h)
,

I∗v =
λvαvηαhE

∗
h

µv(αv + µv)(µv + ηαhE∗h)
,

where E∗h is a positive zero of H with

H(x) = λh[ξαh(αv + µv)(µv + ηαhx)µv + β2αvλvηαh]

−µvµh(αh + µh)(αv + µv)(µv + ηαhx)

−β2αvλvηαhx(αh + µh)

−(αh + µh)(αv + µv)µvξαhx(µv + ηαhx).
(6)
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Theorem 3.1. (i) Suppose R0 ≤ 1. Then (2) only has the infection-free equilib-
rium E0.

(ii) Suppose R0 > 1. Then, besides E0, (2) also has a unique infected equilibrium
E∗ = (S∗h, E

∗
h, i
∗
h, S

∗
v , E

∗
v , I
∗
v ), where E∗h is the unique positive zero of H defined

by (6) and the other components are determined by (5).

Proof. (i) Since R0 ≤ 1, we have λhξαh ≤ µh(αh +µh). Note that H is a quadratic
function with negative coefficient for x2. Moreover, the coefficient of x in H(x) is

λhξαh(αv + µv)ηαhµv − µvµh(αh + µh)(αv + µv)ηαh

−β2αvλvηαh(αh + µh)− (αh + µh)(αv + µv)µvξαhµv

< µh(αh + µh)(αv + µv)ηαhµv − µvµh(αh + µh)(αv + µv)ηαh

= 0

and H(0) = µhµ
2
v(αh + µh)(αv + µv)(R0 − 1) ≤ 0. It follows that H(x) has no

positive zeros and hence there is no infected equilibrium.
(ii) Now, since R0 > 1, we have H(0) = µhµ

2
v(αh + µh)(αv + µv)(R0 − 1) > 0.

Then H(x) has a unique positive zero since H(x) is a quadratic polynomial with
negative coefficient for x2. Therefore, there is a unique infected equilibrium as
described in the statement. This completes the proof.

Now, we study the stability of the equilibria by linearization. For more detail,
see Iannelli [9].

Theorem 3.2. (i) The infection-free equilibrium E0 of (2) is locally asymptoti-
cally stable if R0 < 1 and it is unstable if R0 > 1.

(ii) If R0 > 1, then the infected equilibrium E∗ of (2) is locally asymptotically
stable.

Proof. (i) The characteristic equation at E0 is

0 = F (τ)
∆
= (τ + αh + µh)(τ + µv)(τ + αv + µv)

−αhS0
h

[
(τ + µv)(τ + αv + µv)

∫ ∞
0

β1(a)σ(a)e−τada

+β2αvS
0
v

∫ ∞
0

k(a)σ(a)e−τada

]
.

First, assume R0 > 1. Then F (0) = µv(αh + µh)(αv + µv)(1 − R0) < 0 and
lim
τ→∞

F (τ) = ∞. By the Intermediate Value Theorem, F has a positive zero and

hence E0 is unstable if R0 > 1.
Next, assume R0 < 1. It suffices to show that all zeros of F have negative real

parts. If this is not true, then F has a zero τ0 with Re(τ0) ≥ 0. It follows that

1 =
|αhS0

h[(τ0+µv)(τ0+αv+µv)
∫∞
0
β1(a)σ(a)e−τ0ada+β2αvS

0
v

∫∞
0
k(a)σ(a)e−τ0ada]|

|(τ0+αh+µh)(τ0+µv)(τ0+αv+µv)|

≤ αhS
0
hξ

αh + µh
+

β2S
0
hαhαvS

0
vη

(αh + µh)µv(αv + µv)

= R0,

which contradicts with R0 < 1. Therefore, E0 is locally asymptotically stable if
R0 < 1.
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(ii) For the infected equilibrium E∗, the associated characteristic equation is,

(τ +A1)(τ + αh + µh)(τ + µv)(τ +A2)(τ + αv + µv)

−(τ + µh)αhS
∗
h

[
(τ + µv)(τ + αv + µv)

∫∞
0
β1(a)σ(a)e−τada(τ +A2)

+ β2αvS
∗
v (τ + µv)

∫∞
0
k(a)σ(a)e−τada

]
= 0,

(7)

where A1 = µh+β2I
∗
v +

∫∞
0
β1(a)i∗h(a)da and A2 = µv +

∫∞
0
k(a)i∗h(a)da. We claim

that (7) has no root with a nonnegative real part. If the claim is not true, then (7)
has a root τ̂ with Re(τ̂) ≥ 0. On the one hand,

1 =
|(τ̂+µh)(τ̂+µv)αhS

∗
h[(τ̂+αv+µv)

∫∞
0
β1(a)σ(a)e−τ̂ada(τ̂+A2)+β2αvS

∗
v

∫∞
0
k(a)σ(a)e−τ̂ada]|

|(τ̂+A1)(τ̂+αh+µh)(τ̂+µv)(τ̂+A2)(τ̂+αv+µv)|

≤ |(τ̂+µh)αhS
∗
h

∫∞
0
β1(a)σ(a)da|

|(τ̂+A1)(τ̂+αh+µh)| +
|(τ̂+µh)(τ̂+µv)αhS

∗
hβ2αvS

∗
v

∫∞
0
k(a)σ(a)da|

|(τ̂+A1)(τ̂+αh+µh)(τ̂+µv)(τ̂+A2)(τ̂+αv+µv)|

<
|αhS∗h

∫∞
0
β1(a)σ(a)da|

|(τ̂+αh+µh)| +
|αhS∗hβ2αvS

∗
v

∫∞
0
k(a)σ(a)da|

|(τ̂+αh+µh)(τ̂+µv)(τ̂+αv+µv)|

≤ αhS
∗
hξ

αh + µh
+

αhS
∗
hβ2αvS

∗
vη

(αh + µh)µv(αh + µv)
. (8)

On the other hand, it follows from (4) that

I∗v =
αv
µv
E∗v =

αv
µv

ηS∗v i
∗
h(0)

αv + µv

and

i∗h(0) = αhE
∗
h

= αh ·
ξS∗hi

∗
h(0)

αh + µh
+ αh ·

β2S
∗
hI
∗
v

αh + µh

= αh ·
ξS∗hi

∗
h(0)

αh + µh
+ αh ·

β2S
∗
h

αh + µh
· αv
µv

ηS∗v i
∗
h(0)

αv + µv
.

This implies that
αhS

∗
hξ

αh+µh
+

αhS
∗
hβ2αvS

∗
vη

(αh+µh)µv(αh+µv) = 1, a contradiction with (8). There-

fore, the infected equilibrium E∗ of (2) is locally asymptotically stable when R0 >
1.

4. Global stability. We first study the global stability of the infection-free equi-
librium E0.

Theorem 4.1. If R0 < 1, then the infection-free equilibrium E0 of (2) is globally
asymptotically stable.

Proof. Define

ρ1(a) =
∫∞
a
k(θ)e−

∫ θ
a
δ(s)dsdθ,

ρ2(a) =
∫∞
a
β1(θ)e−

∫ θ
a
δ(s)dsdθ.

(9)

Obviously, ρ1(0) = η and ρ2(0) = ξ. Moreover, ρ1(a) and ρ2(a) are bounded and
satisfy

ρ′1(a) = ρ1(a)δ(a)− k(a) and ρ′2(a) = ρ2(a)δ(a)− β1(a)

for a ∈ R+, respectively. Define the Lyapunov functional

L = L(Sh, Eh, ih, Sv, Ev, Iv) = L1 + L2 + L3,
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where

L1 =
1

S0
h

(
Sh − S0

h − S0
h ln

Sh
S0
h

)
+

1

S0
h

Eh,

L2 =
β2αvS

0
v

(αv + µv)µv

∫ ∞
0

ρ1(a)ih(t, a)da+

∫ ∞
0

ρ2(a)ih(t, a)da,

L3 =
β2αv

(αv + µv)µv

(
Sv − S0

v − S0
v ln

Sv
S0
v

)
+

β2αvEv
(αv + µv)µv

+
β2

µv
Iv.

Clearly, L(·) is non-negative and L(x) = 0 if and only if x = E0.
Now, we calculate the time derivatives of L1, L2, and L3 along solutions of (2)

one by one. First,

dL1

dt

=
1

S0
h

(
1− S0

h

Sh

)(
λh − Sh

∫ ∞
0

β1(a)ih(t, a)da− β2ShIv − µhSh
)

+
1

S0
h

(
Sh

∫ ∞
0

β1(a)ih(t, a)da+ β2ShIv − (αh + µh)Eh

)
= µh

(
1− S0

h

Sh

)(
1− Sh

S0
h

)
−
(

1− S0
h

Sh

)Sh
S0
h

∫ ∞
0

β1(a)ih(t, a)da

−β2Iv
Sh
S0
h

(
1− S0

h

Sh

)
+
Sh
S0
h

∫ ∞
0

β1(a)ih(t, a)da

+β2Iv
Sh
S0
h

− αh + µh
S0
h

Eh

= µh

(
2− S0

h

Sh
− Sh
S0
h

)
+

∫ ∞
0

β1(a)ih(t, a)da+ β2Iv −
αh + µh
S0
h

Eh.

Next, applying integration by parts gives

dL2

dt
=

β2αvS
0
v

(αv + µv)µv

∫ ∞
0

ρ1(a)
(
− ∂ih(t, a)

∂a
− δ(a)ih(t, a)

)
da

−
∫ ∞

0

ρ2(a)
(∂ih(t, a)

∂a
+ δ(a)ih(t, a)

)
da

=
β2αvS

0
v

(αv + µv)µv

∫ ∞
0

(ρ′1(a)− ρ1(a)δ(a))ih(t, a)da

+
β2αvS

0
v

(αv + µv)µv
ρ1(0)ih(t, 0)

+

∫ ∞
0

(ρ′2(a)− ρ2(a)δ(a))ih(t, a)da+ ρ2(0)ih(t, 0)

= − β2αvS
0
v

(αv + µv)µv

∫ ∞
0

k(a)ih(t, a)da−
∫ ∞

0

β1(a)ih(t, a)da

+
β2αvS

0
v

(αv + µv)µv
ηαhEh + ξαhEh.

Finally,

dL3

dt
=

β2αv
(αv + µv)µv

(
1− S0

v

Sv

)(
λv −

∫ ∞
0

k(a)Svih(t, a)da− µvSv
)
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+
β2αv

(αv + µv)µv

(∫ ∞
0

k(a)Svih(t, a)da− (αv + µv)Ev

)
+
β2

µv
(αvEv − µvIv)

=
β2αvS

0
v

αv + µv

(
2− S0

v

Sv
− Sv
S0
v

)
+

β2αvS
0
v

(αv + µv)µv

∫ ∞
0

k(a)ih(t, a)da− β2Iv.

Here we have used λv = µvS
0
v .

In summary, we have shown that

dL

dt
=

dL1

dt
+
dL2

dt
+
dL3

dt

= µh

(
2− S0

h

Sh
− Sh
S0
h

)
+
β2αvS

0
v

αv + µv

(
2− S0

v

Sv
− Sv
S0
v

)
+
( β2αvS

0
v

(αv + µv)µv
ηαh + ξαh −

αh + µh
S0
h

)
Eh

= µh

(
2− S0

h

Sh
− Sh
S0
h

)
+
β2αvS

0
v

αv + µv

(
2− S0

v

Sv
− Sv
S0
v

)
+

(αh + µh)µh
λh

(R0 − 1)Eh.

It follows that dL
dt ≤ 0 if R0 < 1. Furthermore, the equality dL

dt = 0 holds if and only

if Sh(t) = S0
h, Sv(t) = S0

v , and Eh(t) = 0 for t ∈ R+. It is easy to see that {E0} is

the largest invariant set in {dLdt = 0}. By the LaSalle invariance principle [11], E0 is

globally attractive. This, combined with Theorem 3.2, implies that E0 is globally
asymptotically stable.

In order to study the global stability of the infected equilibrium E∗, we need the
following preparation.

According to Theorem 2.1, there is a continuous solution semiflow of (2), denoted
by Φ : R+ ×X+ → X+, where

Φ(t, x) = (Sh(t), Eh(t), ih(t, ·), Sv(t), Ev(t), Iv(t)) for (t, x) ∈ R+ ×X+

with (Sh(t), Eh(t), ih(t, ·), Sv(t), Ev(t), Iv(t)) being the solution of (2) with the ini-
tial value (Sh0, Eh0, ih0, Sv0, Ev0, Iv0) = x. The semiflow Φ is also written as
{Φ(t)}t∈R+

.
Define ρ : X+ → R+ by

ρ(Sh, Eh, ih, Sv, Ev, Iv) = Sh

∫ ∞
0

β1(a)ih(a)da+ β2ShIv

for (Sh, Eh, ih, Sv, Ev, Iv) ∈ X+. Let

X0
+ = {x ∈ X+|there exists t0 ∈ R+ such that ρ(Φ(t0, x)) > 0}.

Clearly, if x ∈ X+ \X0
+ then Φ(t, x)→ E0 as t→∞. With the help of Lemma 3.2

of Hale [7] and Theorem 2.3 of Thieme [22], one can obtain the following results
with standard arguments (see, for example, Chen et al. [2]).

Theorem 4.2. Suppose R0 > 1. Then the following statements are true.

(i) There exists a global attractor A for the solution semiflow Φ of (2) in X0
+.
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(ii) System (2) is uniformly strongly ρ-persistent, that is, there exists an ε0 > 0
(independent of initial values) such that

lim inf
t→∞

ρ(Φ(t, x)) > ε0 for x ∈ X0
+.

Note that the global attractor A only can contain points with total trajectories
through them since it must be invariant. A total trajectory of Φ is a function
X : R → X+ such that Φ(s,X(t)) = X(t + s) for all t ∈ R and all s ∈ R+. For a
total trajectory,

ih(t, a) = ih(t− a)σ(a) for all t ∈ R and a ∈ R+.

The alpha limit of a total trajectory X(t) passing through X(0) = X0 is

α(X0) = ∩t≤0∪s≤t{X(s)} ⊆ A ∩X0
+.

Corollary 1. Suppose R0 > 1. Then there exists an ε0 > 0 such that Sh(t), Eh(t),
ih(t, 0), Sv(t), Ev(t), Iv(t) ≥ ε0 for all t ∈ R, where (Sh(t), Eh(t), ih(t, ·), Sv(t),
Ev(t), Iv(t)) is any total trajectory in A.

Proof. First, since Ω is attracting and invariant, there exists T ∈ R+ such that, for
t ≥ T ,

Sh(t), Eh(t),

∫ ∞
0

ih(t, a)da ≤ 3λh
2µh

and

Sv(t), Ev(t), Iv(t) ≤
3λv
2µv

.

Then, for t ≥ T , it follows from the first equation of (2) that

dSh(t)

dt
≥ λh −

(
µh +

3λh‖β1‖∞
2µh

+
3λvβ2

2µv

)
Sh(t),

which implies lim inf
t→∞

Sh(t) ≥ λh

µh+
3λh‖β1‖∞

2µh
+

3λvβ2
2µv

∆
= ε1. By invariance, Sh(t) ≥ ε1

for t ∈ R. Similarly, Sv(t) ≥ λv

µv+
3λh‖k‖∞

2µh

∆
= ε2 for t ∈ R.

Next, by Theorem 4.2 and invariance, there exists ε3 > 0 such that Sh(t)
∫∞

0
β1(a)

ih(t, a)da + β2Sh(t)Iv(t) ≥ ε3 for t ∈ R. This, combined with the second equation
of (2), gives

dEh(t)

dt
≥ ε3 − (αh + µh)Eh(t) for t ∈ R.

It follows that lim inf
t→∞

Eh(t) ≥ ε3
αh+µh

∆
= ε4 and hence Eh(t) ≥ ε4 for t ∈ R by

invariance again. Therefore, ih(t, 0) = αhEh(t) ≥ αhε4
∆
= ε5 for t ∈ R. Then, for

t ∈ R,

dEv(t)

dt
≥ ε2

∫ ∞
0

k(a)ih(t− a, 0)σ(a)da− (αv + µv)Ev(t)

≥ ε2ε5

∫ ∞
0

k(a)σ(a)da− (αv + µv)Ev(t)

= ε2ε5η − (αv + µv)Ev(t),

which implies that Ev(t) ≥ ε2ε5η
αv+µv

∆
= ε6 for t ∈ R. Finally, from dIv(t)

dt ≥ αvε6 −

µvIv(t) for t ∈ R, we can similarly get Iv(t) ≥ αvε6
µv

∆
= ε7 for t ∈ R.

Letting ε0 = min{ε1, ε2, ε4, ε5, ε6, ε7} finishes the proof.
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Now, we are ready to establish the global stability of the infected equilibrium E∗

with the approach of Lyapunov functionals.

Theorem 4.3. If R0 > 1, then the infected equilibrium E∗ of (2) is globally
asymptotically stable in X0

+.

Proof. By Theorem 3.2, it suffices to show that A = {E∗}. To build a Lyapunov
functional, we need the function g : (0,∞) 3 z → z − 1 − ln z ∈ R. Note that
g(z) ≥ 0 for z ∈ (0,∞) and g(z) = 0 if and only if z = 1.

Let X(t) = (Sh(t), Eh(t), ih(t, ·), Sv(t), Ev(t), Iv(t)) be a total trajectory in A.
Note that all Sh(t), Eh(t), ih(t, 0), Sv(t), Ev(t), and Iv(t) are bounded above.
Moreover, by Corollary 1, they are also bounded away from 0. Therefore, there

exists an ε0 > 0 such that 0 ≤ g(z) < ε0 for z = Sh(t)
S∗h

, Eh(t)
E∗h

, ih(t,0)
i∗h(0) , Sv(t)

S∗v
, Ev(t)

E∗v
,

and Iv(t)
I∗v

for all t ∈ R. Noting ih(t,a)
i∗h(a) = ih(t−a,0)

i∗h(0) , we have 0 ≤ g( ih(t,a)
i∗h(a) ) < ε0 for all

t ∈ R and a ∈ R+.
Define a Lyapunov functional

W = W (Sh, Eh, ih, Sv, Ev, Iv) = W1 +W2 +W3,

where

W1 = g

(
Sh
S∗h

)
+
E∗h
S∗h

g
(Eh
E∗h

)
,

W2 =
β2I
∗
v

ηαhE∗h

∫ ∞
0

ρ1(a)i∗h(a)g
( ih(t, a)

i∗h(a)

)
da

+

∫ ∞
0

ρ2(a)i∗h(a)g
( ih(t, a)

i∗h(a)

)
da,

W3 =
β2αvS

∗
v

(αv + µv)µv
g
(Sv
S∗v

)
+

β2αvE
∗
v

(αv + µv)µv
g
(Ev
E∗v

)
+
β2I
∗
v

µv
g
( Iv
I∗v

)
.

Here ρ1 and ρ2 are those functions defined by (9). Then W is well-defined and is
bounded on X(t). In the following, we calculate the time derivative of the compo-
nents of W along solutions of (2) one by one.

Firstly,

dW1

dt

=
1

S∗h

(
1− S∗h

Sh

)(
λh − Sh

∫ ∞
0

β1(a)ih(t, a)da− β2ShIv − µhSh
)

+
1

S∗h

(
1− E∗h

Eh

)(
Sh

∫ ∞
0

β1(a)ih(t, a)da+ β2ShIv − (αh + µh)Eh

)
.

This, combined with

λh = S∗h(ξαhE
∗
h + µh + β2I

∗
v ),

(αh + µh)E∗h
S∗h

= ξαhE
∗
h + β2I

∗
v ,

(αh + µh)Eh
S∗h

= ξαhEh + β2I
∗
v

Eh
E∗h

,
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gives

dW1

dt
=

1

S∗h

(
1− S∗h

Sh

)(
µhS

∗
h − µhSh + S∗h(ξαhE

∗
h + β2I

∗
v )
)

− 1

S∗h

(
1− S∗h

Sh

)
Sh

∫ ∞
0

β1(a)ih(t, a)da

− 1

S∗h

(
1− S∗h

Sh

)
β2ShIv +

Sh
S∗h

∫ ∞
0

β1(a)ih(t, a)da

−E
∗
hSh

EhS∗h

∫ ∞
0

β1(a)ih(t, a)da+ β2Iv
Sh
S∗h

−β2I
∗
v

IvShE
∗
h

I∗vS
∗
hEh

− αh + µh
S∗h

Eh +
αh + µh
S∗h

E∗h

= µh

(
2− S∗h

Sh
− Sh
S∗h

)
+ (ξαhE

∗
h + β2I

∗
v )
(

1− S∗h
Sh

)
+

∫ ∞
0

β1(a)ih(t, a)da+ β2Iv

−
∫ ∞

0

β1(a)ih(t, a)
E∗hSh
EhS∗h

da− β2I
∗
v

IvShE
∗
h

I∗vS
∗
hEh

−ξαhEh − β2I
∗
v

Eh
E∗h

+ ξαhE
∗
h + β2I

∗
v .

Secondly,

dW2

dt

=
β2I
∗
v

ηαhE∗h

∫ ∞
0

ρ1(a)
(

1− i∗h(a)

ih(t, a)

)(
− ∂ih(t, a)

∂a
− δ(a)ih(t, a)

)
da

+

∫ ∞
0

ρ2(a)
(

1− i∗h(a)

ih(t, a)

)(
− ∂ih(t, a)

∂a
− δ(a)ih(t, a)

)
da.

Note that ρ1(0) = η and

i∗h(a)
∂

∂a

(
g
( ih(t, a)

i∗h(a)

))
=
(

1− i∗h(a)

ih(t, a)

)(∂ih(t, a)

∂a
+ δ(a)ih(t, a)

)
.

Then, with integration by parts, we obtain∫ ∞
0

ρ1(a)
(

1− i∗h(a)

ih(t, a)

)(∂ih(t, a)

∂a
+ δ(a)ih(t, a)

)
da

=

∫ ∞
0

ρ1(a)i∗h(a)
∂

∂a

(
g
( ih(t, a)

i∗h(a)

))
da

= ρ1(a)i∗h(a)g
( ih(t, a)

i∗h(a)

)∣∣∣a=∞

a=0

−
∫ ∞

0

g
( ih(t, a)

i∗h(a)

)
(ρ′1(a)i∗h(a) + ρ1(a)i∗′h (a))da

= ρ1(a)i∗h(a)g
( ih(t, a)

i∗h(a)

)∣∣∣
a=∞

− ρ1(0)i∗h(0)g
( ih(t, 0)

i∗h(0)

)
+

∫ ∞
0

k(a)i∗h(a)g
( ih(t, a)

i∗h(a)

)
da.
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Similarly, ∫ ∞
0

ρ2(a)
(

1− i∗h(a)

ih(t, a)

)(∂ih(t, a)

∂a
+ δ(a)ih(t, a)

)
da

= ρ2(a)i∗h(a)g
( ih(t, a)

i∗h(a)

)∣∣∣
a=∞

− ρ2(0)i∗h(0)g
( ih(t, 0)

i∗h(0)

)
+

∫ ∞
0

β1(a)i∗h(a)g
( ih(t, a)

i∗h(a)

)
da.

Therefore, with the help of ih(t, 0) = αhEh and i∗h(0) = αhE
∗
h, we get

dW2

dt

= β2I
∗
vg
(Eh
E∗h

)
− β2I

∗
v

ηαhE∗h
ρ1(a)i∗h(a)g

( ih(t, a)

i∗h(a)

)∣∣∣
a=∞

− β2I
∗
v

ηαhE∗h

∫ ∞
0

k(a)i∗h(a)g
( ih(t, a)

i∗h(a)

)
da+ ξαhE

∗
hg
(Eh
E∗h

)
−ρ2(a)i∗h(a)g

( ih(t, a)

i∗h(a)

)∣∣∣
a=∞

−
∫ ∞

0

β1(a)i∗h(a)g
( ih(t, a)

i∗h(a)

)
da.

Finally,

dW3

dt

=
β2I
∗
v

(αv + µv)E∗v

(
1− S∗v

Sv

)(
λv −

∫ ∞
0

k(a)Svih(t, a)da− µvSv
)

+
β2I
∗
v

(αv + µv)E∗v

(
1− E∗v

Ev

)(∫ ∞
0

k(a)Svih(t, a)da− (αv + µv)Ev

)
+
β2

µv

(
1− I∗v

Iv

)
(αvEv − µvIv).

Since

λv = µvS
∗
v + ηαhE

∗
hS
∗
v ,

ηαhE
∗
hS
∗
v = (αv + µv)E

∗
v ,

β2I
∗
v

(αv + µv)E∗v
=

β2I
∗
v

ηαhE∗hS
∗
v

,

we have

dW3

dt
=

β2I
∗
v

ηαhE∗hS
∗
v

(
1− S∗v

Sv

)
(µvS

∗
v − µvSv)

+
β2I
∗
v

ηαhE∗hS
∗
v

(
1− S∗v

Sv

)
ηαhE

∗
hS
∗
v

− β2I
∗
v

ηαhE∗hS
∗
v

(
1− S∗v

Sv

)
Sv

∫ ∞
0

k(a)ih(t, a)da

+
β2I
∗
v

ηαhE∗hS
∗
v

(
1− E∗v

Ev

)
Sv

∫ ∞
0

k(a)ih(t, a)da

−β2I
∗
v

(
1− E∗v

Ev

)Ev
E∗v

+ β2I
∗
v

Ev
E∗v
− β2Iv − β2I

∗
v

I∗vEv
IvE∗v

+ β2I
∗
v
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=
β2I
∗
vµv

ηαhE∗h

(
2− S∗v

Sv
− Sv
S∗v

)
− β2I

∗
v

(S∗v
Sv
− 1
)

+β2I
∗
v

∫ ∞
0

k(a)ih(t, a)da− β2I
∗
v

ηαhE∗h

E∗vSv
EvS∗v

∫ ∞
0

k(a)ih(t, a)da

+β2I
∗
v − β2Iv − β2I

∗
v

I∗vEv
IvE∗v

+ β2I
∗
v .

To summarize, we have obtained

dW

dt
= µh

(
2− S∗h

Sh
− Sh
S∗h

)
− (ξαhE

∗
h + β2I

∗
v )
(S∗h
Sh
− 1− ln

S∗h
Sh

)
−
∫ ∞

0

β1(a)i∗h(a)
( ih(t, a)E∗hSh
i∗h(a)EhS∗h

− 1− ln
ih(t, a)E∗hSh
i∗h(a)EhS∗h

)
da

−β2I
∗
v

IvShE
∗
h

I∗vS
∗
hEh

− (ξαhE
∗
h + β2I

∗
v )
(Eh
E∗h
− 1− ln

Eh
E∗h

)
+β2I

∗
vg
(Eh
E∗h

)
+ ξαhE

∗
hg
(Eh
E∗h

)
−
( β2I

∗
v

ηαhE∗h
ρ1(a) + ρ2(a)

)
i∗h(a)g

( ih(t, a)

i∗h(a)

)∣∣∣
a=∞

− β2I
∗
v

ηαhE∗h

∫ ∗
0

k(a)i∗h(a)
( ih(t, a)E∗vSv
i∗h(a)EvS∗v

− 1− ln
ih(t, a)E∗vSv
i∗h(a)EvS∗v

)
da

+
β2I
∗
vµv

ηαhE∗h

(
2− S∗v

Sv
− Sv
S∗v

)
− β2I

∗
v

(S∗v
Sv
− 1− ln

S∗v
Sv

)
−β2I

∗
v

(I∗vEv
IvE∗v

− 1− ln
I∗vEv
IvE∗v

)
+ β2I

∗
v

(
1 + ln

IvShE
∗
h

I∗vS
∗
hEh

)
= µh

(
2− S∗h

Sh
− Sh
S∗h

)
− (ξαhE

∗
h + β2I

∗
v )g
(S∗h
Sh

)
−
∫ ∞

0

β1(a)i∗h(a)g
( ih(t, a)E∗hSh
i∗h(a)EhS∗h

)
da− β2I

∗
vg
( IvShE∗h
I∗vS

∗
hEh

)
−
( β2I

∗
v

ηαhE∗h
ρ1(a) + ρ2(a)

)
i∗h(a)g

( ih(t, a)

i∗h(a)

)∣∣∣
a=∞

− β2I
∗
v

ηαhE∗h

∫ ∞
0

k(a)i∗h(a)g
( ih(t, a)E∗vSv
i∗h(a)EvS∗v

)
da

+
β2I
∗
vµv

ηαhE∗h

(
2− S∗v

Sv
− Sv
S∗v

)
− β2I

∗
vg
(S∗v
Sv

)
− β2I

∗
vg
(I∗vEv
IvE∗v

)
≤ 0.

Therefore, W is nonincreasing. Since W is bounded on X(·), the alpha limit set of
X(·) must be contained in the largest invariant subset of {dWdt = 0}, which is easily
identified to be {E∗}. It follows that W (X(t)) ≤ W (E∗) for all t ∈ R. This gives
X(t) ≡ E∗ and hence A = {E∗}, which completes the proof.

5. Numerical simulations. In this section, we illustrate the theoretical results
obtained in Section 4 with numerical simulations. For this purpose, we take k(a) =
k. For the form of β1(a), we give some explanation. In general, when the infection
age a is relatively small, the age-dependent horizontal transmission rate β1(a) of
the disease from the infectious hosts to susceptible hosts is relatively small. With
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the increase of the infection age, the infection rate also increases and then tends to
a constant. When the infection age is very large, the infection rate is reduced to 0
due to the loss of infectivity. Similar explanation can be given for the form of the
age-dependent recovery rate γ(a). For some more details, we refer readers to [4, 6].
Therefore, we take the following forms for β1 and γ in the simulations.

β1(a) =



c1, 0 ≤ a < 10,

c1 + c2(a− 10)e−0.009(a−25)2 , 10 ≤ a < 25,

c2, 25 ≤ a < 50,

0, a ≥ 50,

and

γ(a) =



0, 0 ≤ a < 10,

c3
15 (arctan 50)(a− 10), 10 ≤ a < 25,

c3 arctan(75− a), 25 ≤ a < 50,

c3 arctan(25), a ≥ 50.

We first set parameters λh = 10, λv = 500, µh = 0.008, β2 = 1.81 × 10−7,
µv = 0.05, αh = 0.833, αv = 0.05, k = 4.1665 × 10−5, c1 = 0.00003, c2 = 0.00005,
and c3 = 5.6 × 10−6, which are chosen from some recent studies [4, 6]. With
these parameters, the basic reproductive number is R0 = 0.8286 < 1. Thus,
the infection-free equilibrium E0 is globally asymptotically stable by Theorem 4.1.
Fig. 1 shows the time evolution of the solution with the initial value (1000, 100, 5(a+
3)e−0.2(a+3), 10000, 100, 1000).

Next, we take another set of parameter values, λh = 10, λv = 500, µh = 0.008,
β2 = 1.81 × 10−6, µv = 0.01, αh = 0.08333, αv = 0.05, k = 4.1665 × 10−5, c1 =
0.00003, c2 = 0.00005, and c3 = 5.6 × 10−6. In this case, R0 = 9.2655 > 1. Then
Theorem 4.3 tells us that the infected equilibrium E∗ is globally asymptotically
stable. Fig. 2 supports this with the time evolution of the solution with the initial
value (1000, 100, 0.5(a+ 3)e−0.2(a+3), 10000, 100, 1000).

6. Conclusion. Infection age is a very important factor in the transmission of
infectious diseases such as malaria, TB, and HIV. In this paper, we incorporated
infection age into a vector-host epidemic model with direct transmission. In the
model, we also took into account the exposed individuals in both human and vector
populations. We assumed that the level of contagiousness and the rate of removal
(recovery) of infected hosts depend on the infection age. Therefore, our model
is described by a system of ordinary differential equations coupled with a partial
differential equation, which is very challenging to study because it is an infinitely
dimensional system. With the approach of Lyapunov functionals and some recently
developed techniques on global analysis in [15, 16], we have established a threshold
dynamics completely determined by the basic reproduction number. That is, the
infection-free equilibrium is globally asymptotically stable if the basic reproduction
number is less than one while the infected equilibrium is globally asymptotically
stable if the basic reproduction number is greater than one. Numerical simulations
are conducted to illustrate the stability results.

Our result supports the claim that infection age can affect the number of av-
erage secondary infections, that is, the effect of infection age is embodied in the
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Figure 1. When R0 < 1, the infection-free equilibrium E0 of (2)
is globally asymptotically stable. Here since Eh(t) converges to 0
very fast, we use the time interval [0, 100] different from the interval
[0, 1000] for other components.

expression of the basic reproduction number R0. By appropriate control measures,
one can decrease the survival probability to infection age a, σ(a), the horizontal
transmission rate β1(a), and the biting rate k(a). This will decrease the value of
R0 and possibly will eliminate the disease. Even if we cannot eliminate the disease,
from the expression of the infected equilibrium one can easily show that this will
decrease the levels of E∗h, i∗h(0), E∗v , and I∗v . Because of the globally asymptotical
stability of E∗, we can keep the infection at a tolerance level.
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Figure 2. When R0 > 1, the infected equilibrium E∗ of (2) is
globally asymptotically stable.
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