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Abstract. We consider a model based on the logistic equation and linear ki-

netics to study the effect of toxicants with various initial concentrations on

a cell population. To account for parameter uncertainties, in our model the
coefficients of the linear and the quadratic terms of the logistic equation are

affected by noise. We show that the stochastic model has a unique positive

solution and we find conditions for extinction and persistence of the cell popu-
lation. In case of persistence we find the stationary distribution. The analytical

results are confirmed by Monte Carlo simulations.

1. Introduction. Cell-based in vitro assays [27] are efficient methods to study
the effect of industrial chemicals on environment or human health. Our work is
based on the cytotoxicity profiling project carried by Alberta Centre for Toxicology
in which initially 63 chemicals were investigated using the xCELLigence Real-Time
Cell Analysis High Troughput (RTCA HT) Assay [26]. We consider a mathematical
model represented by stochastic differential equations to study cytotoxicity, i.e. the
effect of toxicants on human cells, such as the killing of cells or cellular pathological
changes.

The cells were seeded into wells of micro-electronic plates (E-Plates), and the test
substances with 11 concentrations (1:3 serial dilution from the stock solution) were
dissolved in the cell culture medium [20]. The microelectrode electronic impedance
value was converted by a software to Cell Index (n), which closely reflects not
only cell growth and cell death, but also cell morphology. The time-dependent
concentration response curves (TCRCs) for each test substance in each cell line
were generated [26] and based on these curves the toxicants in the present study
were divided in 10 groups [30]. In Fig. 1 we display the TCRCs for the toxicant
monastrol.

The success of clustering and classification methods depends on providing TCRCs
that illustrates the cell population evolution from persistence to extinction. In [1]
we consider a model represented by a system of ordinary differential equations to
determine an appropriate range for the initial concentration of the toxicant. The
model’s parameters were estimated based on the data included in the TCRCs [1].
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Figure 1. TCRCs for monastrol

Let n(t) be the cell index, which closely reflects the cell population, Co(t) be
the concentration of internal toxicants per cell, and Ce(t) be the concentration
of toxicants outside the cells at time t. We suppose that the toxicants do not
exist in the cells before experiments, so Co(0) = 0, and that Ce(0) is equal to the
concentration of toxicant used in the experiments. We assume that the death rate
of cells is linearly dependent on the concentration Co of internal toxicants and we
consider linear kinetic, so we get the following deterministic model [1]:

dn(t)

dt
= βn(t)− γn2(t)− αCo(t)n(t), (1)

dCo(t)

dt
= λ2

1Ce(t)− η2
1Co(t), (2)

dCe(t)

dt
= λ2

2Co(t)n(t)− η2
2Ce(t)n(t) (3)

Here β > 0 denotes the cell growth rate, γ = β
K , where K > 0 is the capacity

volume, α > 0 is the cell death rate, λ2
1 represents the uptake rate of the toxicant

from environment, η2
1 is the toxicant input rate to the environment, λ2

2 is the toxicant
uptake rate from cells, and η2

2 represents the losses rate of toxicants absorbed by
cells.

The deterministic model (1)-(3) is a special case of the class of models proposed
in [5], and it is related to the models considered in [7, 11, 15]. However, since
we consider an acute dose of toxicant instead of a chronic one, the analysis of the
survival/death of the cell population is different from the one done in the previously
mentioned papers.

We have noticed that, for the toxicants considered here, the estimated values of
the parameters η1, η2, λ1, and λ2 verify η2

1η
2
2 − λ2

1λ
2
2 > 0 [1]. In this case we have

0 < Ce(t) ≤ Ce(0), 0 ≤ Co(t) ≤ λ2
1Ce(0)

η21
, and n(t) > 0, for all t ≥ 0. (see Lemma 3.1

in [1]). Moreover from Theorem 3.2 in [1] we know that limt→∞ Ce(t) exists and its
value determines the asymptotic behavior of the system:

1. If limt→∞ Ce(t) <
βη21
αλ2

1
then the population is uniformly persistent:

lim
t→∞

n(t) = K, lim
t→∞

Co(t) = lim
t→∞

Ce(t) = 0.
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2. If limt→∞ Ce(t) >
βη21
αλ2

1
then |n|1 =

∫∞
0
n(t)dt < ∞ and the population goes

to local extinction:

lim
t→∞

n(t) = 0, lim
t→∞

Co(t) = C∗e
λ2

1

η2
1

, lim
t→∞

Ce(t) = C∗e >
βη2

1

αλ2
1

,

In practice we usually estimate a parameter by an average value plus an error
term. To keep the stochastic model as simple as possible, we ignore the relationship
between the parameters β and γ, and we replace them by the random variables

β̃ = β + error1 , γ̃ = γ + error2 (4)

By the central limit theorem, the error terms may be approximated by a normal dis-
tribution with zero mean. Thus we replace equation (1) by a stochastic differential
equation and, together with equations (2) and (3), we get the stochastic model

dn(t) = n(t) (β − γn(t)− αCo(t)) dt+ σ1n(t)dB1(t)− σ2n
2(t)dB2(t), (5)

dCo(t) = (λ2
1Ce(t)− η2

1Co(t))dt, (6)

dCe(t) = (λ2
2Co(t)n(t)− η2

2Ce(t)n(t))dt, (7)

Here σi ≥ 0, i = 1, 2 are the noise intensities. (Ω,F , {Ft}t≥0,P) is a complete
probability space with an increasing, right continuous filtration {Ft}t≥0 such that
F0 contains all P-null sets, and Bi, i = 1, 2 are independent standard Brownian
motions defined on the above probability space.

Several versions of a stochastic logistic equation similar with (5) were considered
in [18], [19], [8], [9], [10] and [21]. The system of stochastic differential equations (5)-
(7) is closely related with the stochastic models in a polluted environment considered
in [15], [16], and [24]. However, for the models considered in these papers, instead
of the equations (6) and (7), Co(t) and Ce(t) obey two linear equations without any
terms involving n(t). Moreover, instead of a combination of linear and quadratic
terms as in (5), in [15] only a linear stochastic term is considered, and in [16]
two stochastic competitive models are considered including exclusively either linear
stochastic terms or quadratic stochastic terms.

In this paper we extend the methods applied in [15] and [16] to find conditions
for extinction, weakly persistence, and weakly stochastically permanence for the
model (5)-(7). In addition to this we focus on the ergodic properties when the cell
population is strongly persistent. The main contribution of this paper is the proof
that n(t) converges weakly to the unique stationary distribution. If only one of the
noise variances σ2

1 , σ2
2 is non-zero, we also determine the density of the stationary

distribution. For the study of the ergodic properties we apply techniques used for
stochastic epidemic models in [4], [28], [29] and [23], and for a stochastic population
model with partial pollution tolerance in a polluted environment in [25].

In the next section we prove that there is a unique non-negative solution of
system (5)-(7) for any non-negative initial value. In section 3 we investigate the
asymptotic behavior, and in section 4 we study the weak convergence of n(t) to the
unique stationary distribution using Lyapunov functions. Numerical simulations
that illustrate our results are presented in section 5. The last section of the paper
contains a short summary and conclusions.

2. Existence and uniqueness of a positive solution. We have to show that
system (5)-(7) has a unique global positive solution in order for the stochastic model
to be appropriate. Let R+ = {x ∈ R : x ≥ 0}, and R∗+ = {x ∈ R : x > 0}.
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Since equations (6) and (7) are linear in Co and Ce we have

Co(t) = Co(0)e−η
2
1t + λ2

1e
−η21t

∫ t

0

Ce(s)e
η21sds (8)

Ce(t) = Ce(0) exp

(
−η2

2

∫ t

0

n(s)ds

)
+ λ2

2 exp

(
−η2

2

∫ t

0

n(s)ds

)
∫ t

0

Co(s)n(s) exp

(
η2

2

∫ s

0

n(l)dl

)
ds, t ≥ 0. (9)

Let’s define the differential operator L associated with the system (5)-(7) by

L =
∂

∂t
+
(
βn− γn2 − αCon

) ∂

∂n
+ (λ2

1Ce − η2
1Co)

∂

∂Co
+ (λ2

2Con

− η2
2Cen)

∂

∂Ce
+

1

2

(
(σ2

1n
2 + σ2

2n
4)
∂2

∂2n

)
For any function V ∈ C2,1

(
R3 × (0,∞);R

)
, by Itô’s formula ([17]) we have

dV (x(t), t) = LV (x(t), t)dt+
∂V (x(t), t)

∂n

(
σ1n(t)dB1(t)− σ2n

2(t)dB2(t)
)
, (10)

where x(t) = (n(t), Co(t), Ce(t))
′, t ≥ 0.

Theorem 2.1. Let D = R∗+ × R+ × R∗+. For any given initial value x(0) ∈ D the
system (5)-(7) has a unique global positive solution almost sure (a.s.), i.e. P{x(t) ∈
D, t ≥ 0} = 1.

Proof. The proof is similar with the proof of theorem 3.1 in [29]. Since the coeffi-
cients are locally Lipschitz continuous functions, there exists a unique solution on
[0, τe), where τe is the explosion time ([3]). To prove that the solution is in D and
τe =∞ we define the stopping time

τm = inf{t ∈ [0, τe) : min{n(t), Ce(t)} ≤ m−1 or max{n(t), Co(t),

Ce(t)} ≥ m}, (11)

where m > m0 and m0 > 0 is a positive integer sufficiently large such that n(0) ∈
[1/m0,m0], 0 ≤ Co(0) ≤ m0, and Ce(0) ∈ [1/m0,m0]. Here we set inf ∅ = ∞.
Obviously {τm} is increasing and let τ∞ = limn→∞ τm, where 0 ≤ τ∞ ≤ τe a.s..
From formula (8) it is easy to see that Co(t) ≥ 0 for any t < τ∞.

We show that τ∞ = ∞ a.s., so τe = ∞ a.s. and the solution is in D for any
t ≥ 0 a.s. Assume that there exists T > 0, and ε > 0 such that P (τ∞ ≤ T ) > ε.
Thus there exists an integer m1 ≥ m0 such that P (Θm) ≥ ε for any m ≥ m1, where
Θm = {τm ≤ T}.

We define the C3− function V : D → R∗+ as follows

V (x) = Co +
α

4λ2
2

(Ce − logCe − 1) +
αCe
4λ2

2

+
(√
n− log

√
n− 1

)
+ n.

We get

LV (x) = (λ2
1Ce − η2

1Co) +
α

4λ2
2

(
1− 1

Ce

)
(λ2

2Con− η2
2Cen)

+
α

4λ2
2

(λ2
2Con− η2

2Cen) +
(
βn− γn2 − αCon

)( 1

2
√
n
− 1

2n

)
+

1

2
(σ2

1n
2
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+ σ2
2n

4)

(
− 1

4n
√
n

+
1

2n2

)
+
(
βn− γn2 − αCon

)
Omitting some of the negative terms, for any x ∈ D we have

LV (x) ≤ λ2
1Ce +

αCon

4
+
αCon

4
+
αCo

2
− αCon+ f(n),

≤ λ2
1Ce +

αCo
2

+ f(n),

where

f(n) = −σ
2
2n

2
√
n

8
+

α

4λ2
1

η2
2n+

β
√
n

2
+
γn

2
+
σ2

1

4
+
σ2

2n
2

4
+ βn

Since f is continuous on (0,∞) and limn→∞ f(n) = −∞ it can easily be shown that
LV (x) ≤ CV (x) + C, where the constant C > 0 and x ∈ D.

Let’s define Ṽ (t, x) = e−Ct(1 + V (x)). We have

LṼ (x, t) = −Ce−Ct(1 + V (x)) + e−CtLV (x) ≤ 0.

Using Itô’s formula (10) for Ṽ and taking expectation we have for any m ≥ m1:

E
[
Ṽ (x(t ∧ τm), t ∧ τm)

]
= Ṽ (x(0), 0) + E

[∫ t∧τm

0

LṼ (x(u ∧ τm), u ∧ τm)du

]
≤ Ṽ (x(0), 0).

Notice that for any ω ∈ Θm, m ≥ m1 we have V (x(τm, ω)) ≥ bm = min{V (y)|y =
(y1, y2, y3)′ has the components y1 or y3 equal with m−1 or m, or y2 = m}. Hence

E [V (x(τm, ω))IΘm
(ω)] ≥ P (Θm)bm ≥ εbm →∞

as m → ∞. But E [V (x(τm, ω))IΘm(ω)] ≤ eCT Ṽ (x(0), 0)) < ∞, for any m ≥ m1.
Thus we have proved by contradiction that τ∞ =∞.

Here we focus on the case when n(0) > 0, we have only an acute dose of toxicant
Ce(0) > 0, Co(0) = 0, and the external concentration of toxicant Ce(t) is never
larger than Ce(0). For this we have to impose some conditions on the parameters.
Similarly with the deterministic case we obtain the following results (for completion
the proofs are included in Appendix A and Appendix B).

Lemma 2.2. If η2
1η

2
2 − λ2

1λ
2
2 > 0, n(0) > 0, Ce(0) > 0, and Co(0) = 0 then almost

surely we have 0 < Ce(t) ≤ Ce(0), 0 ≤ Co(t) ≤ λ2
1Ce(0)

η21
for all t ≥ 0.

Theorem 2.3. If η2
1η

2
2 − λ2

1λ
2
2 > 0, n(0) > 0, Ce(0) > 0, and Co(0) = 0 , then

almost surely limt→∞ Co(t) and limt→∞ Ce(t) exist and

lim
t→∞

Co(t) =
λ2

1

η2
1

lim
t→∞

Ce(t).

3. Survival analysis. In this section we assume that n(0) > 0, Co(0) = 0, Ce(0) >
0. We have the following definitions ([16]).

Definition 3.1. The population n(t) is said to go to extinction a.s. if limt→∞ n(t) =
0 a.s..

Definition 3.2. The population n(t) is weakly persistent a.s. if lim supt→∞ n(t) >
0 a.s..
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Definition 3.3. The population n(t) is said to be strongly persistent a.s. if
lim inft→∞ n(t) > 0 a.s..

Definition 3.4. The population n(t) is said to be stochastically permanent if for

any ε > 0 there exist the positive constants c1(ε) and c2(ε) such that lim inf
t→∞

P

(
n(t)

≤ c1(ε)

)
≥ 1− ε and lim inf

t→∞
P (n(t) ≥ c2(ε)) ≥ 1− ε.

Theorem 3.5. a. If β − σ2
1

2 − α lim inf
t→∞

∫ t
0
Co(s)ds

t < 0 a.s. then the population n(t)

goes exponentially to extinction a.s..

b. If β− σ2
1

2 −α lim inf
t→∞

∫ t
0
Co(s)ds

t > 0 a.s. then the population n(t) is weakly persistent
a.s.

Proof. The proof is similar with the proof of Theorem 6 in [16]. We start with some
preliminary results. By Itô’s formula in (5) we have

d lnn(t) =

(
β − γn(t)− αCo(t)−

σ2
1 + σ2

2n
2(t)

2

)
dt+ σ1dB1(t)− σ2n(t)dB2(t).

This means that we have

lnn(t)− lnn(0) =

(
β − σ2

1

2

)
t− γ

∫ t

0

n(s)ds− α
∫ t

0

Co(s)ds

− σ2
2

2

∫ t

0

n2(s)ds+ σ1B1(t)− σ2

∫ t

0

n(s)dB2(s),

(12)

Notice that the quadratic variation [17] of M(t) = −σ2

∫ t
0
n(s)dB2(s) is

〈M(t),M(t)〉 = σ2
2

∫ t

0

n2(s)ds.

Now we do the proof for part a. Using the exponential martingale inequality
(Theorem 7.4 [17]) and Borel-Cantelli lemma ([22], pp. 102), and proceeding as
in the proof of Theorem 6 in [16] we can show that for almost all ω there exists a
random integer n0 = n0(ω) such that for all n ≥ n0 we have

sup
0≤t≤n

(
M(t)− 1

2
〈M(t),M(t)〉

)
≤ 2 lnn.

Hence, for all n ≥ n0 and all 0 ≤ t ≤ n we have

− σ2
2

2

∫ t

0

n2(s)ds− σ2

∫ t

0

n(s)dB2(s) ≤ 2 lnn a.s..

Substituting the above inequality in (12) we get

lnn(t)− lnn(0)

t
≤ β − σ2

1

2
− α

∫ t
0
Co(s)ds

t
+ σ1

B1(t)

t
+ 2

lnn

n− 1
a.s.,

for all n ≥ n0, and any 0 < n−1 ≤ t ≤ n. Since limt→∞
B(t)
t = 0 a.s. (see Theorem

3.4 in [17]) we get

lim sup
t→∞

lnn(t)

t
≤ β − σ2

1

2
− α lim inf

t→∞

∫ t
0
Co(s)ds

t
< 0 a.s..
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Next we prove part b. Suppose that P (Ω) > 0 where Ω = {lim supt→∞ n(t) ≤ 0}.
From Theorem 2.1 we know that n(t) > 0 , t ≥ 0 a.s., so P (Ω1) > 0 where
Ω1 = {limt→∞ n(t) = 0}, and Ω1 ⊆ Ω. Thus, for any ω ∈ Ω1 we have

lim sup
t→∞

lnn(t, ω)

t
≤ 0 (13)

Moreover, from the law of large numbers for local martingales (Theorem 3.4 in [17])
there exists a set Ω2 ⊆ Ω1 with P (Ω2) > 0 such that for any ω ∈ Ω2 we have

lim
t→∞

M(t, ω)

t
= lim
t→∞

B1(t, ω)

t
= 0.

From (12) we get:

ln(n(t))

t
=

ln(n(0))

t
+

(
β − σ2

1

2

)
− α

∫ t
0
Co(s)ds

t

−

∫ t
0

(
γn(s) +

σ2
2

2 n
2(s)

)
ds

t
+ σ1

B1(t)

t
+
M(t, ω)

t

Hence, for any ω ∈ Ω2 we have

lim sup
t→∞

lnn(t, ω)

t
=

(
β − σ2

1

2

)
− α lim inf

t→∞

∫ t
0
Co(s, ω)ds

t

Since we know that β − σ2
1

2 − α lim inf
t→∞

∫ t
0
Co(s,ω)ds

t > 0 a.s., we have a contradiction

with (13), so lim supt→∞ n(t) > 0 a.s.

We have the following result regarding the expectation of n(t).

Lemma 3.6. There exists a constant K1 > 0 such that supt≥0E[n(t)] ≤ K1.

Proof. Using Itô’s formula in (5) we get:

d(etn(t)) = n(t)et
(

1 + β − αCo(t)− γn(t)

)
dt+ σ1n(t)etdB1(t)− σ2n

2(t)

etdB2(t) ≤ n(t)et (1 + β − γn(t)) dt+ σ1n(t)etdB1(t)− σ2n
2(t)etdB2(t)

≤ et (1 + β)2

4γ
dt+ σ1n(t)etdB1(t)− σ2n

2(t)etdB2(t) (14)

Let

ηm = inf{t ≥ 0 : n(t) /∈ (1/m,m)}, (15)

for any m > m0, where m0 > 0 was defined in the proof of Theorem 2.1. Obviously
ηm ≥ τm, m > m0, where τm is given in (11). In Theorem 2.1 we have proved that
limm→∞ τm =∞ a.s., so we also have limm→∞ ηm =∞ a.s.. Taking expectation in
(14) we get:

E
[
et∧τmn(t ∧ τm)

]
≤ n(0) + E

[∫ t∧τm

0

es
(1 + β)2

4γ
ds

]
≤ n(0) +

(1 + β)2

4γ
(et − 1).

Letting m→∞ we get

E [n(t)] ≤ n(0)

et
+

(1 + β)2

4γ
(1− e−t).

Thus, there exists a constant K1 > 0 such that supt≥0E[n(t)] ≤ K1.
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Corollary 1. For any ε > 0 there exists c1(ε) such that lim inft→∞ P(n(t) ≤
c1(ε)) ≥ 1− ε.

Proof. For any ε > 0, set c1(ε) = K1/ε, where the constant K1 > 0 is given in the
previous lemma. From the Markov’s inequality [22] we obtain

P (n(t) > c1(ε)) ≤ E[n(t)]

c1(ε)
.

Hence, from Lemma 3.6 we get

lim sup
t→∞

P (n(t) > c1(ε)) ≤ lim sup
t→∞

E[n(t)]

c1(ε)
≤ ε.

Theorem 3.7. If η2
1η

2
2−λ2

1λ
2
2 > 0 and β−σ2

1−α
λ2
1Ce(0)

η21
> 0, then the cell population

is stochastically permanent.

Proof. First we show that lim supt→∞E[1/n(t)] ≤ M2, where M2 is a positive
constant.

By Itô’s formula in (5) we get for any real constant c:

d

(
ect

n(t)

)
= ect

(
1

n(t)

(
c− β + σ2

1 + αCo(t)
)

+ γ + σ2
2n(t)

)
dt

− σ1e
ct

n(t)
dB1(t) + σ2e

ctdB2(t)

Since η2
1η

2
2 − λ2

1λ
2
2 > 0, from Lemma 2.2 we know that 0 ≤ Co(t) ≤ λ2

1Ce(0)

η21
for all

t ≥ 0 a.s..We choose any 0 < c < β − σ2
1 − α

λ2
1Ce(0)

η21
, and we get:

d

(
ect

n(t)

)
≤ ect

(
γ + σ2

2n(t)

)
dt− σ1e

ct

n(t)
dB1(t) + σ2e

ctdB2(t) (16)

Taking expectation in (16) and using Lemma 3.6 we get:

E

[
ec(t∧ηm)

n(t ∧ ηm)

]
≤ 1

n(0)
+ E

[∫ t∧ηm

0

ecs
(
γ + σ2

2n(s)
)
ds

]
≤ 1

n(0)
+
(
γ + σ2

2K1

) (ect − 1)

c
,

where ηm was defined in (15). Letting m→∞ we get

E

[
1

n(t)

]
≤ 1

n(0)ect
+

(
γ + σ2

2K1

)
c

(1− e−ct),

so lim sup
t→∞

E[1/n(t)] ≤M2, where 0 < M2 = (γ + σ2
2K1)/c.

Next we show that for any ε > 0 there exists c2(ε) such that lim inf
t→∞

P(n(t) ≥
c2(ε)) ≥ 1− ε.

For any ε > 0 set c2(ε) = ε/M2. From Markov’s inequality we have

P(n(t) < c2(ε)) = P
(

1

n(t)
>

1

c2(ε)

)
≤ c2(ε)E

[
1

n(t)

]
Hence

lim sup
t→∞

P (n(t) < c2(ε)) ≤ ε lim sup
n→∞

E[1/n(t)]/M2 ≤ ε.
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Thus lim inft→∞ P(n(t) ≥ c2(ε)) ≥ 1−ε, and this inequality and Corollary 1 implies
that n(t) is stochastically permanent.

4. Stationary distributions. The deterministic system (1)-(3) has a maximum

capacity equilibrium point (K, 0, 0)
′
, where K is the capacity volume ([1]). For

the stochastic system (5)-(7), (K, 0, 0)
′

is not a fixed point, and, when the cell
population is persistent, we no longer have limt→∞ n(t) = K. In this section we
study the asymptotic behavior of n(t) when limt→∞ Co(t) = 0 a.s..

For stochastic differential equations, invariant and stationary distributions play
the same role as fixed points for deterministic differential equations. In general, let
X(t) be the temporally homogeneous Markov process in E ⊆ Rl representing the
solution of the stochastic differential equation

dX(t) = b(X(t))dt+

d∑
r=1

σr(X(t))dBr(t), (17)

where Br(t), r = 1, . . . , d are standard Brownian motions. We define the operator
L associated with equation (17):

L =

l∑
i=1

bi(x)
∂

∂xi
+

1

2

l∑
i,j=1

Ai,j(x)
∂2

∂xi∂xj
, Ai,j(x) =

d∑
r=1

σr,i(x)σr,j(x).

Let P (t, x, ·) denote the probability measure induced by X(t) with initial value
X(0) = x ∈ E: P (t, x,A) = P (X(t) ∈ A|X(0) = x), A ∈ B(E), where B(E) is the
σ−algebra of all the Borel sets A ⊆ E.

Definition 4.1. A stationary distribution [6] for X(t) is a probability measure µ
for which we have∫

E

P (t, x,A)µ(dx) = µ(A), for any t ≥ 0, and any A ∈ B(E).

Definition 4.2. The Markov process X(t) is stable in distribution if the transition
distribution P (t, x, ·) converges weakly to some probability measure µ(·) for any
x ∈ E.

It is clear that the stability in distribution implies the existence of a unique
stationary measure, but the converse is not always true [2]. We have the following
result (see lemma 2.2 in [29] and the references therein).

Lemma 4.3. Suppose that there exists a bounded domain U ⊆ E with regular
boundary, and a non-negative C2−function V such that A(x) = (Ai,j(x))1≤i,j≤l is
uniformly elliptical in U and for any x ∈ E \ U we have LV (x) ≤ −C, for some
C > 0. Then the Markov process X(t) has a unique stationary distribution µ(·)
with density in E such that for any Borel set B ⊆ E

lim
t→∞

P (t, x,B) = µ(B)

Px

{
lim
T→∞

1

T

∫ T

0

f(X(t))dt =

∫
E

f(x)µ(dx)

}
= 1,

for all x ∈ E and f being a function integrable with respect to the probability measure
µ.



1086 CRISTINA ANTON AND ALAN YONG

We now study the stochastic system (5)-(7) when limt→∞ Co(t) = 0 a.s.. We
introduce two new stochastic process X(t) and Xε(t) which are defined by the initial
conditions X(0) = Xε(0) = n(0) ∈ R∗+ and the stochastic differential equations

dX(t) =
(
βX(t)− γX2(t)

)
dt+ σ1X(t)dB1(t)− σ2X

2(t)dB2(t), (18)

dXε(t) =
(
βXε(t)− γX2

ε (t)− αεXε(t)
)
dt+ σ1Xε(t)dB1(t)

− σ2X
2
ε (t)dB2(t), (19)

Lemma 4.4. a. For any given initial value X(0) > 0, the equation (18) has a
unique global solution X(t) such that P {X(t) > 0, t ≥ 0} = 1.
b. For any ε > 0 and any given initial value Xε(0) > 0, the equation (19) has a
unique global solution Xε(t) such that P {Xε(t) > 0, t ≥ 0} = 1.
c. There exists a constant C1 > 0 such that supt≥0E[X(t)] ≤ C1 and, for any
ε > 0, supt≥0E[Xε(t)] ≤ C1.

Proof. The proofs for a. and b. can be done similarly with the proof of Theorem
2.1, using the C2-function V : R∗+ → R+, V (x) =

√
x− log

√
x− 1. The proof of c.

is analogous with the proof of Lemma 3.6.

Let PX(t, x, ·) denote the probability measure induced by X(t) with initial value
X(0) = x ∈ R∗+, t ≥ 0. In the following theorem, using Lemma 4.3, we show that
the Markov process X(t) is stable in distribution.

Theorem 4.5. If σ2
1 < 2β then the Markov process X(t) has a unique stationary

distribution µ1(·) with density in R∗+ such that for any Borel set B ⊆ R∗+

lim
t→∞

PX(t, x,B) = µ1(B)

Px

{
lim
T→∞

1

T

∫ T

0

f(X(t))dt =

∫
E

f(x)µ1(dx)

}
= 1,

for all x ∈ R∗+ and f being a function integrable with respect to the probability
measure µ1.

Proof. We consider the C2-function V : R∗+ → R+, V (x) =
√
x− log

√
x−1. Simple

calculations show that

LV (x) = −σ
2
2

8
x5/2 +

σ2
2

4
x2 − γ

2
x3/2 +

γ

2
x+

(
β

2
− σ2

1

8

)
x1/2 +

(
σ2

1

4
− β

2

)
.

Since LV (·) is a continuous function on R∗+ and LV (0) =
σ2
1

4 −
β
2 < 0, there exists a

constant A1 > 0 such that LV (x) < −C1 for any x ∈ (0, A1], for some C1 > 0. We
also have limx→∞ LV (x) = −∞. Thus, there exists a constant A2 > A1 > 0 such
that LV (x) < −C2 for any x ∈ [A2,∞), for some C2 > 0.

Let U = (A1, A2) ⊂ R∗+. Then U is a bounded domain, and LV (x) < −C for
any x ∈ R∗+ \ U , where C > 0 is the minimum between C1 and C2. Notice that
A(x) = σ2

1x
2 + σ2

2x
4 is uniformly elliptical on U , so the assumptions of Lemma 4.3

are met. Therefore, the Markov process X(t) has a unique stationary distribution
µ1(·) and it is ergodic.

Let define the processes N(t) = 1/n(t) a.s., Y (t) = 1/X(t) a.s., Yε(t) = 1/Xε(t)
a.s., t ≥ 0, with N(0) = Y (0) = Yε(0) = 1/n(0) > 0. Then from Lemma 4.4 and
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Theorem 2.1 we have P{N(t) > 0, Y (t) > 0, Yε(t) > 0, t ≥ 0} = 1. Applying Itô’s
formula in equations (5), (18) and (19) we get

dN(t) =

(
N(t)(σ2

1 − β) + αN(t)Co(t) + γ +
σ2

2

N(t)

)
dt− σ1N(t)dB1(t)

+ σ2dB2(t) a.s., (20)

dY (t) =

(
Y (t)(σ2

1 − β) + γ +
σ2

2

Y (t)

)
dt− σ1Y (t)dB1(t)

+ σ2dB2(t) a.s., (21)

dYε(t) =

(
Yε(t)(σ

2
1 − β + αε) + γ +

σ2
2

Yε(t)

)
dt− σ1Yε(t)dB1(t)

+ σ2dB2(t) a.s.. (22)

From the proof of Theorem 3.7 we know that if η2
1η

2
2 − λ2

1λ
2
2 > 0 and β − σ2

1 −
α
λ2
1Ce(0)

η21
> 0 then there exist a constant K2 > 0 such that supt≥0E[N(t)] ≤ K2.

We have similar results for the processes Y (t) and Yε(t).

Lemma 4.6. If σ2
1 < β then supt≥0E[Y (t)] < ∞ and supt≥0E[Yε(t)] < ∞, for

any 0 < ε <
β−σ2

1

α .

Proof. The proof is based on the results in Lemma 4.4 and it is similar with the
first part of the proof of Theorem 3.7. For completeness we have included it in
Appendix C.

We use the processes N(t), Y (t), Yε(t) to prove the main result of this section.

Theorem 4.7. Let (n(t), Co(t), Ce(t)) be the solution of the system (5)-(7) with
any initial value (n(0), Co(0), Ce(0))′ ∈ D = R∗+ × R+ × R∗+. If limt→∞ Co(t) = 0

a.s. and β − σ2
1 > 0 then n(t)

w→
t→∞

µ1, where
w→ means convergence in distribution

(weak convergence [22]) and µ1 is the probability measure on R∗+ given in Theorem
4.5.

Proof. We follow the same idea as in the proof of Theorem 2.4 in [28]. From

theorem 4.5 we know that X(t)
w→

t→∞
µ1, where µ1 is a probability measure on

R∗+. By the Continuous Mapping Theorem [22], Y (t) = 1/X(t) also converges
weakly to a probability measure ν1 on R∗+, the reciprocal of µ1. We will show that

N(t) = 1/n(t)
w→

t→∞
ν1.

Firstly, let’s notice that

Y (t) ≤ N(t) and Y (t) ≤ Yε(t) for any t ≥ 0 a.s.. (23)

Indeed, if we denote ξ(t) = N(t)−Y (t), then ξ(0) = 0 and from equations (20) and
(21) we get

dξ(t) =

(
ξ(t)

(
σ2

1 − β −
σ2

2

N(t)Y (t)

)
+ αN(t)Co(t)

)
dt− σ1ξ(t)dB1(t) a.s..

The solution of the previous linear equation is given by (see chapter 3, [17])

ξ(t) = Φ(t)

∫ t

0

αN(s)Co(s)

Φ(s)
ds a.s.,
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where

Φ(t) = exp

{
−t
(
β − σ2

1

2

)
−
∫ t

0

σ2
2

N(s)Y (s)
ds− σ1B1(t)

}
> 0

Obviously ξ(t) ≥ 0, t ≥ 0, a.s., and this means that we have Y (t) ≤ N(t) for any
t ≥ 0 a.s. Similarly, using equations (21) and (22), we can show that Y (t) ≤ Yε(t)
for any t ≥ 0 a.s..

Secondly we show that for any 0 < ε <
2β−σ2

1

2α

lim inft→∞(Yε(t)−N(t)) ≥ 0 a.s.. (24)

From equations (20) and (22) we get

d(Yε(t)−N(t)) =

(
(Yε(t)−N(t))

(
σ2

1 + αε− β − σ2
2

N(t)Yε(t)

)
+ αN(t)(ε− Co(t))

)
dt− σ1(Yε(t)−N(t))dB1(t) a.s..

The solution of the linear equation is given by

Yε(t)−N(t) = Φ1(t)

∫ t

0

αN(s) (ε− Co(s))
Φ1(s)

ds a.s.,

where

0 < Φ1(t) = exp

{
−t
(
β − αε− σ2

1

2

)
−
∫ t

0

σ2
2

N(s)Yε(s)
ds− σ1B1(t)

}
≤ exp

{
−t
(
β − αε− σ2

1

2
+ σ1

B1(t)

t

)}
Since limt→∞B1(t)/t = 0 a.s., for any 0 < ε <

2β−σ2
1

2α we get limt→∞Φ1(t) = 0 a.s..
Moreover, because limt→∞ Co(t) = 0 a.s., for almost any ω there exist 0 < T = T (ω)
such that ε−Co(t, ω) > 0 for any t > T (ω). Thus for almost any ω and any t > T ,

Yε(t)−N(t) = Φ1(t)

(∫ T

0

αN(s) (ε− Co(s))
Φ1(s)

ds+

∫ t

T

αN(s) (ε− Co(s))
Φ1(s)

ds

)

≥ Φ1(t)

∫ T

0

αN(s) (ε− Co(s))
Φ1(s)

ds

Therefore for any 0 < ε <
2β−σ2

1

2α we have

lim inf
t→∞

(Yε(t)−N(t)) ≥ lim
t→∞

Φ1(t)

∫ T

0

αN(s) (ε− Co(s))
Φ1(s)

ds = 0 a.s..

Thirdly we prove that

lim
ε→0

lim
t→∞

E[Yε(t)− Y (t)] = 0. (25)

We know from (23) that Yε(t)− Y (t) ≥ 0, t ≥ 0 a.s. Using equations (21) and (22)
we get

d(Yε(t)− Y (t)) =

(
(Yε(t)− Y (t))

(
σ2

1 + αε− β − σ2
2

Y (t)Yε(t)

)
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+ αεY (t)

)
dt− σ1(Yε(t)− Y (t))dB1(t)

≤
(

(Yε(t)− Y (t))
(
σ2

1 + αε− β
)

+ αεY (t)

)
dt− σ1(Yε(t)− Y (t))dB1(t) a.s..

From Lemma 4.6 we know that supt≥0E[Y (t)] <∞, so taking expectations in the
previous inequality we have

E[Yε(t)− Y (t)] ≤
∫ t

0

E[Yε(s)− Y (s)]
(
σ2

1 + αε− β
)

+ αεE[Y (s)]ds

≤
∫ t

0

E[Yε(s)− Y (s)]
(
σ2

1 + αε− β
)
ds+ tαε sup

t≥0
E[Y (t)] a.s..

For any 0 < ε < (β − σ2
1)/α, by the comparison theorem (see theorem 1.4.1 in [14])

we get

0 ≤ E[Yε(t)− Y (t)] ≤
αε supt≥0E[Y (t)]

β − σ2
1 − αε

(
1− exp(−t(β − σ2

1 − αε))
)

Taking limits in the previous inequality we get equation (25).
Finally, using (23), (24), and (25) we obtain that limt→∞(N(t) − Y (t)) = 0, in

probability. But it has been shown that Y (t)
w→

t→∞
ν1, where ν1 is a probability

measure on R∗+. Thus, from Slutsky’s theorem [22], N(t)
w→

t→∞
ν1, and, by the

Continuous Mapping Theorem, n(t) = 1/N(t)
w→

t→∞
µ1.

Corollary 2. Let (n(t), Co(t), Ce(t)) be the solution of the system (5)-(7) with any
initial value (n(0), Co(0), Ce(0))′ ∈ D, and such that limt→∞ Co(t) = 0 a.s..

a. If σ1 = 0 then n(t)
w→

t→∞
µ1 where µ1 is the probability measure on R∗+ with

density

p(x) =
1

G1x4
exp

(
− β

σ2
2

(
1

x
− γ

β

)2
)
, x > 0 (26)

G1 =
σ2

2β5/2

(
Ψ

(
γ
√

2β

βσ2

)√
π(σ2

2β + 2γ2) + γσ2β
1/2 exp

(
− γ2

σ2
2β

))
(27)

where Ψ(x) = P(Z ≤ x) is the distribution function for the standard normal
distribution Z ∼ N(0, 1).

b. If σ2
1 < β and σ2 = 0 then n(t)

w→
t→∞

µ1 where µ1 is a gamma distribution with

shape parameter
2(β−σ2

1)

σ2
1

+ 1 and scale parameter
σ2
1

2γ .

Proof. We know that Y (t)
w→

t→∞
ν1, where ν1 is a probability measure on R∗+. When

σ1 = 0 or σ2 = 0 we can prove the ergodicity of Y (t) directly using Theorem 1.16
in [13].

a. If σ1 = 0 the equation (21) become

dY (t) =

(
−Y (t)β + γ +

σ2
2

Y (t)

)
dt+ σ2dB2(t) a.s., (28)
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Let define

q(y) = exp

(
− 2

σ2
2

∫ y

1

(
−βu+

σ2
2

u
+ γ

)
du

)
=

1

y2
exp

(
− β

σ2
2

(
1− γ

β

)2
)

exp

(
β

σ2
2

(
y − γ

β

)2
)

It can be easily shown that∫ 1

0

q(y)dy =∞,
∫ ∞

1

q(y)dy =∞,
∫ ∞

0

1

σ2
2q(y)

dy =
G1

σ2
2

exp

(
β

σ2
2

(
1− γ

β

)2
)
,

where G1 is given in (27). So, by Theorem 1.16 in [13], Y (t) is ergodic and with
respect to the Lebesgue measure its stationary measure ν1 has density

p1(x) =
1

σ2
2q(x)

∫∞
0

1
σ2
2q(y)

dy
=

x2 exp

(
− β
σ2
2

(
x− γ

β

)2
)

G1

Thus, by Theorem 4.5, X(t) = 1/Y (t) is ergodic and its stationary measure µ1

is the reciprocal of the measure ν1, so with respect to the Lebesgue measure has
density p(x) = p1(1/x)/x2 given in equation (26). Notice that we also have

lim
t→∞

1

t

∫ t

0

X(u)du =

∫ ∞
0

xp(x)dx =
σ2

2β3/2G1

(
σ2

√
β exp

(
− γ2

σ2
2β

)
+ 2γ

√
πΨ

(
γ
√

2β

βσ2

))
a.s..

b. If σ2 = 0, then the equation (21) becomes

dY (t) =
(
γ − Y (t)(β − σ2

1)
)
dt− σ1Y (t)dB1(t) a.s..

Proceeding similarly as for a. we can show that ν1 is the reciprocal gamma dis-

tribution with shape parameter
2(β−σ2

1)

σ2
1

+ 1 and scale parameter
σ2
1

2γ (see also the

proof of Theorem 4.5 in [29]). Thus, by Theorem 4.5, X(t) = 1/Y (t) is ergodic
and its stationary measure µ1 is the gamma distribution with shape parameter
2(β−σ2

1)

σ2
1

+ 1 and scale parameter
σ2
1

2γ . Since the mean for this gamma distribution is(
2(β−σ2

1)

σ2
1

+ 1
)
σ2
1

2γ , we also have

lim
t→∞

1

t

∫ t

0

X(u)du =

(
2(β − σ2

1)

σ2
1

+ 1

)
σ2

1

2γ
a.s..

Notice that if σ2
1 > 2β−2α lim inft→∞

∫ t
0
Co(s)ds

t a.s. then, according to Theorem

3.5, limt→∞ n(t) = 0, so n(t)
w→

t→∞
δ0, where δ0 is the Dirac distribution centered in

0.
On the other hand, if σ2

1 < β, η2
1η

2
2 − λ2

1λ
2
2 > 0, and lim inft→∞ n(t) > 0 a.s.,

then according to Theorem 4.7 n(t)
w→

t→∞
µ1. Indeed, since lim inft→∞ n(t) > 0

a.s., then
∫∞

0
n(t)dt = ∞ a.s., and from the proof of Theorem 2.3 we know that

limt→∞ Co(t) = limt→∞ Ce(t) = 0, so the assumptions of Theorem 4.7 are satisfied.
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5. Numerical simulations. First we illustrate numerically the results obtained
in section 3 regarding survival analysis. We consider a cell population exposed to
the toxicant monastrol as in the experiments described in [1] . The parameters’
values for this toxicant are estimated in [1]: β = 0.074, K = 18.17, η1 = 0.209,
λ1 = 0.177, λ2 = 0.204, η2 = 0.5, and α = 0.016. Notice that for this toxicant we
have η2

1η
2
2 − λ2

1λ
2
2 > 0. We solve numerically the system (5)-(7) using an order 2

strong Taylor numerical scheme [12].

0 200 400 600 800 1000

t
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n

(a) Cell index n
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t

0

5.3819
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C
0

(b) Concentration of internal toxicant Co

0 200 400 600 800 1000

t

0

4

7.494

10

C
E

(c) Concentration of toxicant outside the cells Ce

Figure 2. Trajectories corresponding to initial values n(0) = 2.5,
Co(0) = 0, σ1 = 0.01, σ2 = 0: blue “- -” line deterministic model,
Ce(0) = 380; red “-” line stochastic model, Ce(0) = 380; green “-
.-” line stochastic model, Ce(0) = 375.
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One of the applications of the mathematical model is for finding the threshold
value for Ce(0) at which the population becomes extinct. This value depends on the
initial value n(0) and for the deterministic model (1)-(3) can be found numerically
(see also Fig. 3 in [1]). From Theorem 3.5 we can see that large values of the noise
variance σ2

1 result in population extinction, so we expect that the presence of noise
will lower the values of the threshold.

We illustrate this for the model with initial values n(0) = 2.5 and Co(0) = 0. In
the deterministic case the threshold value where the population goes extinct can be

0 200 400 600 800 1000

t
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n

(a) Cell index n
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(b) Concentration of internal toxicant Co
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t

0
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10
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(c) Concentration of toxicant outside the cells Ce

Figure 3. Trajectories corresponding to initial values n(0) = 2.5,
Co(0) = 0, σ1 = 0, σ2 = 0.002: blue “- -” line deterministic model,
Ce(0) = 380; red “-” line stochastic model, Ce(0) = 380; green “-
.-” line stochastic model, Ce(0) = 379.
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found numerically, and it is approximately Cdete (0) = 382.2. We can see in Fig. 2 (a)
that for the stochastic model with σ1 = 0.01, σ2 = 0 and initial value Ce(0) = 380
the population goes to extinction, while in the deterministic case (σ1 = σ2 = 0)
the population is persistent for these initial values. According to Fig. 2 (a), in
the stochastic case the threshold value for this simulation is Cstoche (0) ∈ (375, 380).
Similar results are obtained for the stochastic model with σ1 = 0, σ2 = 0.001 and
are presented in Fig. 3 (a). For this simulation the threshold value in the stochastic
case is Cstoche (0) ∈ (379, 380).

Notice also that the results displayed in Figs. 2 and 3 agree with the conclusion
of Theorem 2.3. For the stochastic model with Ce(0) = 380, for the simulations
presented in Figs. 2 and 3 we have limt→∞ n(t, ω) = 0 (the trajectories plotted with
red plain lines). For σ1 = 0.01 and σ2 = 0 we can see that limt→∞ Co(t, ω) = 5.3819
and limt→∞ Ce(t, ω) = 7.494 (the trajectories plotted with red plain lines in Fig.
2 (b), (c)). For σ1 = 0 and σ2 = 0.002 from Fig. 3 (b), (c) we can notice that
limt→∞ Co(t, ω) = 5.255 and limt→∞ Ce(t, ω) = 7.3173. For both simulation we

have limt→∞ Co(t) =
λ2
1

η21
limt→∞ Ce(t), as given in Theorem 2.3. Moreover, for the

stochastic model with Ce(0) = 375, σ1 = 0.01 and σ2 = 0 (the green dot -dashed
lines in Fig. 2) and the model with Ce(0) = 379, σ1 = 0 and σ2 = 0.002 (the green
dot -dashed lines in Fig. 3), we have

lim inf
t→∞

n(t, ω) > 0, lim
t→∞

Co(t, ω) = lim
t→∞

Ce(t, ω) = 0

Next we use the same parameters values as stated at the beginning of this section
and the initial values n(0) = 2.5, Co(0) = 0, Ce(0) = 1.8 to illustrate the stability
in distribution of the process n(t). For both σ1 = σ2 = 0.001 and σ1 = σ2 =
0.005 the assumptions of Theorem 4.7 are met. In Figs. 4 (a) and (c) we show

(a) σ1 = σ2 = 0.001 (b) σ1 = σ2 = 0.001

(c) σ1 = σ2 = 0.005 (d) σ1 = σ2 = 0.005

Figure 4. Histograms of the values of n(t) for the last iteration
from 10 000 runs (a) and (c) and for the last 4 000 000 samples out
of 5 000 000 sample of a single run (b) and (d).
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the histograms of the result of running 10 000 simulations of the path n(t) for a
long run of 5 000 0000 iterations, but storing only the last of these n(t) values.
For comparison Figs. 4 (b) and (d) show the histograms of the last 4 000 000
samples from a single run of 5 000 000 iterations. For both sets of values for σ1

and σ2 the corresponding histograms are similar. Because of this similarity and
of the huge number of iterations considered, we may assume that the probability
distribution of n(t) has more or less reached the distribution µ1 given in Theorem
4.7. When σ2 = 0 or σ1 = 0, the density of the probability distribution µ1 is

Figure 5. Histograms for the last 4 000 000 samples of a single
run of 5 000 000 iterations and corresponding density functions a.
σ2 = 0.001 b. σ2 = 0.01 c. σ2 = 0.1 d. σ2 = 0.15

Figure 6. Histograms for the last 4 000 000 samples of a single run
of 5 000 000 iterations and corresponding Gamma density functions
a. σ1 = 0.001 b. σ1 = 0.01 c. σ1 = 0.1 d. σ1 = 0.5

given in Corollary 2 (a) and (b), respectively. To illustrate these results we use
the same parameter values as stated at the beginning of this section and the initial
values n(0) = 2.5, Co(0) = 0, Ce(0) = 180. For σ1 = 0 and several values of σ2 we
display the histograms for the last 4 000 000 samples of a single run of 5 000 000
iterations (shaded areas in Fig. 5) and the graph of the corresponding density given
in Corollary 2 (a). In Fig. 6 we do similar plots for σ2 = 0, several values of σ1, and
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the density of the corresponding Gamma distribution in Corollary 2 (b). We can
notice that the histograms give very accurate approximations for the densities in
Corollary 2. Also, in both Fig. 5 and Fig. 6, when the values of σ1 or σ2 increase,
the histograms become right skewed. Moreover, for large values of σ1 or σ2 the
population becomes extinct and µ1 = δ0 (see also Theorem 3.5).

6. Conclusions. We present a stochastic model to study the effect of toxicants on
human cells. To account for parameter uncertainties, the model is expressed as a
system of coupled ordinary stochastic differential equations. The variables are the
cell index n(t), which closely reflects the cell population, the concentration Co(t) of
internal toxicants per cell, and the concentration Ce(t) of toxicants outside the cells
at time t. There are a few papers that consider similar stochastic models for pop-
ulation dynamics, but they mainly study conditions for extinction and persistence.
Here we focus on the ergodic properties when the population is persistent.

We first prove the positivity of the solutions. Then we investigate the influence
of noise on the cell population survival. When the noise variances σ2

1 or σ2
2 are

sufficiently large, the population goes to extinction. Numerical simulations show
that, for the stochastic model, the population goes to extinction at threshold values
Cstoche (0) below the deterministic threshold value Cdete (0). Furthermore, increasing
the noise variances σ2

1 or σ2
2 results in a lower value Cstoche (0) at which the population

becomes extinct.
Moreover, we prove that when the noise variance σ2

1 is sufficiently small and
the population is strongly persistent, then the cell index converges weakly to the
unique stationary probability distribution. Increasing the noise intensity causes a
right skewness of the stationary distribution.

Here we illustrate our results for the toxicant monastrol. We have also considered
other toxicants from the experiments described in [1] classified in various clusters
[30]. We have noticed that the cluster type does not change the type of stationary
distribution, nor has an effect on the behavior of the distributions in response to
increased noise variances.

Appendix A. Proof of Lemma 2.2.

Proof. The proof is similar with the proof of Lemma 3.1 in [1]. We define the
stopping time τ = inf{t ≥ 0 : Ce(t) > Ce(0)}. We show that τ = ∞ a.s.. Assume
that there exists T > 0, and ε > 0 such that P (τ ≤ T ) > ε and let Ω be the set
where the solution (n(t), Co(t), Ce(t))

′ of the system (5)-(7) is continuous. Hence
P (Ω) = 1 ([3]), and P (Ω1) > 0, where Ω1 = Ω ∩ {τ ≤ T}.

From (8) with Co(0) = 0 we get for any ω ∈ Ω1 and any 0 < t < τ(ω)

0 ≤ Co(t, ω) = λ2
1e
−η22t

∫ t

0

Ce(s, ω)eη
2
1sds ≤ λ2

1e
−η22tCe(0)

∫ t

0

eη
2
1sds

=
λ2

1Ce(0)

η2
1

(
1− e−η

2
1t
)
≤ λ2

1Ce(0)

η2
1

Moreover, on Ω1 we have Ce(τ) = Ce(0), and then from equation (7) we obtain

dCe
dt

∣∣∣∣
t=τ

= λ2
2Co(τ)n(τ)− η2

2Ce(τ)n(τ)

≤ Ce(0)n(τ)

(
λ2

1λ
2
2

η2
1

− η2
2

)
< 0
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Thus we have a contradiction with the definition of τ .

Appendix B. Proof of Theorem 2.3.

Proof. The proof is similar with the proof of Theorem 3.2 in [1]. Let Ω be the
set where the solution (n(t), Co(t), Ce(t))

′ of the system (5)-(7) is continuous and
n(t) > 0, 0 < Ce(t) ≤ Ce(0), 0 ≤ Co(t) ≤ λ2

1Ce(0)/η2
1 for any t ≥ 0. From Theorem

2.1 and Lemma 2.2 we know that P (Ω) = 1. Let Ω1 = {ω ∈ Ω : |n|1(ω) <∞} and
Ω2 = {ω ∈ Ω : |n|1(ω) =∞}, where |n|1(ω) =

∫∞
0
n(t, ω)dt.

If P (Ω1) > 0, then for any ω ∈ Ω1 and any t ≥ 0, we have∫ t

0

Co(s, ω)n(s, ω) exp

(
η2

2

∫ s

0

n(l, ω)dl

)
ds ≤ λ2

1Ce(0)

η2
1

exp
(
η2

2 |n|1(ω)
)
|n|1(ω).

Thus 0 ≤ M(ω) :=
∫∞

0
Co(s, ω)n(s, ω) exp

(
η2

2

∫ s
0
n(l, ω)dl

)
ds < ∞, and from (9)

we get

lim
t→∞

Ce(t, ω) = Ce(0) exp(−η2
2 |n|1(ω)) + λ2

2M(ω) exp(−η2
2 |n|1(ω)) <∞.

Consequently, there exists T1(ω) > 0 such that for any t > T1(ω) we have Ce(t, ω) >

Ce(0) exp(−η2
2 |n|1(ω))/2. This implies that

∫∞
0
Ce(s, ω)eη

2
1sds =∞ because for any

t > T1(ω) we have ∫ t

0

Ce(s, ω)eη
2
1sds ≥

∫ t

T1(ω)

Ce(s, ω)eη
2
1sds

≥ Ce(0) exp(−η2
2 |n|1(ω))/2

∫ t

T1(ω)

eη
2
1sds.

So we can apply L’Hospital’s rule in (8), and we get

lim
t→∞

Co(t, ω) =
λ2

1

η2
1

lim
t→∞

Ce(t, ω) > 0.

Thus, on Ω1, limt→∞ Ce(t) and limt→∞ Co(t) exist and they are related by the
previous equation.

Next, if P (Ω2) > 0 we consider any ω ∈ Ω2. If 0 ≤
∫∞

0
Co(s, ω)n(s, ω) exp

(
η2

2∫ s
0
n(l, ω)dl

)
ds < ∞, from (9) we get limt→∞ Ce(t, ω) = 0. On the other hand,

if
∫∞

0
Co(s, ω)n(s, ω) exp

(
η2

2

∫ s
0
n(l, ω)dl

)
ds = ∞, from L’Hospital’s rule in (9) we

have

0 ≤ λ2
2

η2
2

lim inf
t→∞

Co(t, ω) ≤ lim inf
t→∞

Ce(t, ω) ≤ lim sup
t→∞

Ce(t, ω) ≤ λ2
2

η2
2

lim sup
t→∞

Co(t, ω)

Similarly, from (8) we either get that limt→∞ Co(t, ω) = 0 (if
∫∞

0
Ce(s, ω)eη

2
1sds <

∞), or we have

0 ≤ λ2
1

η2
1

lim inf
t→∞

Ce(t, ω) ≤ lim inf
t→∞

Co(t, ω) ≤ lim sup
t→∞

Co(t, ω) ≤ λ2
1

η2
1

lim sup
t→∞

Ce(t, ω),

(if
∫∞

0
Ce(s, ω)eη

2
1sds =∞). All these possible cases give

lim
t→∞

Co(t, ω) = lim
t→∞

Ce(t, ω) = 0,

because η2
1η

2
2 − λ2

1λ
2
2 > 0. Thus, on Ω2, limt→∞ Ce(t) and limt→∞ Co(t) exist and

they are equal with zero.
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In conclusion, on Ω = Ω1∪Ω2 we have shown that limt→∞ Ce(t) and limt→∞ Co(t)

exist, and we have limt→∞ Co(t) =
λ2
1

η21
limt→∞ Ce(t).

Appendix C. Proof of Lemma 4.6.

Proof. We choose any 0 < c < β − σ2
1 . Using Itô’s formula in (21) we get:

d(ectY (t)) = ect
(
Y (t)(c+ σ2

1 − β) + γ + σ2
2X(t)

)
dt− σ1e

ctY (t)dB1(t)

+ σ2e
ctdB2(t) ≤ ect

(
γ + σ2

2X(t)

)
dt− σ1e

ctY (t)dB1(t) + σ2e
ctdB2(t) (29)

Let τm = inf{t ≥ 0 : Y (t) /∈ (1/m,m)}, for any m > m0, where m0 > 0 is
sufficiently large such that n(0) ∈ (1/m0,m0). Obviously limm→∞ τm = ∞ a.s..
Taking expectation in (29) and using Lemma 4.4 we get:

E
[
ec(t∧τm)Y (t ∧ τm)

]
≤ 1

n(0)
+ E

[∫ t∧τm

0

ecs
(
γ + σ2

2X(s)
)
ds

]
≤ 1

n(0)
+
(
γ + σ2

2C1

) (ect − 1)

c
.

Letting m→∞ we get

E [Y (t)] ≤ 1

n(0)ect
+

(
γ + σ2

2C1

)
c

(1− e−ct).

Thus, there exists a constant C2 > 0 such that supt≥0E[Y (t)] ≤ C2. The proof

that supt≥0E[Yε(t)] <∞, for any 0 < ε <
β−σ2

1

α , is similar.
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