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Abstract. We model intracellular regulatory dynamics with threshold-type
state-dependent delay and investigate the effect of the state-dependent diffu-
sion time. A general model which is an extension of the classical differential

equation models with constant or zero time delays is developed to study the
stability of steady state, the occurrence and stability of periodic oscillations in
regulatory dynamics. Using the method of multiple time scales, we compute
the normal form of the general model and show that the state-dependent dif-
fusion time may lead to both supercritical and subcritical Hopf bifurcations.
Numerical simulations of the prototype model of Hes1 regulatory dynamics are
given to illustrate the general results.

1. Introduction. An important goal of system biology is to understand the mech-
anisms that govern the protein regulatory dynamics. The so-called feedback loop is
believed to be widely present in various eukaryotic cellular processes and regulates
the gene expression of a broad class of intracellular proteins. It is usually under-
stood that in the feedback loop transcription factors are regulatory proteins which
activate transcription in eukaryotic cells; they act by binding to a specific DNA
sequences in the nucleus, either activating or inhibiting the binding of RNA poly-
merase to DNA; mRNA is transcribed in the nucleus and is in turn translated in the
cytoplasm. Such a feedback loop was described by systems of ordinary differential
equations in [6–8, 17, 21].

Many scholars have noticed that the genetic regulatory dynamics are dependent
on the intracellular transport of mRNA and protein [13, 18]. In particular, models of
genetic regulatory dynamics are developed to explain a variety of sustained periodic
biological phenomena [19]. Hence the possible roles played by the time delays in
the signaling pathways become an interesting research topic and we are interested
how time delays are associated with periodic oscillations. Regulatory models with
constant delays are investigated in the work of [18, 24], among many others, where
time delay is used as a parameter and is tuned to observe stable periodic oscillations.
It was pointed out in [19] that if the simplification of constant time delay is too
drastic, another approach is to assume a distributed time delay. In the work of
Busenburg and Mahaffy [2], both diffusive macromolecular transport represented
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as a distributed delay and active macromolecular transport modeled as time delay
are considered. It was demonstrated that stable periodic oscillations can occur
when transport was slowed by increasing the time delay, and that oscillations were
dampened if transport was slowed by reducing the diffusion coefficients.

We follow the idea of the work of [2] to consider both diffusion transport and
active transport in genetic regulatory dynamics, while we start from the Goodwin’s
model [6] in contrast to the reaction-diffusion equations in [2]. Namely, we will pro-
vide a new perspective to investigate genetic regulatory dynamics which generalizes
the previous extension of Goodwin’s model with constant delay and simplifies the
approach adopted by [2]. To be more specific, we begin with the prototype model
for Hes1 system (see Section 2 for a brief introduction) and discuss how to model
the diffusion time if we consider the effect of the fluctuation of concentrations of
the substances in the Hes1 system. We show that modeling the diffusion time will
lead to a model with threshold type distributed delay, which is also called thresh-
old type state-dependent delay [1, 16]. With a general model with threshold type
state-dependent delay, we are interested how the model with state-dependent delay
differs from those with only constant delays, how the stabilities of the steady state
and the periodic oscillations depend on the state-dependent delay.

We organize the remaining of the paper as follows. In Section 2, we model the
diffusion time in regulatory dynamics and set up a prototype system of differential
equations with state-dependent delay for the Hes1 system. In Section 3, we consider
a general model with state-dependent delay and conduct linear stability analysis of
the equivalent model and conduct a local Hopf bifurcation analysis of the system
using the multiple time scale method. Numerical simulations on the model of Hes1
system with state-dependent delay will be illustrated in Section 4. We conclude the
investigation at Section 5.

2. State-dependent diffusion time in regulatory dynamics. In this section,
we motivate the modeling of diffusion time delay with the Hes1 regulatory sys-
tem. Hes1 is a protein which belongs to the basic helix-loop-helix (bHLH, a protein
structural motif) family of transcription factors. It is a transcriptional repressor
of genes that require a bHLH protein for their transcription. As a member of the
bHLH family, it is a transcriptional repressor that influences cell proliferation and
differentiation in embryogenesis. Hes1 regulates its own expression via a negative
feedback loop, and oscillates with approximately 2-hour periodicity [9]. However,
the molecular mechanism of such oscillation remains to be determined [9]. Mathe-
matical modeling of Hes1 regulatory system has been an active research area in the
last decade. See among many others, [12, 20].

The basic reaction kinetics for the regulatory system (Figure 1) can be described
by the following ordinary differential equations which is in general called the Good-
win model (See [7, 8]). Denote by xm(t) and yp(t) the concentrations of the species
of Hes1 mRNA and Hes1 protein in a cell, respectively.



















dxm(t)

dt
= −µmxm(t) +

αm

1 +
(

yp(t)
ȳ

)h
,

dyp(t)

dt
= −µpyp(t) + αpxm(t),

(1)

where µm and µp are the degradation rates of mRNA and protein, respectively, αm

the basal rate of initial transcription without feedback from protein, and αp the
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Figure 1. Hes1 regulatory system in a cell: a. inhibition of
mRNA transcription in nucleus from protein diffused from cyto-
plasm, b. translation of mRNA for protein synthesis in cytoplasm

production rate of protein, ȳ the concentration of mRNA that reduces the rate of
initial transcription to half of its basal value.

Since mRNA is typically transcribed in nucleus and then translated to cytoplasm
for protein synthesis, there exists transcriptional and translational delays in the real
reaction kinetics. For a better description of the intracellular processes, (1) was
extended into the following model of delay differential equation (see, e. g., [12])



















dxm(t)

dt
= −µmxm(t) +

αm

1 +
(

yp(t−τm)
ȳ

)h
,

dyp(t)

dt
= −µpyp(t) + αpxm(t− τp),

(2)

where τm and τp are transcriptional and translational delays, respectively. This
model was able to simulate oscillatory solutions with the period and mRNA expres-
sion lag in good agreement with some experimental data. The transcriptional and
translational time delay are usually assumed to be constant and it is then a natural
problem to model the time delays in order to investigate the effect of the varying
time delays on genetic regulatory systems.

For simplicity, we combine the reaction or transcription time with the translation
time between the nucleus and the cytoplasm and call the combination is the diffusion
time which will be denoted by τ . In such a way τm in (2) is re-defined to be the
mRNA transcription time and τp the protein diffusion time. That is, both are
assumed to be the part of the time for diffusion processes, and the termination of
the diffusion process incurs that of the inhibition of mRNA. That is, we assume
that

(A1) τ = τm + τp.

Now we drop the subscripts for the variables xm, yp, τm and τp in the following
presentation, and turn to the modeling of the part of diffusion time due to spatial
translation. Let T to be the time to homogenize a newly produced solute (mRNA
or protein) in the cell solvent, ǫ be the transcription time which will be assumed to
be a constant. From Fick’s first law of diffusion, we know that the diffusion time for
a newly produced solute to homogenize in a cell is not necessarily a constant but is
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dependent on the concentration gradient. To model the diffusion time delay, let us
suppose that we put a drop (or subtract a drop) of solute in a cup of solvent with
concentration x(t) which has taken account of the new drop. The diffusion time T
to homogenize depends on the homogenized concentration x(t− τ) of the solute in
the cup without taking account of the new drop. Therefore the diffusion time to
homogenize the new drop depends on the concentration difference x(t)− x(t− τ).

The next problem is how T depends on the concentration difference x(t)−x(t−τ).
In order to derive a reasonable modeling of τ , we virtually assume that the distance
of the central locations of concentrations x(t) and x(t − τ(t)) is L, where L > 0
is small. It is known that the diffusion time τ is inversely proportional to the

diffusion coefficient (D) and approximately satisfies T = L2

2D . Then by Fick’s first
law we know that the diffusion flux (J) is proportional to the existing concentration
gradient under the assumption of steady state. Namely, J can be approximated by

J = −D x(t)−x(t−τ)
L

, where the positivity of J is opposite to that of x(t)− x(t− τ).
To obtain an approximation of τ we reduce D from the aforementioned expressions
of T and J . Namely, T can be approximated through

T = −L(x(t)− x(t− τ))

2J
. (3)

Then we have τ = T + ǫ = −L(x(t)−x(t−τ))
2J + ǫ. In the following, we assume that

(A2) there exist constants ǫ > 0, c > 0 such that τ(t) = c(x(t) − x(t− τ(t))) + ǫ.

Namely, we assume that the diffusion time is linearly dependent on the fluctuation of
the concentrations of mDNA. We remark that x(t)−x(t−τ) may be negative which
means that current concentration is less than the historical one and we interpret
that in this case the transcription time is reduced by c(x(t)− x(t− τ)) from ǫ with
less concentration. Moreover, if the concentrations are in their equilibrium states,
the diffusion time becomes the transcriptional delay ǫ. We also remark that such
type of state-dependent delay has appeared in position control [22] modeling the
state-dependent traveling time of the echo, and in regenerative turning processes [11]
modeling the cutting time of one round of turning.

Now we obtain the following state-dependent delay differential equations,






























dx(t)

dt
= −µmx(t) +

αm

1 +
(

y(t−τ)
ȳ

)h
,

dy(t)

dt
= −µpy(t) + αpx(t − τ),

τ(t) = c(x(t) − x(t− τ)) + ǫ.

(4)

which provides another view on the models (1) and (2): If we assume that the
transcription and translation of the newly produced solute is instant, namely, T = 0,
then we have model (1) which is a system of ordinary differential equation. If we
assume that the transcription and translation of the newly produced solute needs a
constant positive time, then we have model (2) which is a system of delay differential
equation with constant delay.

It was shown in [10] that system with the state-dependent delay in the form of
τ(t) = r(x(t) − x(t− τ(t))) with r being inhomogeneous linear can be transformed
into models with both discrete and distributed delay which greatly facilitated the
qualitative analysis of such type of models [1, 10]. In the next section we investigate
systems (4) based on the discussion of a more broad class of equations.
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3. Regulatory dynamics with state-dependent delay. Regarding system (4)
as a prototype model of a range of genetic regulatory dynamics, we consider the
following system,























dx(t)

dt
= −µmx(t) + f(y(t− τ)),

dy(t)

dt
= −µpy(t) + g(x(t− τ)),

τ(t) = ǫ+ c(x(t) − x(t− τ)),

(5)

where f, g : R → R are three times continuously differentiable functions; µm, µp, c
and ǫ are positive constants. In the following we denote by C([a, b];RN) with a < b
the space of continuously functions f : [a, b] → RN equipped with the supremum
norm and by C1([a, b];RN) with a < b the space of continuously differentiable
functions. We assume that

B1) System (5) has at least one equilibrium (r∗, ξ∗) for (x, y) and there exists α0 >
0 and a neighborhood D of (r∗, ξ∗) in the space of continuous differentiable
functions C1([−α0, 0];R

2) such that for every initial data in D for (x, y) and
the initial data τ0 ∈ (0, α0) satisfying the compatibility conditions











x′(0) = −µmx(0) + f(y(−τ0)),

y′(0) = −µpy(0) + g(x(−τ0)),

τ0 = ǫ+ c(x(0)− x(−τ0)),

(6)

system (5) has a unique solution (x, y, τ) on [0, +∞).
B2) Let D be as in (B1). For every solution (x, y, τ) of system (5) on [0, +∞) with

initial data in D for (x, y) and initial data τ0 ∈ (0, +∞), we have 1/c > ẋ(t)
for all t > 0.

We rewrite the equation for the delay in (4) as
∫ t

t−τ(t)

1− cẋ(s)

ǫ
ds = 1. (7)

Let u(t) = ẋ(t) and introduce the following transformation inspired by [16]:

η =

∫ t

0

1− cu(s)

ǫ
ds, r(η) = x(t), ξ(η) = y(t), k(η) = τ(t). (8)

Then we have






























η − 1 =

∫ t−τ(t)

0

1− cu(s)

ǫ
ds,

r(η − 1) = x(t− τ(t)),

ξ(η − 1) = y(t− τ(t)),

k(η) = ǫ+ c(r(η) − r(η − 1)).

(9)

Note that we have














ẋ(t) =
dr

dη
· dη
dt

= ṙ(η) · 1− cẋ

ǫ
,

ẏ(t) =
dξ

dη
· dη
dt

= ξ̇(η) · 1− cẋ

ǫ
,

(10)
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Then by (9) and (10), system (4) is transformed into


























dr

dη
= ǫ

−µmr(η) + f(ξ(η − 1))

1− c(−µmr(η) + f(ξ(η − 1)))
,

dξ

dη
= ǫ

−µpξ(η) + g(r(η − 1))

1− c(−µmr(η) + f(ξ(η − 1)))
,

k(η) = ǫ+ c(r(η) − r(η − 1)),

(11)

where the assumption that 1/c > ẋ(t) for all t ∈ R has been converted by the first
equation in (10) into ṙ(η) > −ǫ/c. We remark that if we set c = 0 in system (11),
we obtain























1

ǫ

dr

dη
= −µmr(η) + f(ξ(η − 1))

1

ǫ

dξ

dη
= −µpξ(η) + g(r(η − 1))

k(η) = ǫ,

(12)

which is equivalent to (5) with c = 0:























dx(t)

dt
= −µmx(t) + f(y(t− τ)),

dy(t)

dt
= −µpy(t) + g(x(t− τ)),

τ(t) = ǫ,

(13)

in the sense of the time-domain transformations leading to system (11).
Comparing system (11) with system (12), we see that both systems have the

same set of equilibria. We also observe that, if 1 − cẋ(t) > 0 is uniformly bounded
above for t > 0, then (7) describes the situation that the diffusion process is slow
when ǫ is large and is fast when ǫ is small. Moreover, from system (12) we know that
the parameter ǫ may serve as a time scale which is highly desirable to investigate
the intercelluar regulatory dynamics. In the subsequent sections we study how the
dynamics of system (11) varies with respect to the parameter ǫ ∈ (0, +∞). We
remark that limiting profiles of periodic solutions as ǫ → 0 was investigated in [15]
for the equation ǫẋ(t) = −x(t) + f(x(t− 1)).

3.1. Linear stability analysis. Now we study the stability of the equilibrium of
system (11). Note that the variable k has been decoupled from the differential
equations. Therefore, we assume that (r∗, ξ∗) ∈ R2 is the equilibrium of system
(11) such that

{

−µmr∗ + f(ξ∗)) = 0,

−µpξ
∗ + g(r∗) = 0.

We translate the equilibrium of (11) to the origin by letting (u, v) be such that
r = u+ r∗, ξ = v + ξ∗ and let F, G : R → R satisfy that

F (v(η − 1)) = f(v(η − 1) + ξ∗)− f(ξ∗), G(u(η − 1)) = g(u(η − 1) + r∗)− g(r∗).

Then we have F ′(0) = f ′(ξ∗), G′(0) = g′(r∗), and
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1

ǫ

du

dη
=

−µmu+ F (v(η − 1))

1− c[−µmu+ F (v(η − 1))]
,

1

ǫ

dv

dη
=

−µpv +G(u(η − 1))

1− c[−µmu+ F (v(η − 1))]
.

(14)

Linearization of (14) at (0, 0) with x = (u, v) is

ẋ(η) = ǫMx(η) + ǫNx(η − 1), (15)

where M =

[

−µm 0
0 −µp

]

and N =

[

0 f ′(ξ∗)
g′(r∗) 0

]

. The characteristic equation

of (15) is det(λI + ǫM − ǫNe−λ) = 0, which is equivalent to

(λ+ ǫµm)(λ + ǫµp)− ǫ2f ′(ξ∗)g′(r∗)e−2λ = 0. (16)

Let z = 2λ, τ = 2ǫ and f ′(ξ∗)g(r∗) = −h, then the characteristic equation (16)
becomes

z2 + τ(µm + µp)z + τ2µmµp + τ2he−z = 0, (17)

which is the same equation investigated in [3]. Then by the results in [3] we have,

Lemma 3.1. Consider the characteristic equation (16), where µm and µp are pos-
itive constants. Then for every ǫ ∈ (0, +∞), the equation

β2 − ǫ2(µmµp) = ǫ(µm + µp)β cot 2β,

has a unique solution for β in (0, π
2 ), denoted by β(ǫ) and the following statements

hold.

i) If µmµp ≥ −f ′(ξ∗)g′(r∗) ≥ 0, then the equilibrium of (11) is asymptotically
stable.

ii) If µmµp < −f ′(ξ∗)g′(r∗), then there exists a unique ǫ0 ∈ (0, +∞) such that
(µm +µp)β(ǫ0)+ ǫ0f

′(ξ∗)g′(r∗) sin 2β(ǫ0) = 0, and ±iβ(ǫ0) is a pair of purely
imaginary eigenvalues. Moreover, for every ǫ ∈ (0, ǫ0), the equilibrium of
(11) is asymptotically stable; for every ǫ ∈ (ǫ0, +∞), the equilibrium of (11)
is unstable, and there exists a sequence {ǫk}∞k=0 of critical values of ǫ for which
(16) has a corresponding sequence of purely imaginary eigenvalues {i(β(ǫ0) +
kπ)}∞k=1 where ǫk = ǫ0(β(ǫ0)+kπ)

β(ǫ0)
∈ Sk, with S0 =

{

λ ∈ C : Imλ ∈ (0, π
2 )
}

,

Sk =
{

λ ∈ C : Imλ ∈ ((k − 1
2 )π, (k + 1

2 )π)
}

, k = 1, 2 · · · .
Lemma 3.2. Consider the characteristic equation (16), where µm and µp are pos-
itive constants. If

µmµp < −f ′(ξ∗)g′(r∗),

then there exists a unique ǫ0 ∈ (0, +∞) such that

(µm + µp)β(ǫ0) + ǫ0f
′(ξ∗)g′(r∗) sin 2β(ǫ0) = 0,

and ±iβ(ǫ0) is a pair of purely imaginary eigenvalues. Moreover, β(ǫ0) satisfies

tan 2β(ǫ0) =

√
l(µm + µp)

1− lµmµp

,

where

l =
µ2
m + µ2

p +
√

(µ2
m − µ2

p)
2 + 4f ′2(ξ∗)g′2(r∗)

2(f ′2(ξ∗)g′2(r∗)− µ2
mµ2

p)
, ǫ0 =

√
lβ(ǫ0).
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Proof. By Lemma 3.1 β(ǫ0) satisfies
{

β2(ǫ0)− ǫ0
2(µmµp)− ǫ0(µm + µp)β(ǫ0) cot 2β(ǫ0) = 0,

(µm + µp)β(ǫ0) + ǫ0f
′(ξ∗)g′(r∗) sin 2β(ǫ0) = 0.

(18)

Eliminating the trigonometric terms in (18), we obtain that

ǫ40(µ
2
mµ2

p − f ′2(ξ∗)g′2(r∗))) + ǫ20(µ
2
m + µ2

p)β
2(ǫ0) + β4(ǫ0) = 0,

which can be regarded as a quadratic equation of ǫ20 and has a unique nonnegative
root since µmµp ≤ −f ′(ξ∗)g′(r∗). We have

ǫ20 = lβ2(ǫ0), l =
µ2
m + µ2

p +
√

(µ2
m − µ2

p)
2 + 4f ′2(ξ∗)g′2(r∗)

2(f ′2(ξ∗)g′2(r∗)− µ2
mµ2

p)
.

Bringing ǫ0 =
√
lβ(ǫ0) into the first equation of (18), we have

tan 2β(ǫ0) =

√
l(µm + µp)

1− lµmµp

.

3.2. Local Hopf bifurcation. In this section we use multiple time scale method
to find the normal form of system (11) at the first critical value ǫ∗ of ǫ. Namely, we
let ǫ∗ = ǫ0 where ǫ0 is defined at Lemma 4.1. Since we are interested in the dynamics
when ǫ varies in (0, ∞), we study the directions of the Hopf bifurcation and the
stability of the bifurcating periodic solutions near the equilibrium. We first check
the transversality condition. Put λ = α + iβ with α, β ∈ R in the characteristic
equation (16) and we obtain

{

α2 − β2 + ǫ(µm + µp)α+ ǫ2µmµp − ǫ2f ′(ξ∗)g′(r∗)e−2α cos 2β = 0,

2αβ + ǫ(µm + µp)β + ǫ2f ′(ξ∗)g′(r∗)e−2α sin 2β = 0.
(19)

By Implicit function theorem, we can show that α and β are continuously differen-
tiable with respect to ǫ near (α, β, ǫ) = (0, β(ǫ0), ǫ0). We take derivatives respect
to ǫ on both sides of each of the equations at (19) and then let α = 0. We obtain,


































dα

dǫ

(

ǫ
∗(µm + µp) + 2ǫ∗

2
f
′(ξ∗)g′(r∗) cos 2β

)

+
dβ

dǫ

(

−2β + 2ǫ∗
2
f
′(ξ∗)g′(r∗) sin 2β

)

= −2ǫ∗µmµp + 2f ′(ξ∗)g′(r∗) cos 2β,

dα

dǫ

(

2β − 2ǫ∗
2
f
′(ξ∗)g′(r∗) sin 2β

)

+
dβ

dǫ

(

ǫ
∗(µm + µp) + 2ǫ∗

2
f
′(ξ∗)g′(r∗) cos 2β

)

= −(µm + µp)β − 2ǫ∗f ′(ξ∗)g′(r∗) sin 2β.

(20)

Noticing that if α = 0, ǫ = ǫ∗, (19) implies that
{

ǫ∗2f ′(ξ∗)g′(r∗) cos 2β = ǫ∗2µmµp − β2,

ǫ∗2f ′(ξ∗)g′(r∗) sin 2β = −ǫ∗(µm + µp)β.
(21)

Combining (20) and (21), we obtain that

dα

dǫ
ǫ=ǫ∗, λ=±iβ =

2β2

ǫ∗
(ǫ∗2(µ2

m + µ2
p) + 2β2)

(ǫ∗(µm + µp) + 2ǫ∗2µmµp − 2β2)2 + (2β + 2βǫ∗(µm + µp))2
> 0.

(22)

To illustrate the stability of system (5), we have,
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Theorem 3.3. Consider system (5) with an equilibrium (r∗, ξ∗), where f, g : U ⊂
C1([−α0, 0];R

2) → R are three times continuously differentiable and U an open
neighborhood of (r∗, ξ∗); µm, µp and c are positive constants. Assume (B1) and
(B2) hold. Then the following statements hold.

i) If µmµp ≥ −f ′(ξ∗)g′(r∗) ≥ 0, then the equilibrium of system (5) is asymptot-
ically stable.

ii) If µmµp < −f ′(ξ∗)g′(r∗), then there exists a unique ǫ0 ∈ (0, +∞) such that
for every ǫ ∈ (0, ǫ0), the equilibrium (r∗, ξ∗) is asymptotically stable; for every
ǫ ∈ (ǫ0, +∞), the equilibrium (r∗, ξ∗) is unstable, and there exists a sequence
{ǫk}∞k=0 of critical values of ǫ for which system (5) undergoes Hopf bifurcation.

Proof. By the technique of formal linearization [4, 23], we know that the equilibrium
stability of system (5) is equivalent to that of system (13) which has the same
equilibrium and characteristic equation for system (11). Then by Lemma 3.1, the
stability of (r∗, ξ∗) of system (11) implies that of system (5). Existence of Hopf
bifurcation follows from the Hopf bifurcation theorem established in [1].

Let x(η) = (u(η), v(η)) and system (11) is written

1

ǫ
ẋ(η) =

[

S((x(η), x(η − 1))
H((x(η), x(η − 1))

]

,

where (S, H) denotes the right hand side of (14). We have the Taylor expansion of
(14) up to the cubic terms,










































































































































1

ǫ

du

dη
=− µmu(η) + f

′(ξ∗)v(η − 1) + cµ
2
mu

2(η)− 2cµmf
′(ξ∗)u(η)v(η − 1)

+

(

1

2
f
′′(ξ∗) + cf

′2(ξ∗)

)

v
2(η − 1) + 3c2µ2

mf
′(ξ∗)u2(η)v(η − 1)

− c
2
µ
3
mu

3(η)− (cµmf
′′(ξ∗) + 3c2µmf

′2(ξ∗))u(η)v2(η − 1)

+

(

1

6
f
′′′(ξ∗) + cf

′′(ξ∗)f ′(ξ∗) + c
2
f
′3(ξ∗)

)

v
3(η − 1),

1

ǫ

dv

dη
=− µpv(η) + g

′(r∗)u(η − 1) +
1

2

[

−2cµpf
′(ξ∗)v(η)v(η − 1) + 2cµmµpu(η)v(η)

+g
′′(r∗)u2(η − 1) + 2cf ′(ξ∗)g′(r∗)u(η − 1)v(η − 1)− 2cµmg

′(r∗)uu(η − 1)
]

+
1

6

[

g
′′′(r∗)u3(η − 1)− 6c2µ2

mµpu
2(η)v(η) + 6c2µ2

mg
′(r∗)u2(η)u(η − 1)

−3cµmg
′′(r∗)u(η)u2(η − 1) + 3cg′′(r∗)f ′(ξ∗)u2(η − 1)v(η − 1)

−3(cµpf
′′(ξ∗) + 2c2µpf

′2(ξ∗))v(η)v2(η − 1) + 3(cf ′′(ξ∗)g′(r∗)

+2c2f ′2(ξ∗)g′(r∗))u(η − 1)v2(η − 1) + 12c2µmµpf
′(ξ∗)u(η)v(η)v(η − 1))

−12c2µmg
′(r∗)f ′(ξ∗)u(η)u(η − 1)v(η − 1)

]

.

(23)

3.3. Normal form computation via multiple time scale. In this section we
compute the normal form of system (14) using its Taylor expansion at (23). We
seek a uniform second-order approximate solution in the form

x(η; s) = sx1(T0, T2) + s2x2(T0, T2) + s3x3(T0, T2) + · · · , (24)

where T0 = η, T2 = s2η, and s is a nondimensional book keeping parameter.
In the following, we write xi = (ui, vi), i = 1, 2, · · · . It is not necessary to re-
late the approximate solution with the time scale T1 = sη because a second order
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approximation will require independence of T1 in the solution (See, e.g., [14], page
166).

d

dη
=

∂

∂T0
+ s2

∂

∂T2
+ · · · = D0 + s2D2 + · · · . (25)

By (24) and (25) we have

x(η − 1) = x(T0 − 1, T2 − s2) =
∞
∑

n=1

snxn(T0 − 1, T2)− s3D2x1(T0 − 1, T2) · · · .

(26)

Let ǫ = ǫ∗ + s2δ where ǫ∗ is the critical value for Hopf bifurcation and δ a small
detuning parameter. Bringing (24) and (26) into (23), we have the left hand side
been transformed into

1

(ǫ∗ + s2δ)
(D0 + s2D2)

∞
∑

n=1

snxn(T0, T2)

=
1

(ǫ∗ + s2δ)

[

sD0x1(T0, T2) + s2D0x2(T0, T2)

+s3D0x3(T0, T2) + s3D2x1(T0, T2) + s4D2x2(T0, T2) + · · ·
]

,

and the right hand side becomes

M

∞
∑

n=1

s
n
xn(T0, T2) +N

(

∞
∑

n=1

s
n
xn(T0 − 1, T2)− s

3
D2x1(T0 − 1, T2) + · · ·

)

+ · · · .

Comparing the like powers of s up to the cubic in the transformed equation of (23)
yield the following equations, where for notational simplicity we omitted the time
scales of the variables except for the delayed ones and use dashed lines to separate
entries of the column matrices.

D0x1 − ǫ∗Mx1 − ǫ∗Nx1(T0 − 1, T2) = 0, (27)

D0x2 − ǫ∗Mx2 − ǫ∗Nx2(T0 − 1, T2) =

ǫ∗

2





2cµ2
mu2

1 − 4cµmf ′(ξ∗)u1v1(T0 − 1, T2) + [f ′′(ξ∗) + 2cf ′2(ξ∗)]v21(T0 − 1, T2)
2cf ′(ξ∗)g′(r∗)u1(T0 − 1)v1(T0 − 1)− 2cµmg′(r∗)u1u1(T0 − 1)

−2cµpf
′(ξ∗)v1v1(T0 − 1) + 2cµmµpu1v1 + g′′(r∗)u2

1(T0 − 1)



 ,

(28)

D0x3 − ǫ∗Mx3 − ǫ∗Nx3(T0 − 1, T2) = −D2x1 − ǫ∗ND2x1(T0 − 1, T2)

+ δ(Mx1 +Nx1(T0 − 1, T2))

+
ǫ∗

6

































−6c2µ3
mu3

1 + 18c2µ2
mf ′(ξ∗)u2

1v1(T0 − 1, T2)
−(6cµmf ′′(ξ∗) + 18c2µmf ′2(ξ∗))u1v

2
1(T0 − 1, T2)

+(f ′′′(ξ∗) + 6cf ′′(ξ∗)f ′(ξ∗) + 6c2f ′3(ξ∗))v31(T0 − 1, T2)
g′′′(r∗)u3

1(T0 − 1, T2)− 6c2µ2
mµpu

2
1v1 + 6c2µ2

mg′(r∗)u2
1u1(T0 − 1, T2)

−3cµmg′′(r∗)u1u
2
1(T0 − 1, T2)

+3cg′′(r∗)f ′(ξ∗)u2
1(T0 − 1, T2)v1(T0 − 1, T2)

−3(cµpf
′′(ξ∗) + 2c2µpf

′2(ξ∗))v1v
2
1(T0 − 1, T2)

+3(cf ′′(ξ∗)g′(r∗) + 2c2f ′2(ξ∗)g′(r∗))u1(T0 − 1, T2)v
2
1(T0 − 1, T2)

+12c2µmµpf
′(ξ∗)u1v1v1(T0 − 1, T2)

−12c2µmg′(r∗)f ′(ξ∗)u1u1(T0 − 1, T2)v1(T0 − 1, T2)
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+
ǫ∗

2





















2cµ2
m(u1u2 + u2u1)− 4cµmf ′(ξ∗)(u2v1(T0 − 1, T2) + u1v2(T0 − 1, T2))
+2(f ′′(ξ∗) + 2cf ′2(ξ∗)))v1(T0 − 1, T2)v2(T0 − 1)

−2cµpf
′(ξ∗)(v1v2(T0 − 1, T2) + v2v1(T0 − 1, T2)) + 2cµmµp(u2v1 + u1v2)

+2g′′(r∗)u1(T0 − 1, T2)u2(T0 − 1, T2)
+2cf ′(ξ∗)g′(r∗)(u1(T0 − 1, T2)v2(T0 − 1, T2)
+u2(T0 − 1, T2)v1(T0 − 1, T2)))
−2cµmg′(r∗)(u2u1(T0 − 1, T2) + u1u2(T0 − 1, T2))





















.

(29)

We know that when ǫ = ǫ∗ system (14) undergoes Hopf bifurcation and (29) has
periodic solution of the form

x1 = A(T2)θe
iw∗T0 + Ā(T2)θ̄e

−iw∗T0 ,

where iw∗ is a purely imaginary eigenvalue with eigenvector θ = [θ1, θ2]
T 6= 0 which

satisfies
(

iw∗I + ǫ∗
[

µm 0
0 µp

]

− ǫ∗
[

0 f ′(ξ∗)e−iw∗

g′(r∗)e−iw∗

0

])(

θ1
θ2

)

= 0.

Leting θ1 = 1 in the above equation we have

θ =

[

1
eiw

∗

(iw∗+ǫ∗µm)
ǫ∗f ′(ξ∗)

]

.

Substitute x1 into (28), we have

D0x2 − ǫ∗Mx2 − ǫ∗Nx2(T0 − 1, T2)

=
ǫ∗

2































2cµ2
m(Aeiw

∗T0 + Āe−iw∗T0)2

−4cµmf ′(ξ∗)(Aeiw
∗T0 + Āe−iw∗T0)(Aθ2e

iw∗(T0−1) + Āθ̄2e
−iw∗(T0−1))

+[f ′′(ξ∗) + 2cf ′2(ξ∗)] · (Aθ2eiw
∗(T0−1) + Āθ̄2e

−iw∗(T0−1))2

−2cµpf
′(ξ∗)(Aθ2e

iw∗T0 + Āθ̄2e
−iw∗T0)(Aθ2e

iw∗(T0−1) + Āθ̄2e
−iw∗(T0−1))

+2cµmµp(Ae
iw∗T0 + Āe−iw∗T0)(Aθ2e

iw∗T0 + Āθ̄2e
−iw∗T0)

+g′′(r∗)(Aeiw
∗(T0−1) + Āe−iw∗(T0−1))2

+2cf ′(ξ∗)g′(r∗)(Aeiw
∗(T0−1) + Āe−iw∗(T0−1))(Aθ2e

iw∗(T0−1)

+Āθ̄2e
−iw∗(T0−1))

−2cµmg′(r∗)(Aeiw
∗T0 + Āe−iw∗T0)(Aeiw

∗(T0−1) + Āe−iw∗(T0−1))































.

(30)

Equation (28) has a particular solution of the form

x2 = aA2ei2w
∗T0 + bAĀ+ āĀ2e−i2w∗T0 ,

where a = (a1, a2) ∈ C2, b = (b1, b2) ∈ C2. Bringing the undetermined form of x2

into (30), we obtain

(aA2ei2w
∗T0 · i2w∗ + āĀ2e−i2w∗T0(−i2w∗)) (31)

+ ǫ∗
[

µm 0
0 µp

]

(aA2ei2w
∗T0 + bAĀ+ āĀ2e−i2w∗T0)

− ǫ∗
[

0 f ′(ξ∗)
g′(r∗) 0

]

(aA2ei2w
∗(T0−1) + bAĀ+ āĀ2e−i2w∗(T0−1))
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=
ǫ∗

2































2cµ2
m(Aeiw

∗T0 + Āe−iw∗T0)2

−4cµmf ′(ξ∗)(Aeiw
∗T0 + Āe−iw∗T0)(Aθ2e

iw∗(T0−1) + Āθ̄2e
−iw∗(T0−1))

+[f ′′(ξ∗) + 2cf ′2(ξ∗)] · (Aθ2eiw
∗(T0−1) + Āθ̄2e

−iw∗(T0−1))2

−2cµpf
′(ξ∗)(Aθ2e

iw∗T0 + Āθ̄2e
−iw∗T0)(Aθ2e

iw∗(T0−1) + Āθ̄2e
−iw∗(T0−1))

+2cµmµp(Ae
iw∗T0 + Āe−iw∗T0)(Aθ2e

iw∗T0 + Āθ̄2e
−iw∗T0)

+g′′(r∗)(Aeiw
∗(T0−1) + Āe−iw∗(T0−1))2

+2cf ′(ξ∗)g′(r∗)(Aeiw
∗(T0−1) + Āe−iw∗(T0−1))(Aθ2e

iw∗(T0−1)

+Āθ̄2e
−iw∗(T0−1))

−2cµmg′(r∗)(Aeiw
∗T0 + Āe−iw∗T0)(Aeiw

∗(T0−1) + Āe−iw∗(T0−1))































.

(32)

Equating the coefficients of the terms with ei2w
∗T0 from both sides of (31), we obtain



















































(i2w∗)A2a1 + ǫ∗µmA2a1 − ǫ∗f ′(ξ∗)A2e−i2w∗

a2

=ǫ∗cµ2
mA2 − 2ǫ∗cµmf ′(ξ∗)A2θ2e

−iw∗

+
ǫ∗

2
(f ′′(ξ∗) + 2cf ′2(ξ∗))A2θ22e

−i2w∗

,

(i2w∗)A2a2 + ǫ∗µpA
2a2 − ǫ∗g′(r∗)A2e−i2w∗

a1

=− ǫ∗cµpf
′(ξ∗)θ22A

2e−iw∗

+ ǫ∗cµmµpA
2θ2 +

ǫ∗

2
g′′(r∗)A2e−2iw∗

+ ǫ∗cf ′(ξ∗)g′(r∗)A2θ2e
−2iw∗ − ǫ∗cµmg′(r∗)A2e−iw∗

.

(33)

Equation (33) has a solution for a if i2w∗ is not an eigenvalue of (15).

(B3) i2w∗ is not an eigenvalue of (15).

We have














































































































































a1 =
ǫ∗

(i2w∗ + ǫ∗µm)(i2w∗ + ǫ∗µp)− ǫ∗2f ′(ξ∗)g′(r∗)e−i4w∗

×
[(

(cµ2
m − 2cµmf ′(ξ∗)θ2e

−iw∗

+
1

2
(f ′′(ξ∗) + 2cf ′2(ξ∗))θ22e

−i2w∗

)

× (i2w∗ + ǫ∗µp) +

(

− cµpf
′(ξ∗)θ22e

−iw∗

+ cµmµpθ2 +
1

2
g′′(r∗)e−2iw∗

+ cf ′(ξ∗)g′(r∗)θ2e
−2iw∗ − cµmg′(r∗)e−iw∗

)

(ǫ∗f ′(ξ∗)e−i2w∗

)

]

,

a2 =
ǫ∗

(i2w∗ + ǫ∗µm)(i2w∗ + ǫ∗µp)− ǫ∗2f ′(ξ∗)g′(r∗)e−i4w∗

×
[(

(cµ2
m − 2cµmf ′(ξ∗)θ2e

−iw∗

+
1

2
(f ′′(ξ∗) + 2cf ′2(ξ∗))θ22e

−i2w∗

)

× (ǫ∗g′(r∗)e−i2w∗

) +

(

− cµpf
′(ξ∗)θ22e

−iw∗

+ cµmµpθ2 +
1

2
g′′(r∗)e−2iw∗

+ cf ′(ξ∗)g′(r∗)θ2e
−2iw∗ − cµmg′(r∗)e−iw∗

)

(i2w∗ + ǫ∗µm)

]

.

(34)

Equating the coefficients of the AĀ terms from both sides of (31), we obtain,
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ǫ∗µmb1 − ǫ∗f ′(ξ∗)b2 = 2ǫ∗cµ2
m − 2ǫ∗cµmf ′(ξ∗)(θ̄2e

iw∗

+ θ2e
−iw∗

)

+ ǫ∗(f ′′(ξ∗) + 2cf ′2(ξ∗))θ2θ̄2,

−ǫ∗g′(r∗)b1 + ǫ∗µpb2 = − ǫ∗cµpf
′(ξ∗)θ2θ̄2(e

iw∗

+ e−iw∗

) + ǫ∗cµmµp(θ2 + θ̄2)

+ ǫ∗g′′(r∗) + ǫ∗cf ′(ξ∗)g′(r∗)(θ2 + θ̄2)− ǫ∗cµmg′(r∗)

× (eiw
∗

+ e−iw∗

).

Noticing that θ2 = eiw
∗

(iw∗+ǫ∗µm)
ǫ∗f ′(ξ∗) and hence θ2e

−iw∗

+ θ̄2e
iw∗

= 2µm

f ′(ξ∗) , we have














































































b1 =
1

ǫ∗2f ′2(ξ∗)(µmµp − f ′(ξ∗)g′(r∗))

[

µpf
′′(ξ∗)w∗2 + µpf

′′(ξ∗)ǫ∗2µ2
m

+ 2f ′2(ξ∗)cµpw
∗2 − 2f ′2(ξ∗)cµpw

∗2 cosw∗ − 2c(f ′3(ξ∗)g′(r∗)

+ µmµpf
′2(ξ∗))ǫ∗w∗ sinw∗ + f ′3(ξ∗)g′′(r∗)ǫ∗2

]

,

b2 =
1

ǫ∗2f ′2(ξ∗)(µmµp − f ′(ξ∗)g′(r∗))

[

µmf ′2(ξ∗)g′′(r∗)ǫ∗2 + f ′′(ξ∗)g′(r∗)w∗2

+ f ′′(ξ∗)g′(r∗)µ2
mǫ∗2 + 2cf ′2(ξ∗)g′(r∗)w∗2 − 2cµmµpf

′(ξ∗)w∗2 cosw∗

− 2c(µmf ′2(ξ∗)g′(r∗) + µ2
mµpf

′(ξ∗))ǫ∗w∗ sinw∗

]

.

Substituting the expressions of x1 and x2 into (4.9), we obtain,

D0x3 − ǫ∗Mx3 − ǫ∗Nx3(T0 − 1, T2)

= −D2(A(T2)θe
iw∗T0 + cc)− ǫ∗ND2(θA(T2)e

iw∗(T0−1) + cc)

+ δ(M(A(T2)θe
iw∗T0 + cc)) +N(A(T2)θe

iw∗(T0−1) + cc)

+
ǫ∗

6

































−6c2µ3
mu3

1 + 18c2µ2
mf ′(ξ∗)u2

1v1(T0 − 1, T2)
−(6cµmf ′′(ξ∗) + 18c2µmf ′2(ξ∗))u1v

2
1(T0 − 1, T2)

+(f ′′′(ξ∗) + 6cf ′′(ξ∗)f ′(ξ∗) + 6c2f ′3(ξ∗))v31(T0 − 1, T2)
g′′′(r∗)u3

1(T0 − 1, T2)− 6c2µ2
mµpu

2
1v1 + 6c2µ2

mg′(r∗)u2
1u1(T0 − 1, T2)

−3cµmg′′(r∗)u1u
2
1(T0 − 1, T2)

+3cg′′(r∗)f ′(ξ∗)u2
1(T0 − 1, T2)v1(T0 − 1, T2)

−3(cµpf
′′(ξ∗) + 2c2µpf

′2(ξ∗))v1v
2
1(T0 − 1, T2)

+3(cf ′′(ξ∗)g′(r∗) + 2c2f ′2(ξ∗)g′(r∗))u1(T0 − 1, T2)v
2
1(T0 − 1, T2)

+12c2µmµpf
′(ξ∗)u1v1v1(T0 − 1, T2)

−12c2µmg′(r∗)f ′(ξ∗)u1u1(T0 − 1, T2)v1(T0 − 1, T2)

































+
ǫ∗

2





















2cµ2
m(u1u2 + u2u1)− 4cµmf ′(ξ∗)(u2v1(T0 − 1, T2) + u1v2(T0 − 1, T2))
+2(f ′′(ξ∗) + 2cf ′2(ξ∗)))v1(T0 − 1, T2)v2(T0 − 1)

−2cµpf
′(ξ∗)(v1v2(T0 − 1, T2) + v2v1(T0 − 1, T2)) + 2cµmµp(u2v1 + u1v2)

+2g′′(r∗)u1(T0 − 1, T2)u2(T0 − 1, T2)
+2cf ′(ξ∗)g′(r∗)(u1(T0 − 1, T2)v2(T0 − 1, T2)
+u2(T0 − 1, T2)v1(T0 − 1, T2)))
−2cµmg′(r∗)(u2u1(T0 − 1, T2) + u1u2(T0 − 1, T2))





















.

(35)

Note that iw∗ is an eigenvalue of the homogenous system corresponding to (35) and
the right hand side of the nonhomogeneous system (35) has terms with eiw

∗T0 . To
remove possible secular terms in the solutions, we seek a particular solution of the
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form x3(T0, T2) = φ(T2)e
iw∗T0 , where the existence of φ requires solvability of the

algebraic equation

[

iw∗I − ǫ∗M − ǫ∗Ne−iw∗

]

φ = χ. (36)

where χ stands for the coefficients of the eiw
∗T0 term in (35). System (36) is solvable

for φ if and only if χ is orthogonal to the null space of the conjugate transpose of
the coefficient matrix. That is, for every vector d which satisfies

[

−iw∗I − ǫ∗MT − ǫ∗NT eiw
∗

]

d = 0,

we require

d̄Tχ = 0, (37)

which is an ordinary differential equation of A and is the normal form. We can
obtain d as following with the condition d̄T θ = 1 imposed for uniqueness:

d =
1

−2iw∗ + ǫ∗(µm + µp)

[

−iw∗ + ǫ∗µp

ǫ∗eiw
∗

f ′(ξ∗)

]

.

Bringing the expressions of x1 and x2 into system (35), we have the following
expression for χ :

χ =− θA′ − ǫ∗e−iw∗

NθA′ + δMθA+ δNθAe−iw∗

+
ǫ∗

2
A2Ā

×





















−6c2µ3
m + 6c2µ2

mf ′(ξ∗)(2θ2e
−iw∗

+ θ̄2e
iw∗

)− 2cµm(f ′′(ξ∗) + 3cf ′2(ξ∗))

·θ2(θ2e−2iw∗

+ 2θ̄2) + (f ′′′(ξ∗) + 6cf ′′(ξ∗)f ′(ξ∗) + 6c2f ′3(ξ∗))θ22 θ̄2e
−iw∗

g′′′(r∗)e−iw∗ − 2c2µ2
mµp(θ̄2 + 2θ2) + 2c2µ2

mg′(r∗)(2e−iw∗

+ eiw
∗

)

−cµmg′′(r∗)(2 + e−2iw∗

) + cg′′(r∗)f ′(ξ∗)(2θ2e
−iw∗

+ θ̄2e
−iw∗

)

−cµp(f
′′(ξ∗) + 2cf ′(ξ∗))θ22 θ̄2(2 + e−2iw∗

) + cg′(r∗)(f ′′(ξ∗) + 2cf ′2(ξ∗))

·(2θ̄2 + θ2)θ2e
−iw∗

+ 4c2µmµpf
′(ξ∗)θ2(θ̄2e

iw∗

+ θ̄2e
−iw∗

+ θ2e
−iw∗

)
−4c2µmf ′(ξ∗)g′(r∗)(θ̄2 + θ2 + θ2e

−2iw)





















+ǫ∗A2Ā

















2cµ2
m(a1 + b1)− 2cµmf ′(ξ∗)(a1θ̄2e

iw + b1θ2e
−iw + b2 + a2e

−2iw∗

)

+(f ′′(ξ∗) + 2cf ′2(ξ∗))(a2θ̄2 + b2θ2)e
−iw∗

−cµpf
′(ξ∗)(b2θ2 + a2θ̄2e

−2iw∗

+ b2θ2e
−iw∗

+ a2θ̄2e
iw∗

)

+cµmµp(b1θ2 + a1θ̄2 + a2 + b2) + g′′(r∗)e−iw∗

(a1 + b1)

+cf ′(ξ∗)g′(r∗)(b2e
−iw∗

+ a2e
−iw∗

+ b1θ2e
−iw∗

+ a1θ̄2e
−iw∗

)

−cµmg′(r∗)(b1e
−iw∗

+ a1e
iw∗

+ b1 + a1e
−2iw∗

)

















.

(38)

By (37) and (38) and noticing that d̄T θ = 1 and

iw∗θ − ǫ∗Mθ − ǫ∗Nθe−iw∗

= 0,

we have the following normal form:

A
′(1 + ǫ

∗

e
−iw∗

d̄
T
Nθ)

=
iw∗

ǫ∗
δA+

ǫ∗

2
A

2
Ā
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× d̄
T























−6c2µ3
m + 6c2µ2

mf ′(ξ∗)(2θ2e
−iw∗

+ θ̄2e
iw∗

)− 2cµm(f ′′(ξ∗) + 3cf ′2(ξ∗))

·θ2(θ2e
−2iw∗

+ 2θ̄2) + (f ′′′(ξ∗) + 6cf ′′(ξ∗)f ′(ξ∗) + 6c2f ′3(ξ∗))θ22 θ̄2e
−iw∗

g′′′(r∗)e−iw∗

− 2c2µ2
mµp(θ̄2 + 2θ2) + 2c2µ2

mg′(r∗)(2e−iw∗

+ eiw
∗

)

−cµmg′′(r∗)(2 + e−2iw∗

) + cg′′(r∗)f ′(ξ∗)(2θ2e
−iw∗

+ θ̄2e
−iw∗

)

−cµp(f
′′(ξ∗) + 2cf ′(ξ∗))θ22 θ̄2(2 + e−2iw∗

) + cg′(r∗)(f ′′(ξ∗) + 2cf ′2(ξ∗))

·(2θ̄2 + θ2)θ2e
−iw∗

+ 4c2µmµpf
′(ξ∗)θ2(θ̄2e

iw∗

+ θ̄2e
−iw∗

+ θ2e
−iw∗

)
−4c2µmf ′(ξ∗)g′(r∗)(θ̄2 + θ2 + θ2e

−2iw)























+ ǫ
∗

A
2
Ād̄

T



















2cµ2
m(a1 + b1)− 2cµmf ′(ξ∗)(a1θ̄2e

iw + b1θ2e
−iw + b2 + a2e

−2iw∗

)

+(f ′′(ξ∗) + 2cf ′2(ξ∗))(a2θ̄2 + b2θ2)e
−iw∗

−cµpf
′(ξ∗)(b2θ2 + a2θ̄2e

−2iw∗

+ b2θ2e
−iw∗

+ a2θ̄2e
iw∗

)

+cµmµp(b1θ2 + a1θ̄2 + a2 + b2) + g′′(r∗)e−iw∗

(a1 + b1)

+cf ′(ξ∗)g′(r∗)(b2e
−iw∗

+ a2e
−iw∗

+ b1θ2e
−iw∗

+ a1θ̄2e
−iw∗

)

−cµmg′(r∗)(b1e
−iw∗

+ a1e
iw∗

+ b1 + a1e
−2iw∗

)



















.

(39)

We arrive at,

Theorem 3.4. Assume that (B1), (B2) and (B3) hold. The normal form of sys-
tem (5) near its equilibrium is (39).

We remark that if the state-dependent translation time T is not included in the
diffusion time τ , namely, c = 0, the normal form at (39) becomes the normal form
for system (5) with constant delay ǫ:

A′ =
iw∗eiw

∗

δ

ǫ∗(eiw∗ + ǫ∗d̄TNθ)
A

+
ǫ∗

(eiw∗ + ǫ∗d̄TNθ)
d̄T

[

f ′′(ξ∗)(a2θ̄2 + b2θ2) +
1
2f

′′′(ξ∗)θ22 θ̄2
g′′(r∗)(a1 + b1) +

1
2g

′′′(r∗)

]

A2Ā. (40)

4. Hes1 system (4) and numerical simulation. In this section, we consider the
prototype system (4) and illustrate the results of section 3 by numerical simulation.
In the following, a vector is said to be positive if all coordinates are positive. To
have assumptions (B1) and (B2) hold for system (4), we show that,

Theorem 4.1. Consider system (4) with positive parameters µm, µp, αm, αp, h, ȳ,
ǫ and c. Suppose that αm ≤ 1

c
. Then system (4) has a positive equilibrium (x∗, y∗)

and there exists a neighborhood U of (x∗, y∗) ⊂ C1([−α0, 0];R
2) with α0 > 0 such

that, for every initial data for (x, y) ∈ U , and initial data for τ in (0, α0) satisfying
the compatibility conditions at (6), there exists a unique positive solution (x, y, τ)
on [0, +∞) with ẋ(t) < αm for every t ≥ 0.

Proof. Since all parameters of system (4) are positive, direct computation shows
that there exists a positive equilibrium. Then there exists a neighborhood U of
(x∗, y∗) ⊂ C1([−α0, 0];R

2) such that every (x, y) ∈ U is positive and ẋ(s) < 1
c
for

all s ∈ [−α0, 0].
Consider the initial value problem associated with system (4). We obtain by the

work of [23] that the initial value problem has a unique solution (x, y, τ) on [0, te)
where [0, te) is the maximal existence interval with te > 0 or te = ∞ (c.f., [5]).

Notice that if τ(s) = 0 for some s ∈ (0, te) then from the third equation of
system (4) we have τ(s) = ǫ > 0 which contradicts τ(s) = 0. Therefore, we have
τ(s) > 0 for every s ∈ [0, te).
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Next we show that ẋ(t) < 1
c
for every t ∈ (0, te). Assume that there exists a

minimal s0 ∈ (0, te) such that ẋ(s0) =
1
c
. Then by the third equation of system (4)

we have for every t ∈ [0, s0],

τ̇ (t) =
ẋ(t)− ẋ(t− τ(t))
1
c
− ẋ(t− τ(t))

< 1.

It follows that for every t ∈ [0, s0] we have −τ0 < t− τ(t) < t. Then we have

ẋ(s) = −µmx(s) +
αm

1 +
(

y(s−τ(s))
ȳ

)h
<

αm

1 +
(

y(s−τ(s))
ȳ

)h
< αm,

which leads to 1
c
< αm. This is a contradiction. Therefore, ẋ(t) < 1

c
for every

t ∈ (0, te).
Next we show that x(t) and y(t) are positive on [0, te). Suppose, for contradic-

tion, that there exists t0 ∈ (0, te) which is the minimal time such that x(t) or y(t)
vanishes. If x(t0) = 0, then we have

ẋ(t0) = −µmx(t0) +
αm

1 +
(

y(t0−τ(t0))
ȳ

)h
=

αm

1 +
(

y(t0−τ(t0))
ȳ

)h
> 0,

which means that there exists t∗0 ∈ (0, t0) such that x(t∗0) < 0. This contradicts the
minimality of t0.

If y(t0) = 0, then we have

ẏ(t0) = −µpy(t0) + αpx(t0 − τ(t0)) = αpx(t0 − τ(t0)) > 0,

which means that there exists t∗∗0 ∈ (0, t0) such that y(t∗∗0 ) < 0. This contradicts
the minimality of t0. That is, x(t), y(t) and τ(t) are positive on [0, te) and for every
t ∈ [0, te) we have

ẋ(t) = −µmx(t) +
αm

1 +
(

y(t−τ(t))
ȳ

)h
<

αm

1 +
(

y(t−τ(t))
ȳ

)h
< αm. (41)

It follows that

ẏ(t) = −µpy(t) + αpx(t− τ(t)) < αpx(t− τ(t)) < αp(αmt+ x(0)). (42)

By (41) and (42), and by the third equation of system (4), (x, y, τ) is uniformly
bounded on [−α0, te) and hence extendable beyond te, which contradicts the max-
imality of te and we have te = ∞.

Now we turn to assumption (B3). Let µm = 0.03, µp = 0.04, αm = 35, αp = 10,
ȳ = 1200, h = 5. Then we have the equilibria (r∗, ξ∗) = (11.97050076, 2992.625189),
ω∗ = 0.47038322. We have f ′(ξ∗) = −0.00059384374, g′(r∗) = 10. Then we have

µmµp = 1.2× 10−3 < 5.9384374× 10−3 = −f ′(ξ∗)g′(r∗).

Then by Lemma 3.1 and by Theorem 3.3, there exists a unique ǫ0 = 6.86216245,
such that for every ǫ ∈ (0, ǫ0), the equilibria (r∗, ξ∗) is stable; for every ǫ ∈ [ǫ0, ∞)
the equilibria (r∗, ξ∗) is unstable and ǫ0 is a critical value of ǫ for which system (4)
undergoes Hopf bifurcation. For ǫ = ǫ0 and λ = 2iw∗, we have

(λ+ ǫµm)(λ+ ǫµp)− ǫ2f ′(ξ∗)g′(r∗)e−2λ
∣

∣

λ=2iw∗, ǫ=ǫ0

=− 0.9140361052+ 0.1856539388 i 6= 0.
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Figure 2. (a) Equilibrium (r∗, ξ∗) = (11.97050076, 2992.625189)
is stable with ǫ = ǫ0 − δ, c = 0.01 < c0 with δ = 0.1; (b) periodic
solution appears at ǫ = ǫ0 + δ, c = 0.01 < c0.

That is, (B3) holds. By Theorem 3.4, the normal form of system (4) near (r∗, ξ∗)
is,

A′ =(0.01841158248+ 0.04829902976 i)δA

+
(

(2.114544332 c2 + 0.0008578251748 c− 0.001233336633)

−i(1.469928514 c2+ 0.002534237744 c− 0.003599996653)
)

A2Ā,

where the real part of the coefficient of the cubic term A2Ā is

2.114544332 c2+ 0.0008578251748 c− 0.001233336633,

which is negative for 0 < c < c0 := 0.02394886242, and is positive for c > c0.
If 0 < c < c0, system (4) undergoes supercritical Hopf bifurcation near (r∗, ξ∗)

as ǫ crosses the critical value ǫ0. Namely, if 0 < ǫ < ǫ0, the equilibrium is stable
(see Figure 2(a)); if ǫ > ǫ0, there is a stable periodic solution near (r∗, ξ∗) (see
Figure 2(b)).

If c > c0, system (4) undergoes subcritical Hopf bifurcation near (r∗, ξ∗) as ǫ
crosses the critical value ǫ0. Namely, if 0 < ǫ < ǫ0, the equilibrium is stable (see
Figure 3(a)) and there is a unstable periodic solution near (r∗, ξ∗). See Figure 3(a),
where the equilibrium (r∗, ξ∗) = (11.97050076, 2992.625189) is asymptotically sta-
ble with ǫ = ǫ0− δ, c = c0+0.001 (the solid curve); when initial value is far enough
from the equilibrium (r∗, ξ∗) = (11.97050076, 2992.625189), solution with nonpos-
itive initial values (the dashed curve) may converge to a negative equilibrium. If
ǫ > ǫ0, the equilibrium (r∗, ξ∗) is unstable (see Figure 3(b)).

5. Concluding remarks. Starting from model (5) of differential equations with
threshold type state-dependent delay, we obtained model (11) with constant delay
equivalent to (5) under assumptions (B1), (B2) and (B3), by using a time domain
transformation. System (11) provides a possibility to investigate the dynamics of
the original system near the equilibrium points. We remark that the normal form
(39) of the general type of system (11) obtained by using the method of multiple
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Figure 3. (a) Equilibrium (r∗, ξ∗) = (11.97050076, 2992.625189)
is asymptotically stable with ǫ = ǫ0−δ < ǫ0, c = c0+0.001 (see the
solid curve); when initial value is far enough from the equilibrium
(r∗, ξ∗) = (11.97050076, 2992.625189), solution may converge to
another equilibrium (see the dashed curve). Subcritical bifurcation
occurs at ǫ0 with 0 < c < c0. (b) If ǫ > ǫ0 and c = c0 + 0.001, the
equilibrium (r∗, ξ∗) is unstable.

time scales is also applicable to the following type of system:














1

ǫ

dr

dη
= −µmr(η) + f(ξ(η − 1))

1

ǫ

dξ

dη
= −µpξ(η) + g(r(η − 1)),

(43)

which is equivalent to system (13). Even though many specific types of models of
genetic regulatory dynamics have been developed in recent years (see [24], among
many others), the general normal form we developed applies to a broad class of
models.

Modeling the state-dependent delay of the genetic regulatory dynamics gives rise
to the parameters c > 0 and ǫ > 0 in model (11) with constant delay, where c takes
account of the state-dependent fluctuation of the diffusion time for homogenization
of the substances produced in the regulatory network and ǫ measures the basal
diffusion time. Since c is the coefficient of the concentration disparity x(t)−x(t−τ),
it is an analogue of the diffusion coefficients in [2]. The basal diffusion time ǫ is an
analogue of the active macromolecular transport modeled as a time delay in [2].

From the analysis of model (11), we find that the characteristic equation is in-
dependent of c while the basal diffusion time ǫ determines (with other parameters
fixed) the stability of the equilibrium state and the approximate period of the bifur-
cating periodic solutions. However, the state-dependent effect represented by c may
give rise to both supercritical and subcritical Hopf bifurcations, while the former
has been observed in [24], the latter is rarely seen in the literature. Note that the
work of [24] is a theoretic analysis with normal form computation for the model
with constant delay considered in [18], where the nonlinear feedbacks are Holling
type III functions and only numerical analysis was conducted.

A subcritical Hopf bifurcation usually means a sudden change of the dynamics
when the system state is far enough from the stable equilibrium state. In terms
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of the model for the state-dependent delay τ(t) = ǫ + c(x(t) − x(t − τ(t))), the
subcritical Hopf bifurcation occurs when the contribution of homogenization to the
diffusion time is strong enough and the basal diffusion time ǫ is less than its critical
value. This observation may shed lights on the mutation phenomenon in certain
genetic regulatory dynamics.

We remark that the numerical results in Section 4 is consistent with the ob-
servations from [2] described in the Section 1: when the analogous diffusion coef-
ficient c is large enough, the Hes1 system undergoes subcritical Hopf bifurcation
with respect to ǫ and cannot sustain stable periodic oscillations; when the analo-
gous diffusion coefficient c is small, the Hes1 system undergoes supercritical Hopf
bifurcation with respect to ǫ and can sustain stable periodic oscillations. The state-
dependent delay provides an approach to take into account of both the diffusive
and active macromolecular transports without the complication of involving spatial
information which typically will lead to reaction-diffusion equations.

We also remark that the attempt to model the state-dependent delay with an
inhomogeneous linear function of the state variables reveals that the concentration
gradients in the genetic regulatory dynamics may change the Hopf bifurcation di-
rection modeled with constant delays. Since diffusion of substances in live cell may
be confined or otherwise free and is a complex process [25], improved models for the
state-dependent delay in the diffusion process may provide better means for under-
standing the underlying mechanisms of genetic regulatory dynamics. For instance,
what if the stationary state of τ depends on c so that c also changes the stability
of the equilibria? It also remains to be investigated that to which extent the model
of regulatory dynamics with linear type of state-dependent delay reflects that with
a nonlinear one.

Acknowledgment. The author would like to thank an anonymous referee for the
detailed and constructive comments which greatly improved the paper.
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