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Abstract. A multigroup model is developed to characterize brucellosis trans-

mission, to explore potential effects of key factors, and to prioritize control
measures. The global threshold dynamics are completely characterized by the-

ory of asymptotic autonomous systems and Lyapunov direct method. We then
formulate a multi-objective optimization problem and, by the weighted sum

method, transform it into a scalar optimization problem on minimizing the

total cost for control. The existence of optimal control and its characterization
are well established by Pontryagin’s Maximum Principle. We further parame-
terize the model and compute optimal control strategy for Inner Mongolia in

China. In particular, we expound the effects of sheep recruitment, vaccination
of sheep, culling of infected sheep, and health education of human on the dy-

namics and control of brucellosis. This study indicates that current control

measures in Inner Mongolia are not working well and Brucellosis will continue
to increase. The main finding here supports opposing unregulated sheep breed-
ing and suggests vaccination and health education as the preferred necessary

emergency intervention control. The policymakers must take a new look at
the current control strategy, and, in order to control brucellosis better in In-

ner Mongolia, the governments have to preemptively press ahead with more

effective measures.
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1. Introduction. Brucellosis, also called Malta fever, is a highly contagious zoono-
sis caused by bacteria of the genus Brucella and is one of the most wide-spread
infectious diseases in the world. Brucellosis is rarely fatal and the mortality of live-
stock due to the disease is practically zero. But brucellosis has important impacts
on the livestock industry and the loss due to the fact that abortions can be very
high if no control is applied. Human brucellosis is commonly caused by exposure
to infected livestock or livestock products[32]. There is no recorded transmission
of the infection among humans and they can very rarely infect animals. Human
brucellosis remains the commonest zoonotic disease worldwide with more than half
a million new cases annually.

The global epidemiology of the disease has drastically evolved over the past
decade. Pappas et al[29] depict the global distribution of the disease before 2006 and
draw a new global map of human brucellosis. The papers[4, 32] describe the history
and development of brucellosis in China till the early 2000s and briefly present
the variation of epidemic situation, epidemiological characteristics, application of
vaccines, and disease controls. After implementing comprehensive measures, great
progress had been actually achieved in the prevention and control of brucellosis in
China[32]. Brucellosis, however, still remains a serious public health issue. Since
1992, new foci of human brucellosis have emerged in China and the situation in
certain regions is rapidly worsening, particularly in Inner Mongolia, one of the most
important animal husbandry provinces of China. The brucellosis spreads all over
Inner Mongolia and most of the confirmed cases are peasants and herdsmen[6]. The
incidence of human brucellosis in Inner Mongolia increased from 3.42 per 100 000 in
2002 to 33.32 per 100 000 in 2006[15]. In recent years, Inner Mongolia has the largest
number (40%) of new annually confirmed cases of human brucellosis in China.
Most of the cases in Inner Mongolia are attributed to Brucella melitensis (sheep
brucella) (92%) and then to Brucella abortus (5%) due to the rapid development
of sheep farming[30]. In Inner Mongolia, some of human brucellosis cases recover
to susceptible under good treatment while the others become chronic cases[41].
In particular, in rural areas, due to the lower awareness of the disease and the
limited medical resources, many infected cases miss the best time to treat and
become chronic cases[30, 32]. The prevention and control of brucellosis require
substantial financial support. So, it is necessary to find a balance between the
control effectiveness and the control resources and then to formulate an optimal
control strategy with the very limited support from the government.

The use of mathematical formulations and models has emerged as a means to
better describe, understand and predict the dynamical properties of brucellosis evo-
lution and provide insight into the mechanisms that lead to those dynamics[1, 2,
3, 5, 10, 16, 14, 26, 44]. Most study is based on statistical models (static study)
[2, 3, 10, 26, 34]. There are also several dynamical models proposed to explore the
transmission of brucellosis[1, 5, 14, 16, 44].

Most existing models of brucellosis only consider transmission within a single live-
stock population and the transmission to humans is rarely considered[1, 5, 14]. Ac-
cording to the domestic situation of Mongolia, Zinsstag et al[44] present a livestock-
to-human brucellosis transmission model, which considers brucellosis transmission
within sheep and cattle populations and spreading to humans as additive compo-
nents. Based on the model, the authors[44] estimate demographic (birth rate, mor-
tality) and transmission (contact rates) parameters between livestock and livestock
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Figure 1. Schematic transmission diagram of brucellosis among
sheep and two human subpopulations. S, I, V represent suscepti-
ble, infectious and vaccinated sheep. S1, I1, C1 and S2, I2, C2

represent susceptible, acute cases and chronic cases of high risk
human subpopulation G1 and low risk human subpopulation G2,
respectively.

to humans for cost-effectiveness analysis of a nation-wide mass-vaccination pro-
gramme. Recently, Hou et al[16] propose a brucellosis transmission model, which
involves sheep population, human population and brucella in the environment. The
results[16] show that vaccinating and disinfecting both young and adult sheep are
appropriate and effective strategy to control brucellosis in Inner Mongolia of China.

As far as we know, available dynamic models of brucellosis transmission are de-
veloped without considering the limitedness of control resources. In this study,
we develop and analyze a dynamic model, which considers brucellosis transmission
within sheep population and the transmission to humans as additive components,
and explore the optimal control of brucellosis in resources-limited setting. The paper
is organized as follows. In Section 2, a new sheep-to-human brucellosis transmis-
sion model is formulated. The global dynamics of the model is explored in Section
3 with the help of asymptotic autonomous system theory and Lyapunov direct
method. Section 4 formulates a multi-objective optimization problem in resources-
limited setting and then, by the weighted sum method, transforms it into a scalar
optimization problem with minimizing the cost for vaccination and health educa-
tion and also the incidences of brucellosis both in sheep and in human. Section
5 characterizes the effects of sheep recruitment, vaccination of sheep, culling of in-
fected sheep, and health education on the dynamics of brucellosis and on its optimal
control. The paper ends with some conclusions and enlightening discussions.

2. Model formulation. Based on the transmission characteristics of brucellosis in
Inner Mongolia of P. R. China, we consider both the sheep population and the hu-
man population. The sheep population is divided into three epidemiological classes,
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the susceptible (S), infectious (I), and vaccinated (V ). The human population con-
sists of a high risk subpopulation (G1) and a low risk subpopulation (G2) according
to the infection risk. Each human subpopulation is partitioned into three classes,
the susceptible, acute human brucellosis, and chronic human brucellosis, with pop-
ulation size denoted by Si, Ii, Ci, i = 1, 2, respectively. The dynamic transfer of
hosts is depicted in Fig.1.

In sheep population, the susceptible admits effective vaccination at a constant
rate θ. The influx of susceptible comes from two sources, a constant recruitment A
and hosts that lost immunity δV . The natural elimination rate is assumed to be
the same constant m for all the hosts and the infectious hosts suffer an extra culling
with constant rate k. The incidence term is of the bilinear mass-action form λSI.

In human population, each subpopulation admits a constant recruitment Λi and
natural death at a constant rate di. 1/γi denotes the acute onset period of human
brucellosis. qi is the fraction of acute human brucellosis turned into chronic cases.
Both incidence terms of G1 and G2 are also of the bilinear type. The per capita
transmission rate of G1 is set to be β and that of G2 reads εβ with ε (0 < ε � 1)
being the infection risk attenuation coefficient of G2 compared to G1.

The description, unit, default value and reference resource for each parameter
are given in Table 1. The default value for each of the parameters are derived from
the references[8, 9, 27, 33, 41, 42] on brucellosis of P. R. China.

The transfer diagram in Fig.1 leads to the following system of differential equa-
tions 

dS

dt
= A+ δV − λSI −mS − θS,

dI

dt
= λSI −mI − kI,

dV

dt
= θS − δV −mV,

dS1

dt
= Λ1 + (1− q1)γ1I1 − βS1I − d1S1,

dI1
dt

= βS1I − γ1I1 − d1I1,
dC1

dt
= q1γ1I1 − d1C1,

dS2

dt
= Λ2 + (1− q2)γ2I2 − εβS2I − d2S2,

dI2
dt

= εβS2I − γ2I2 − d2I2,
dC2

dt
= q2γ2I2 − d2C2.

(1)

3. Global dynamics of (1). In this section, the global dynamics of (1) will be
explored. By the standard next generation method [37], the basic reproduction
number of (1) reads

R0 =
λ(m+ δ)A

m(m+ k)(m+ δ + θ)
. (2)

It is trivial to show that the following compact feasible region

Γ =
{

(S, I, V, S1, I1, C1, S2, I2, C2) ∈ R9
+

∣∣∣0 ≤ S + I + V ≤ A

m
,
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Table 1. Parameters of model (1) with default values used for numerical studies.

Parameter Value/Range Unit Definition Reference

A 3300 104/year Constant recruitment of sheep [8]

m 0.6 year−1 Natural elimination or death rate

of sheep

[8]

1/δ [1,3] year Mean effective period of vaccina-

tion

[9, 33, 42]

k 0 − 50% year−1 Culling rate of infectious sheep [17, 35, 40, 41]

θ [0,0.85] year−1 Effective vaccination rate of sus-

ceptible sheep

[9, 42, 33]

Λ1 12 104/year Recruitment of G1 (high risk) [27]

Λ2 11 104/year Recruitment of G2 (low risk) [27]

di 0.006 year−1 Natural death rate of human [27]

1/γi 0.25 year Acute onset period of human [41]

qi [0.32,0.74] year−1 Fraction of acute human cases

turned into chronic cases

[41]

λ 2.55 × 10−4 year−1 Transmission rate of sheep Fitting

β 4.895 × 10−6 year−1 Transmission rate between sheep

and G1

Fitting

ε 0.17 year−1 Infection risk attenuation coeffi-

cient of G2 compared to G1

Fitting

Note: i = 1, 2.

0 ≤ S1 + I1 + C1 ≤
Λ1

d1
,0 ≤ S2 + I2 + C2 ≤

Λ2

d2

}
is positively invariant with respect to (1), and (1) always has the disease-free equi-
librium

E0 = (S0, 0, V 0, S0
1 , 0, 0, S

0
2 , 0, 0),

where

S0 =
(m+ δ)A

m(m+ δ + θ)
, V 0 =

θA

m(m+ δ + θ)
, S0

i =
Λi
di
, (i = 1, 2). (3)

Follow Theorem 2 of [37], it is not difficult to reach the following claim on the
stability of E0.

Theorem 3.1. The disease-free equilibrium E0 is locally asymptotically stable if
R0 < 1, and is unstable if R0 > 1.

Moreover, (1) has a unique endemic equilibrium

E∗ = (S∗, I∗, V ∗, S∗1 , I
∗
1 , C

∗
1 , S

∗
2 , I
∗
2 , C

∗
2 )

if and only if R0 > 1, where

S∗ =
m+ k

λ
, V ∗ =

θ

m+ δ
S∗,

I∗ =
m(m+ δ + θ)

λ(m+ δ)

[ Aλ(m+ δ)

m(m+ δ + θ)(m+ k)
− 1
]

=
m(m+ δ + θ)

λ(m+ δ)
(R0 − 1),

S∗1 =
γ1I
∗
1 + d1I

∗
1

βI∗
, C∗1 =

q1γ1I
∗
1

d1
, I∗1 =

βΛd1I
∗

βq1γ1I∗ + βd1I∗ + d1(γ1 + d1)
,
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S∗2 =
γ2I
∗
2 + d2I

∗
2

εβI∗
, C∗2 =

q2γ2I
∗
2

d2
, I∗2 =

εβΛd2I
∗

εβq2γ2I∗ + εβd2I∗ + d2(γ2 + d2)
. (4)

Next, we explore the globally asymptotic stability of (1). The main approach
involves the theory of asymptotic autonomous systems [23, 36]. For the reader’s
convenience, we shall first summarize below a few concepts and results of asymptotic
autonomous system from [23] that will be basic for the following discussion.

Consider the following differential equations

dx

dt
= f(t, x), (5)

dy

dt
= g(y). (6)

(5) is called asymptotically autonomous with limit equation (6) if

f(t, x)→ g(x), t→∞, locally uniformly in x ∈ Rn,

i.e., for x in any compact subset of Rn. Assume that f(t, x), g(x) are continuous
functions and locally Lipschitz in x.

Lemma 3.2 ([23]). The ω-limit set Ω of a forward bounded solution x to (5) is
non-empty, compact, and connected. Moreover, Ω attracts x, i.e.,

dist(x(t),Ω)→ 0, t→∞.

Finally Ω is invariant under (6). In particular any point in Ω lies on a full orbit of
(6) that is contained in Ω.

Lemma 3.3 ([23]). Let e be a locally asymptotically stable equilibrium of (6) and
Ω the ω-limit set of a forward bounded solution x of (5). If Ω contains a point y0
such that the solution y of (6), with y(0) = y0, converges to e for t → ∞, then
Ω = {e}, i.e., x(t)→ e, t→∞.

Now, consider the following sub-model of (1)

dS

dt
= A+ δV − λSI −mS − θS,

dI

dt
= λSI −mI − kI,

dV

dt
= θS − δV −mV.

(7)

Lemma 3.4. For system (7), we have the following claims:

(1) If R0 ≤ 1, then the disease-free equilibrium (S0, 0, V 0) of (7) is globally asymp-
totically stable;

(2) If R0 > 1, then the unique endemic equilibrium (S∗, I∗, V ∗) of (7) is globally
asymptotically stable.

Proof. (1) Consider a Lyapunov function defined by

L(S, I, V ) =
(
S − S0 − S0ln

S

S0

)
+
(
V − V 0 − V 0ln

V

V 0

)
+ I.

Differentiating L(S, I, V ) along the solutions of (7) and using the equilibrium equa-
tions A = mS0 + θS0 − δV 0 and mV 0 = θS0 − δV 0, we obtain
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dL

dt
=(1− S0

S
)
dS

dt
+ (1− V 0

V
)
dV

dt
+
dI

dt

=(m+ k)(R0 − 1)I +A(2− S

S0
− S0

S
) + δV 0(1 +

V

V 0
− S

S0
− S0V

SV 0
)

+ θS0(1 +
S

S0
− V

V 0
− SV 0

S0V
)

=(m+ k)(R0 − 1)I +mS0(2− S

S0
− S0

S
) + θS0(2− S

S0
− S0

S
)

− δV 0(2− S

S0
− S0

S
) + θS0(1 +

S

S0
− V

V 0
− SV 0

S0V
)

− δV 0(1 +
S

S0
− V

V 0
− SV 0

S0V
) + δV 0(1 +

S

S0
− V

V 0
− SV 0

S0V
)

+ δV 0(1 +
V

V 0
− S

S0
− S0V

SV 0
)

=(m+ k)(R0 − 1)I +mS0(2− S

S0
− S0

S
) +mV 0(3− S0

S
− V

V 0
− SV 0

S0V
)

+ δV 0(2− SV 0

S0V
− S0V

SV 0
).

If R0 ≤ 1, then dL/dt ≤ 0 and dL/dt = 0 if and only if (S, I, V ) = (S0, 0, V 0).
Therefore, the largest compact invariant set in {(S, I, V )|dL/dt = 0} is the single-
ton {(S0, 0, V 0)}. The LaSalle’s invariant principle [20] implies that (S0, 0, V 0) is
globally asymptotically stable when R0 ≤ 1.

(2) Consider the Lyapunov function

L(S, I, V ) = S − S∗ − S∗ln S

S∗
+ I − I∗ − I∗ln I

I∗
+ V − V ∗ − V ∗ln V

V ∗
.

Differentiating L(S, I, V ) along solutions of (7) produces

dL

dt
=(1− S∗

S
)(A+ δV − λSI −mS − θS) + (1− I∗

I
)(λSI −mI − kI)

+ (1− V ∗

V
)(θS − δV −mV )

=A(2− S∗

S
− S

S∗
) + δV ∗(

S

S∗
− 1)(

S∗V

SV ∗
− 1) + θS∗(

V

V ∗
− 1)(

SV ∗

S∗V
− 1)

=2A+ δV ∗ + θS∗ − S

S∗
(mS∗ + λS∗I∗)−mV −AS

∗

S
− δV S

∗

S
− θS V

∗

V

=(λS∗I∗ +mS∗)(2− S∗

S
− S

S∗
) + δV ∗(2− S∗V

SV ∗
− SV ∗

S∗V
)

+ 3mV ∗(3− S∗

S
− V

V ∗
− SV ∗

S∗V
) ≤ 0.

Obviously, dL/dt = 0 if and only if (S, I, V ) = (S∗, I∗, V ∗). It implies that, when
R0 > 1, the largest compact invariant set of the sub-model (7) in {(S, I, V )|dL/dt =
0} is the singleton {(S∗, I∗, V ∗)}. Therefore, the equilibrium (S∗, I∗, V ∗) of (7) is
globally asymptotically stable.

Theorem 3.5. For system (1), we have the following conclusions:

(1) If R0 ≤ 1, then the disease-free equilibrium E0 of (1) is globally asymptotically
stable;
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(2) If R0 > 1, then the unique endemic equilibrium E∗ of (1) is globally asymp-
tomatically stable.

Proof. (1) Note that, the first three equations of (1) are independent of Si, Ci and
Ii, i = 1, 2. Moreover, Lemma 3.4 asserts the globally asymptotic stability of the
disease-free equilibrium for the first three equations of (1) when R0 ≤ 1.

Now, consider the rest equations of (1) except (7), that is,

dS1

dt
= Λ1 + (1− q1)γ1I1 − βS1I(t)− d1S1,

dI1
dt

= βS1I(t)− γ1I1 − d1I1,
dC1

dt
= q1γ1I1 − d1C1

dS2

dt
= Λ2 + (1− q2)γ2I2 − εβS2I(t)− d2S2,

dI2
dt

= εβS2I(t)− γ2I2 − d2I2,
dC2

dt
= q2γ2I2 − d2C2.

(8)

When R0 ≤ 1, one has lim
t→∞

I(t) = 0. Then, the limiting system of (8) is

dS1

dt
= Λ1 + (1− q1)γ1I1 − d1S1,

dI1
dt

= −γ1I1 − d1I1,
dC1

dt
= q1γ1I1 − d1C1,

dS2

dt
= Λ2 + (1− q2)γ2I2 − d2S2,

dI2
dt

= −γ2I2 − d2I2,
dC2

dt
= q2γ2I2 − d2C2.

(9)

Obviously, the linear system (9) admits a unique equilibrium (Λ1/d1, 0, 0,Λ2/d2, 0, 0)
being globally asymptotically stable. From the theory of asymptotic autonomous
systems, it follows that the disease-free equilibrium of (8) (Λ1/d1, 0, 0,Λ2/d2, 0, 0)
is globally asymptotically stable.

(2) When R0 > 1, the limiting system of (8) is

dS1

dt
= Λ1 + (1− q1)γ1I1 − βS1I

∗ − d1S1,

dI1
dt

= βS1I
∗ − γ1I1 − d1I1,

dC1

dt
= q1γ1I1 − d1C1

dS2

dt
= Λ2 + (1− q2)γ2I2 − εβS2I

∗ − d2S2,

dI2
dt

= εβS2I
∗ − γ2I2 − d2I2,

dC2

dt
= q2γ2I2 − d2C2.

(10)
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It is not difficult to show that the linear system (10) has an equilibrium (S∗1 , I
∗
1 , C

∗
1 ,

S∗2 , I
∗
2 , C

∗
2 ) being globally asymptotically stable. By the theory of asymptotic au-

tonomous systems, the equilibrium (S∗1 , I
∗
1 , C

∗
1 , S

∗
2 , I
∗
2 , C

∗
2 ) of (8) is globally asymp-

totically stable.

4. Optimal control strategy. The brucellosis asserts heavy burden to human
health and local economy. The government consequently has to adopt a series of
measures to control the brucellosis. In theory, by the global threshold dynamics
of (1), from the explicit expressions of R0 in (2) and I∗, I∗1 , I

∗
2 in (4), it follows

that R0, I
∗, I∗1 , I

∗
2 decrease with the decreasing of λ, δ, A and with the increasing of

k, θ,m. That is to say, in order to control the brucellosis, it is reasonable to reduce
the transmission between sheep (e.g., improve the living conditions of sheep), effec-
tively inoculate more sheep with vaccine having long immunization period, reduce
the size of sheep population, remove (cull or naturally eliminate) more infectious
sheep. In the long run, all those measures benefit the control of brucellosis and
should be policy suggestions. It may be so in theory, but how will it work in
practice?

In reality, the financial support from the government is very limited and can not
meet the real requirement of the brucellosis control. The testing of sheep brucella
and the culling of infected sheep can not be sustainedly and effectively implemented
in large scale[41]. Some moderate measures have been carried out to control the
brucellosis such as vaccination program in sheep stock and health education in hu-
man population aiming to raise the consciousness among publics to protect against
brucellosis by influencing self examination behavior.

Taking into account the serious situation of the brucellosis in Inner Mongolia and
the limited financial support from the government, one has to find a balance between
the loss induced by brucellosis and the cost of control effort. It is very important
and reasonable to achieve the best control effect with given limited financial budget.

Optimization has been playing a key role in the design, planning and operation of
infectious disease control and related processes. It is reasonable and challenging to
develop optimal strategy for more effective control or treatment options of infectious
diseases in resource-limited settings. Brucellosis infections and their control are a
world-wide challenge due to limited available resources.

In the following, we explore the optimal control strategy for brucellosis by con-
sidering both the control effectiveness and resource limitation. According to the
reality of brucellosis control in Inner Mongolia, we still take vaccination in sheep
stock and health education in human population as control measures in our opti-
mal control model. Then the vaccination rate θ, in (1), is set to be time-dependent
θ(t) describing the time-varying vaccination strategy. The functions ϕi(t) measure
the effort of health education in subpopulation Gi(i = 1, 2), respectively. It means
that ϕi(t)Si(t)(i = 1, 2) are of susceptible who have acquired effective brucellosis
prevention measures (i.e., only β(1−ϕ1(t))S1(t)I(t) and εβ(1−ϕ2(t))S2(t)I(t) sus-
ceptible are infected brucellosis in high and low risk subpopulation per unit time,
respectively). Since it seems impossible to vaccinate all the susceptible sheep and
to educate the entire human population due to the limited resources, it is real-
istic to assume that there exist θ̄, ϕ̄i ∈ (0, 1) such that 0 ≤ θ(t) ≤ θ̄ < 1 and
0 ≤ ϕi(t) ≤ ϕ̄i < 1, i = 1, 2. In the fixed time interval [0, T ] with T > 0, the feasible
decision space or constraint set reads

U =
{

(θ(t), ϕ1(t), ϕ2(t))
∣∣∣0 ≤ θ(t) ≤ θ̄, 0 ≤ ϕi(t) ≤ ϕ̄i, 0 ≤ t ≤ T,
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θ(t) and ϕi(t) are Lebesgue measurable, i = 1, 2
}
. (11)

In most real-life optimization scenarios and designs of the control of brucellosis,
multiple objectives under consideration arise naturally and often conflict with each
other. Anyone actually prefers to achieve best control by using less effort or cost,
i.e., minimize cost, maximize performance, maximize reliability, etc. It seems very
difficult but realistic.

Here our key objectives are to minimize the cost for vaccination and health
education and to minimize the economic loss caused by culling of infected sheep
and treatment of infected human cases. These costs during [0, T ] read∫ T

0

B0S(t)θ(t)dt,

∫ T

0

2∑
i=1

BiSi(t)ϕi(t)dt,∫ T

0

D0kI(t)dt,

∫ T

0

(
D1(I1(t) + I2(t)) +D2(C1(t) + C2(t))

)
dt,

(12)

respectively, where B0 is the cost of brucellosis vaccine for each sheep, Bi is the cost
of health education per unit time for subpopulation Gi(i = 1, 2), D0 denotes the
economic loss of culling each infected sheep, D1 and D2 denote the cost of medical
resources for each acute and chronic human brucellosis case respectively.

Now, we are facing with a multi-objective optimization problem

min

∫ T

0

D0kI(t)dt, min

∫ T

0

(
D1(I1(t) + I2(t)) +D2(C1(t) + C2(t))

)
dt,

min

∫ T

0

B0S(t)θ(t)dt, min

∫ T

0

2∑
i=1

BiSi(t)ϕi(t)dt,

(13)
subject to

dS

dt
= A+ δV − λSI −mS − θ(t)S,

dI

dt
= λSI −mI − kI,

dV

dt
= θ(t)S − δV −mV,

dS1

dt
= Λ1 + (1− q1)γ1I1 − β(1− ϕ1(t))S1I − d1S1,

dI1
dt

= β(1− ϕ1(t))S1I − γ1I1 − d1I1,

dC1

dt
= q1γ1I1 − d1C1,

dS2

dt
= Λ2 + (1− q2)γ2I2 − εβ(1− ϕ2(t))S2I − d2S2,

dI2
dt

= εβ(1− ϕ2(t))S2I − γ2I2 − d2I2,

dC2

dt
= q2γ2I2 − d2C2,

(θ(t), ϕ1(t), ϕ2(t)) ∈ U,

(14)

with initial conditions

0 ≤ S(0) ≤M, 0 ≤ I(0) ≤M, 0 ≤ V (0) ≤M,
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0 ≤ Si(0) ≤M, 0 ≤ Ii(0) ≤M, 0 ≤ Ci(0) ≤M, i = 1, 2, (15)

where M is a positive constant.
In term of methodology, there are several different approaches to solve general

continuous multi-objective optimization problems[24]. One of the most common
approaches is in general known as the weighted sum or scalarization method, which
minimizes a positively weighted convex sum of the objectives by combining its
multiple objectives into one single-objective scalar composite function with equal
or weighted treatment.

By the weighted sum method, we transformed the vector-valued optimization
problem (13)-(15) into a scalar quadratic optimization problem with a unique ob-
jective function of the following form

J
(
θ(t), ϕ1(t), ϕ2(t)

)
=

∫ T

0

[
ω1

(
D0kI(t)

)2
+ ω2

((
D1(I1(t) + I2(t))

)2
+
(
D2(C1(t) + C2(t))

)2)
+ ω3

(
B0S(t)θ(t)

)2
+ω4

∑2
i=1

(
BiSi(t)ϕi(t)

)2]
dt,

(16)

subjected to (14), (15), and
4∑
i=1

ωi = 1, ωi ∈ [0, 1]. Here, the objective function

J
(
θ(t), ϕ1(t), ϕ2(t)

)
measures the total economic loss caused by the brucellosis.

To facilitate the discussions below, let X = (S, I, V, S1, I1, C1, S2, I2, C2)′, u =
(θ(t), ϕ1(t), ϕ2(t))′, F (t,X, u) = (f1, f2, ..., f9)′, where the prime represents the
transpose of a row vector and fi is the i-th right-hand side function of (14). Then
the above single objective optimization problem rewrites

min
(θ(t),ϕ1(t),ϕ2(t))∈U

J(θ(t), ϕ1(t), ϕ2(t)), (17)

subject to
dX

dt
= F (t,X, u), X(0) ≥ 0, (18)

where ‖X(0)‖ ≤ 3M and ωi ∈ [0, 1] such that
4∑
i=1

ωi = 1.

In the optimal control theory, after formulating the model and the corresponding
objective functionals appropriate to the scenarios, one has to explore several basic
problems such as proving the existence of an optimal control and characterizing the
optimal control. In order to prove the existence of an optimal control, we introduce
the following conclusion ([12], Theorem 4.1 and Corollary 4.1).

Lemma 4.1. Consider the optimal control problem

min
u∈D

J(u) = min
u∈D

∫ t1

t0

L(t, x, u)dt+ φ(e)

subject to
dx

dt
= f(t, x, u) with e = (t0, t1, x(t0), x(t1)) ∈ S ⊂ R2n+2, where

L(t, x, u) : R1×Rn×Rm → R1, φ(e) : R1×R1×Rn×Rn → R1, and f(t, x, u) : R1×
Rn×Rm → Rn are continuous and f(t, x, u) satisfies Lipschitz property with respect
to x, D = {u(t) = (u1(t), u2(t), ..., um(t)) : ui(t)is Lebesgue measurable on [t0, t1],
i = 1, 2, ...,m}. Assume that, (i) f(t, x, u) is C1, the partial derivatives of f(t, x, u)
and f(t, 0, 0) are bounded, (ii) The set of control u and corresponding state variable
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x is non-empty, (iii) D is closed, (iv) S is compact and φ is continuous on S,
(v) There exist constants C1 > 0, C2, and γ > 1 such that L(t, x, u) ≥ C1|u|γ −C2,

(vi) D+ =
{

(n,m)
∣∣∣∃v ∈ D,m = f(t, x, v), n ≥ L(t, x, v)

}
is convex for (t, x).

Then there exists an optimal control u∗ ∈ D.

Theorem 4.2. There exists an optimal pair (u∗, X∗) such that

J(θ∗(t), ϕ∗1(t), ϕ∗2(t)) = min
(θ,ϕ1,ϕ2)∈U

J(θ(t), ϕ1(t), ϕ2(t))

subject to (18), where u∗ = (θ∗(t), ϕ∗1(t), ϕ∗2(t)) is the optimal control, X∗ = (S∗(t),
I∗(t), V ∗(t), S∗1 (t), I∗1 (t), C∗1 (t), S∗2 (t), I∗2 (t), C∗2 (t)) is the state solution corre-
sponding to the optimal control.

Proof. It suffices to show that the conditions of Lemma 4.1 are satisfied with
φ(0, T,X(0), X(T )) = 0 since (17)-(18) is a special case of the optimal control
problem in Lemma 4.1 with φ(e) ≡ 0.

The claim (i) of Lemma 4.1 follows from the properties of F (t,X, u) and the
state variables of (18). The existence of solutions of (18) with u ∈ U is guaranteed
by Theorem 9.2.1 in [19], which implies (ii) of Lemma 4.1. The constraint set U
is closed and convex since u ∈ U is bounded and Lebesgue measurable (i.e., L∞

bound hold). (iv) of Lemma 4.1 holds due to φ(0, T,X(0), X(T )) = 0 and the set
of X(0) is bounded and closed.

Let Φ(t,X, v) = ω1

(
D0kI(t)

)2
+ω2

((
D1(I1(t)+I2(t))

)2
+
(
D2(C1(t)+C2(t))

)2)
+ω3

(
B0S(t)θ(t)

)2
+ω4

∑2
i=1

(
BiSi(t)ϕi(t)

)2
. It is not difficult to verify that there

exist C1 > 0, C2, and γ > 1 such that

Φ(t,X, v) ≥ C1(|θ|2 + |ϕ1|2 + |ϕ2|2)
γ
2 − C2

since θ(t), ϕ1(t), and ϕ2(t) are bounded.
In order to verify (vi) of Lemma 4.1, set

U+ =
{

(n,m)
∣∣∣∃v ∈ U,m = F (t,X, v), n ≥ Φ(t,X, v)

}
.

For any (ni,mi) ∈ U+, i = 1, 2, i.e., there exist v1 ∈ U and v2 ∈ U such that

m1 = F (t,X, v1), n1 ≥ Φ(t,X, v1),

m2 = F (t,X, v2), n2 ≥ Φ(t,X, v2).

Since F (t,X, u) is linear in u, for any s ∈ [0, 1],

sm1 + (1− s)m2 = sF (t,X, v1) + (1− s)F (t,X, v2) = F (t,X, sv1 + (1− s)v2).

Note that the control set U is convex. Then, there exists a u ∈ U such that
u = sv1 + (1− s)v2 and

sm1 + (1− s)m2 = F (t,X, sv1 + (1− s)v2) = F (t,X, u)

for s ∈ [0, 1]. On the other hand, since Φ(t,X, u) is convex in u, one has

sn1 + (1− s)n2 ≥ sΦ(t,X, v1) + (1− s)Φ(t,X, v2)

≥ Φ(t,X, sv1 + (1− s)v2) = Φ(t,X, u).

Then, for s ∈ [0, 1], s(n1,m1)+(1−s)(n2,m2) =
(
sn1+(1−s)n2, sm1+(1−s)m2

)
∈

U+. That is, U+ is convex. The proof is complete.
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Next, we characterize the optimal control by deriving necessary conditions for
the optimal control with the help of Pontryagin’s Maximum Principle.

Theorem 4.3. The optimal control of (17) is characterized by

θ∗(t) = min
{
θ̄,max

{ λ1 − λ3
2ω3B2

0S
∗(t)

, 0
}}

,

ϕ∗1(t) = min
{
ϕ̄1,max

{ (λ5 − λ4)βI∗(t)

2ω4B2
1S
∗
1 (t)

, 0
}}

,

ϕ∗2(t) = min
{
ϕ̄2,max

{ (λ8 − λ7)εβI∗(t)

2ω4B2
2S
∗
2 (t)

, 0
}}

,

(19)

where λi, i = 1, 2, ..., 9 are the adjoint variables satisfying the adjoint equations (20)
and the transversality conditions (21).

Proof. In order to facilitate the discussion below, we kill the stars in the opti-
mal state X∗(t) = (S∗(t), I∗(t), V ∗(t), S∗1 (t), I∗1 (t), C∗1 (t), S∗2 (t), I∗2 (t), C∗2 (t))′ corre-
sponding to the optimal control u∗ = (θ∗(t), ϕ∗1(t), ϕ∗2(t)) and simply denote it by
(S(t), I(t), V (t), S1(t), I1(t), C1(t), S2(t), I2(t), C2(t))′.

By Pontryagin’s Maximum Principle, as in [7, 28, 31], to find the optimal control
of (17)-(18) is equivalent to minimize the following Hamiltonian

H =ω1

(
D0kI(t)

)2
+ ω2

((
D1(I1(t) + I2(t))

)2
+
(
D2(C1(t) + C2(t))

)2)
+ ω3

(
B0S(t)θ(t)

)2
+ ω4

2∑
i=1

(
BiSi(t)ϕi(t)

)2
+

9∑
i=1

λifi,

where λi, i = 1, 2, ..., 9, are the adjoint variables satisfying the following adjoint
equations

λ′1 = −∂H
∂S

=− 2ω3B
2
0θ

2(t)S(t) + λ1λI + λ1m+ λ1θ(t)− λ2λI − λ3θ(t),

λ′2 = −∂H
∂I

=− 2ω1D
2
0k

2I(t) + λ1λS − λ2(λS −m− k) + λ4β(1− ϕ1(t))S1

− λ5β(1− ϕ1(t))S1 + λ7εβ(1− ϕ2(t))S2 − λ8εβ(1− ϕ2(t))S2,

λ′3 = −∂H
∂V

=− λ1δ + λ3(δ +m),

λ′4 = − ∂H
∂S1

=− 2ω4B
2
1ϕ

2
1(t)S1(t) + λ4(β(1− ϕ1(t))I + d1)− λ5β(1− ϕ1(t))I,

λ′5 = −∂H
∂I1

=− 2ω2D
2
1(I1(t) + I2(t))− λ4(1− q1)γ1 + λ5(γ1 + d1)− λ6q1γ1,

λ′6 = − ∂H
∂C1

=− 2ω2D
2
2(C1(t) + C2(t)) + λ6d1,

λ′7 = − ∂H
∂S2

=− 2ω4B
2
2ϕ

2
2(t)S2(t) + λ7(εβ(1− ϕ2(t))I + d2)− λ8εβ(1− ϕ2(t))I,

λ′8 = −∂H
∂I2

=− 2ω2D
2
1(I1(t) + I2(t))− λ7(1− q2)γ2 + λ8(γ2 + d2)− λ9q2γ2,

λ′9 = − ∂H
∂C2

=− 2ω2D
2
2(C1(t) + C2(t)) + λ9d2

(20)
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and the transversality conditions

λi(T ) = 0, i = 1, 2, ..., 9. (21)

The optimality conditions

∂H

∂θ(t)

∣∣∣∣∣
(θ∗,ϕ∗

1(t),ϕ
∗
2(t))

= 0,
∂H

∂ϕi(t)

∣∣∣∣∣
(θ∗,ϕ∗

1(t),ϕ
∗
2(t))

= 0

lead to

θ∗(t) =
λ1 − λ3

2ω3B2
0S
∗(t)

, ϕ∗1(t) =
(λ5 − λ4)βI∗(t)

2ω4B2
1S
∗
1 (t)

, ϕ∗2(t) =
(λ8 − λ7)εβI∗(t)

2ω4B2
2S
∗
2 (t)

.

Moreover, taking into account the fact that (θ∗, ϕ∗1(t), ϕ∗2(t)) ∈ U, i.e., using the
lower and upper bounds of u∗, we find that the optimal control u∗ = (θ∗(t), ϕ∗1(t),
ϕ∗2(t)) is well characterized by (19).

5. Sensitivity analyses and numerical simulations. In this section, we first
use (1) to simulate the reported sheep brucellosis and human brucellosis data of
Inner Mongolia from 2001 to 2010 and to predict the trends of the brucellosis.
Then, we perform sensitivity analysis of some key parameters, numerically simulate
the optimal control, and seek for some effective control and prevention measures.

Table 2. Sheep population in Inner Mongolia (unit: 104)

Year 2001 2002 2003 2004 2005

Sheep Breeding[8] 3551.6 3515.9 3951.7 4450.6 5318.48

Sale and Slaughter[8] 2081.2 2146.5 2156 2867.74 3782.99

Brucellosis sheep1 33.74 35.15 59.27 89.1 132.95

Year 2006 2007 2008 2009 2010

Sheep Breeding[8] 5419.99 5594.44 5063.29 5125.3 5197.2

Sale and Slaughter[8] 4539.6 5011.05 4874.94 5183.7 5339.2

Brucellosis sheep1 162.57 195.79 202.52 230.63 259.85

1 Calculated from data of sheep breeding and the annual seroprevalence of
sheep brucella in key monitoring regions of Inner Mongolia[11, 13, 22, 30, 38,

39, 43].

Table 3. Annual new confirmed cases of human brucellosis in Inner

Mongolia[25, 41]

Year 2001 2002 2003 2004 2005 2006 2007

Reported Human Cases 420 610 1280 4140 8740 8050 8117

Year 2008 2009 2010 2011 2012 2013 2014

Reported Human Cases 11105 16551 16935 20845 12817 9310 10538

The data of sheep population is extracted from China Animal Husbandry Year-
book [8] (see Table 2). The data, concerning human brucellosis from 2001 to 2014,
are adopted from China Health Statistics Yearbook[25] (see Table 3). The data of
sheep brucellosis can not be acquired easily since there are few published studies
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on the population dynamics of sheep, and we calculate the number of brucellosis
sheep in Inner Mongolia (see Table 2) from data of sheep population in Table 2
and the annual seroprevalence of sheep brucella in key monitoring regions of Inner
Mongolia[11, 13, 22, 30, 38, 39, 43].

In Inner Mongolia, the total population was about 24 million in the past decade
with the birth rate less than 1%, and the rural population accounted for nearly
half of the total population[25]. Since the vast majority of human brucellosis cases
in Inner Mongolia are herdsmen, farmers, veterinarians, slaughters, and milkers,
who live in rural region. So, we view the rural population in Inner Mongolia as
the high risk subpopulation G1 while the urban population in Inner Mongolia is
considered as the low risk subpopulation G2. Recent studies (e.g., [30]) revealed
that, before 1980s, 94% of human brucellosis cases in Inner Mongolia were from
high risk subpopulation G1, and, after 1990s, this percentage decreased to 85%.
Therefore, for the current brucellosis outbreak in Inner Mongolia, it is reasonable
to assume that 85% of new confirmed human brucellosis are from the high risk
subpopulation G1 and the rest 15% are from the low risk subpopulation G2.

In order to carry out numerical simulations, most parameters of (1) are ob-
tained from literature or assumed on the basis of common sense(see Table 1). The
transmission rates of brucellosis (i.e., λ, β and ε, see Table 1) are estimated by
the nonlinear least-square method that produced the best fit between the model
outputs and the data (see Fig.2).

With the help of (1), we fit it with the data from 2001 to 2011 and predict
the dynamics of both sheep brucellosis infection and human brucellosis infection in
Inner Mongolia (Fig.2). The numerical simulations show that the model (1) with
reasonable parameter values provides a good match to the reported data. From 2001
to 2011, the brucellosis sheep and human brucellosis cases kept increasing. From
2012 to 2015, due to the government’s strong intervention on the transmission of
brucellosis (e.g., a special fund was set to cull the infected sheep) [17, 35, 40], the size
of brucellosis sheep and human brucellosis cases had a significant decline. However,
the epidemic situation will become more serious in the coming decades and reach a
peak at about 2040 if the government of Inner Mongolia can not sustainedly provide
enough support to cull the infected sheep (see Fig.2).

In order to better understand the mechanism and the control of brucellosis, we
characterize the influence of some key parameters or factors in (1) by sensitivity
analysis. Fig.3-6 provide sensitivity analysis for (1) in terms of θ, A, k, and β,
respectively.

From Fig.3, we find that the vaccination of sheep can effectively control the
brucellosis in some extent but can not eradicate it from either the sheep or human.
Fig.4 shows the sensitivity of (1) to A. It reveals that the population size of sheep
has potential effect on the control of brucellosis. In fact, the number of sheep in
Inner Mongolia has increased about 2.042 × 107 from 2001 to 2007. Reducing the
breading scale of sheep and keeping the population size of sheep in a reasonable
range or dividing the sheep into small sub-populations will facilitate the control of
brucellosis.

Culling the infected sheep is another effective measure to control the brucellosis.
Fig.5 depicts that increasing the culling rate k of infected sheep could effectively
reduce the incidence of brucellosis in both sheep and human and can even eradicate
the brucellosis if the culling rate exceeds some certain threshold level. Fig.6 shows
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Figure 2. Predicted tendency of brucellosis in Inner Mongolia.
The solid line represents the prediction of (1) and the diamonds
are the reported data in Inner Mongolia of P. R. China. (a) Number
of brucellosis sheep (I). (b) Total number of new confirmed human
cases (INAh = INA1 + INA2 ). (c) Number of new confirmed human
cases of high risk subpopulation G1 (INA1 ) . (d) Number of new
confirmed human cases of low risk subpopulation G2 (INA2 ). Here,
the culling rate k = 0.05 from 2001 to 2011 [41], k = 0.5 from
2012 to 2015 [17, 35, 40], k = 0.15 after 2015, δ = 0.67, θ = 0.6,
q1 = q2 = 0.4, other parameter values are listed in Table 1.

that reducing the transmission rate β between the sheep and the high risk subpop-
ulation G1 facilitates the control of brucellosis but can not eliminate it. One typical
way commonly used to effectively reduce β is to carry out health and prevention
education, which can enhance people’ awareness and knowledge about brucellosis
and the emergency measure and treatment to decrease the rate of clinical outbreak.
From Fig.6, we can see that the epidemic of brucellosis can be relieved, but cannot
be eradicated with the current prevention and control measures.

According to the above sensitivity analysis and numerical experiments, by com-
paring those figures, the recruitment of susceptible sheep and the culling of infected
sheep are more sensitive than vaccination and health education in the current bru-
cellosis outbreak in Inner Mongolia. In conclusion, controlling the population of
sheep, reducing the birth rate of sheep, increasing the vaccination rate of sheep,
improving the culling management of infected sheep, enhancing the people’s aware-
ness of brucellosis, and any combination of these measures are effective to control
brucellosis. In practice, some policy involving comprehensive measures must be
brought into operation.

By Forward-Backward sweep method [21], we further expound the optimal con-
trol by numerical experiments. According to the current economic status in Inner
Mongolia, the cost of culling each infected sheep is about 1000 CNY (D0 = 1), the
treatment cost of each acute and chronic human case is about 5000 CNY (D1 = 5)
and 3000 CNY (D2 = 3) per year respectively, the vaccination of each suscepti-
ble sheep needs about 200 CNY (B0 = 0.2), and the cost of health education for
each person of high and low risk subpopulation are 300 CNY (B1 = 0.3) and 200
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Figure 3. Influence of vaccination (θ). The vaccination of sheep
can reduce the epidemic situation of brucellosis but can not elim-
inate it. The values of parameters are the same as those in Fig.2
except θ.
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Figure 4. Influence of the recruitment of sheep (A). It shows
that reducing the size of sheep population in Inner Mongolia could
assert great positive effect on brucellosis control. The values of
parameters are the same as those in Fig.2 except A.

CNY (B2 = 0.2), respectively. Fig.7 simulates the optimal control functions θ∗(t),
ϕ∗1(t), ϕ∗2(t), and the corresponding states variables I(t)∗, I∗1 (t), I∗2 (t). The numeral
simulations indicate that, with the current prevention and control strategy such as
keeping sheep population in large size (A = 3300) and culling rate of infected sheep
at low level (k = 0.1), putting majority of control resources into vaccination program
and education plan, etc., the epidemic of brucellosis can be relieved in the short run,
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Figure 5. Influence of culling of the infected sheep (k). Increas-
ing the culling rate of infected sheep could effectively reduce the
incidence of brucellosis in both sheep and human and can even
eradicate the brucellosis. The values of parameters are the same as
those in Fig.2 except k.
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Figure 6. Influence of the transmission rate between brucellosis
sheep and human(β). Compared to Fig.4 and Fig.5, it illustrates
that reducing the brucellosis transmission rate between sheep and
human has lower efficacy than the controls carried out in sheep
stock, since it can not control the source of disease transmission.
Here, β0 = 4.895 × 10−6, other values of parameters are the same
as those in Fig.2.
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but can not be better controlled and eradicated in the long run. Even though 85%
of sheep population are effectively vaccinated and 90% of human population admit
a good prevention and health education (i.e., maximal supply of control resources),
the number of brucellosis sheep still has a significant increase, the human brucellosis
infection cases would continue decreasing in the next couple years but can not be
eliminated(see Fig.7).

The optimal control strategy explored in Section 4 sensitively depends on the
selection of weighted coefficients. Since the principal aim is to reduce the number
of brucellosis human and sheep cases, it is reasonable to assume that both ω1 and
ω2 are greater than ω3 and ω4. For simplicity, we also could assume that the
vaccination programme and the health education plan are equally important, i.e.,
ω3 = ω4 when searching for an optimal control strategy. Fig.8 illustrates the optimal
control strategy with varying weighted coefficients. From the numerical simulation,
we observe that the weighted coefficients have significant effect on the optimal
control strategy. When ω1 increases from 0 to 0.5, the key minimizing targets
transfer from vaccination and health education to culling of brucellosis sheep and
treatment of human cases, and then the optimal control gradually increases from
θ∗(t) = ϕ∗1(t) = ϕ∗2(t) = 0 to θ∗(t) = θ, ϕ∗1(t) = ϕ1 and ϕ∗2(t) = ϕ2. Fig.9 illustrates
the varying of the total economic loss (i.e., the sum of the four integrals in (12))
and prevalence rates with respect to the weighted coefficients. In real application,
the policy-maker should confirm some reasonable weighted coefficients according to
the financial budget for brucellosis (e.g., TELoss∗ in Fig.9) and the prevalence rates
in both sheep and human population (e.g., P ∗s , P

∗
h1, P

∗
h2 in Fig.9)).

Simulations in Fig.10-11 reveal that the culling of infected sheep and the recruit-
ment of sheep play important roles on the optimal control of brucellosis. Fig.10
shows that, when the culling rate k increases from k = 0.15 to k = 0.7, the brucel-
losis in both sheep and human is effectively controlled. Fig.11 illustrates the role
of the recruitment of sheep. When the constant influx rate of sheep decreases from
A = 3300 to A = 1600, the brucellosis in both sheep and human can be better
controlled.

6. Discussion and conclusions. The transmission of brucellosis has been a grow-
ing public concern in China, particularly in Inner Mongolia. In this study, we
formulate a multigroup epidemiological model to study the transmission dynamics
and explore control strategies for the brucellosis in Inner Mongolia. Our theoreti-
cal and numerical findings indicate that the brucellosis gradually increases in the
next decades and reaches a peak at about 2030. Vaccination and health-prevention
education, which are the main currently working control measures, positively affect
and facilitate the disease control (see Fig.3 and Fig.6), but can not eliminate the
brucellosis in Inner Mongolia (see Fig.7). Sensitivity analyses in Fig.4 and Fig.5
show that the population size of sheep and the culling rate of brucellosis sheep are
two important factors triggering the serious epidemic situation. The brucellosis in
both sheep and human can be well controlled when the breeding size of sheep is
reduced or the culling rate of infectious sheep is enhanced. Fig.10 and Fig.11 pro-
vide a series of effective and time-variable control strategies when the culling rate
of brucellosis sheep is increased and when the population size of sheep is decreased,
respectively. The numerical solutions of the optimal controls illustrated in Fig.10
and Fig.11 provides practical guidance for policymakers to make effective control
policy and to implement it in resources-limited setting.
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Figure 7. The optimal control θ∗(t), ϕ∗1(t), ϕ∗2(t) and the cor-
responding I∗(t), I∗1 (t), I∗2 (t). The dot-dash curves (ω1 = ω2 =
0, ω3 = ω4 = 0.5) depict the trends of brucellosis without vaccina-
tion programme in sheep stock and health education in human. The
dash curves (ω1 = ω2 = 0.5, ω3 = ω4 = 0) illustrate that the disease
can not be eliminated eventually even if the control resources sup-
ply is maximal. The solid curves (ω1 = ω2 = ω3 = 0.3, ω4 = 0.1)
show that the situation of brucellosis epidemic will be serious if
the control resources supply is limited. Here, A = 3300, k = 0.15,
T = 34, θ̄ = 0.85, ϕ̄1 = ϕ̄2 = 0.9, and B0 = 0.2, B1 = 0.3,
B2 = 0.2, D0 = 1, D1 = 5, D2 = 3, other parameter values are the
same as those in Fig.2.

The study reveals that the brucellosis in Inner Mongolia of China is hardly elimi-
nated if the policymakers still pay most attentions to the vaccination in sheep stock
and the health-prevention education in human population. Our studies suggest
that the government and the policymakers must take a new look at the current
working control strategies. A reasonable and effective control strategy must involve
comprehensive control measures based on the optimal control study.

Finally, we would like to point out that, even if a costly policy can prevent
the disease spread, the prevention policy might not be well executed in resource-
limited setting. A fundamental challenge in many control problems in epidemics is
to find the right balance amongst several objectives. Although the weighted sum
method is a typical method or technique to solve the multi-objective optimization,
the problem lies in the correct selection of the weights to characterize the decision-
makers preferences. In practice, it can be very difficult to precisely and accurately
select these weights, even for someone very familiar with the problem domain. In
addition, perturbations in the weights can lead to different solutions (see (19)). For
this reason and others, decision-makers often prefer a set of promising solutions
given the multiple objectives. In addition, recently, some evolutionary approaches
have been proposed to deal with multi-objective optimization problems. Genetic
algorithms, being a population based approach, is a well suited heuristic approach,
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Figure 8. Simulation of the optimal control θ∗(t), ϕ∗1(t), ϕ∗2(t)
with varying weighted coefficients. It depicts the significant effect of
the weighted coefficients on the optimal control. When ω1 increase
from 0 to 0.5, the key minimizing targets switch from vaccination
and health education to culling of brucellosis sheep and treatment
of human cases, and, accordingly, the optimal control gradually
increases from θ∗(t) = ϕ∗1(t) = ϕ∗2(t) = 0 to θ∗(t) = θ, ϕ∗1(t) = ϕ1

and ϕ∗2(t) = ϕ2. Here ω1 = ω2, ω3 = ω4, and ω1 + ω3 = 0.5, other
parameter values are the same as those in Fig.7.
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Figure 9. Total economic loss (i.e., the sum of the four integrals in
(12)) and prevalence rates vary with the weighted coefficients. The
policy-maker should confirm the weight coefficients according to
the financial budget for brucellosis (TELoss∗) and the prevalence
rates in both sheep and human population (P ∗s , P

∗
h1, P

∗
h2). Here

ω1 = ω2, ω3 = ω4, and ω1 + ω3 = 0.5, other parameter values are
the same as those in Fig.7.
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Figure 10. Simulations of the optimal control θ∗(t), ϕ∗1(t), ϕ∗2(t)
and the corresponding I∗(t), I∗1 (t), I∗2 (t), with the culling rate k =
0.15, k = 0.3 and k = 0.7, respectively. It reveals the fact again
that culling of infected sheep plays an important role on brucellosis
control. Here, ω1 = ω2 = ω3 = 0.3, ω4 = 0.1, other parameter
values are the same as those in Fig.7.

see[18] for an overview and tutorial of multiple-objective optimization methods using
genetic algorithms (GA). It is interesting but challenging to investigate the optimal
control problem in this study by GA and compare it with the weighted sum method.
It is left for our future work.
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