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Abstract. Dengue, malaria, and Zika are dangerous diseases primarily trans-

mitted by Aedes aegypti, Aedes albopictus, and Anopheles stephensi. In the

last few years, a new disease control method, besides pesticide spraying to kill
mosquitoes, has been developed by releasing mosquitoes carrying bacterium

Wolbachia into the natural areas to infect the wild population of mosquitoes

and block disease transmission. The bacterium is transmitted by infected
mothers and the maternal transmission was assumed to be perfect in virtu-

ally all previous models. However, recent experiments on Aedes aegypti and

Anopheles stephensi showed that the transmission can be imperfect. In this
work, we develop a model to describe how the imperfect maternal transmission

affects the dynamics of Wolbachia spread. We establish two useful identities
and employ them to find sufficient and necessary conditions under which the

system exhibits monomorphic, bistable, and polymorphic dynamics. These

analytical results may help find a plausible explanation for the recent obser-
vation that the Wolbachia strain wMelPop failed to establish in the natural

populations in Australia and Vietnam.

1. Introduction. Aedes aegypti, Aedes albopictus, and Anopheles stephensi, are
the primary vectors of some life-threatening mosquito-borne diseases such as dengue,
malaria, and Zika. Since there are no effective vaccines available for these diseases,
current controls mostly rely on environmental management by destructing vector
breeding sites physically or chemically. Unfortunately, the chemical method of
spraying pesticides causes severe environmental pollution and induces mosquito’s
insecticide resistance.

The study on the interaction of Wolbachia and mosquitoes has flourished due to
the groundbreaking work [1, 2, 37, 38, 39, 40], which paved an avenue for a biolog-
ically safe method of mosquito-borne disease control [5, 10, 17, 18]. As expected,
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Wolbachia can block the replication of viruses such as dengue and Zika inside the
mosquitoes [1, 37, 38, 39, 40] and confer resistance to the human malaria parasite
Plasmodium falciparum [2]. In mosquitoes, maternally transmitted Wolbachia is
associated with cytoplasmic incompatibility (CI), i.e., the reduced hatch rate of
embryos produced from fertilization of uninfected ova by sperm from Wolbachia
infected males. Infected females therefore have a reproductive advantage, allowing
Wolbachia to spread in polymorphic populations [4, 9, 14].

An appealing strategy is to release a large number of Wolbachia infected males
in the natural area so that the CI mechanism can drive all the mated females sterile
and the whole population can be suppressed. However, a complete population
suppression requires a nearly perfect separation of males from infected females,
which exerts tremendous challenges in extending this technology over large areas.
An alternative strategy to meet the challenge is to seed the natural population
with infected mosquitoes, both male and female, so the reproductive advantage for
infected females induced by CI and the high maternal transmission rate can drive
Wolbachia infected mosquitoes to replace the wild population. For the success
of population replacement, it is critical to identify the release threshold: above
which Wolbachia will invade all mosquitoes, but below which it will be wiped out
[4, 9, 12, 34].

Some earlier mathematical models making use of difference equations have played
an instrumental role in determining the release threshold for Wolbachia fixation in
non-overlapping populations in laboratory [4, 9]. Inspired by its great potential
to eliminate the mosquito-borne diseases, modeling Wolbachia spread dynamics
parameterized by laboratory or field data [7, 11, 14, 23, 27, 36] has emerged as a hot
topic for extensive studies. There have been models of ordinary [8, 22, 29], delayed
differential equations [41] built to explore the subtle relations between Wolbachia
invasion and important parameters. Such parameters include: (i) the maternal
transmission rate (1−µ, where µ is the rate of uninfected ova produced by infected
females); (ii) the intensity of CI (sh, the reduced egg-hatch produced by matings
between infected males and uninfected females), (iii) the fecundity cost/benefit
of infected females relative to uninfected females. More recent models have also
considered the impact of environmental heterogeneity and mosquito diffusion in
space by stochastic equations [19] and reaction-diffusion equations [20, 21].

In most of the current theoretical studies on Wolbachia spreading dynamics in
mosquitoes, it was assumed that maternal transmission is perfect (µ = 0), and
CI is complete (sh = 1) which are supported by recent findings in mosquitoes.
For example, maternal transmission loss was not observed for both the WB1 in
Aedes aegypti and the wAlbA, wAlbB in Aedes albopictus together with complete
CI [1, 37, 38, 39, 40]: examinations from crosses of uninfected Waco females and
infected WB1 males showed that no egg hatch resulted from >3800 eggs [39]. In
2013, the LB1 infection was successfully established in an important malaria vector,
Anopheles stephensi [2]. Again, of 8087 eggs resulting from crosses between LB1
females and the naturally uninfected LIS males, only 1.2% hatched, and the 100%
maternal transmission efficiency was confirmed by fluorescence in situ hybridization
(FISH) in self-crossing LB1 mosquitoes, while the data on maternal transmission
efficiency in outcrossing (LB1 females × LIS males) is absent.

However, imperfect maternal transmission (µ > 0) has been repeatedly docu-
mented in nature with respect to the wRi, wRu infection in Drosophila simulans
[3, 23, 24, 32], and the wMel in Drosophila melanogaster [14]. In D. simulans,
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data indicates that uninfected ova produced by the wRi infected females are sus-
ceptible to CI. However, the wRu in D. simulans and the wMel in D. melanogaster
cause weak or non-CI. Hence, among-female variation of Wolbachia deposition in
ova seems to be generally associated with among-male variation in the effect of
Wolbachia on sperm in Drosophila. For systematic studies on Wolbachia spreading
in D. simulans, we refer the readers to Hoffmann and Turelli’s work since 1990s
[15, 16, 30, 31, 32, 33, 34] in which both Wolbachia infidelity and partial CI were
identified.

It was predominantly believed that the maternal transmission of Wolbachia in
mosquitoes is perfect. However, a very recent study [28] demonstrates that high
temperatures (26-37◦C) can induce both imperfect maternal transmission and in-
complete CI of Wolbachia in Aedes aegypti, the primary vector of dengue. Imperfect
maternal transmission was also observed in a recent study on the spread of Wol-
bachia strain LB1 in Anopheles stephensi, along with a confirmed complete CI in [2].
The findings in [2] show that self-crossing LB1 produces significantly lower hatch-
ing (∼52.4%) than the outcrossing of LB1 females with uninfected males (∼80%)
and uninfected self-crossing (∼90%), see Fig.1(B) in [2]. With the potential of a
Wolbachia-based intervention for vector control on mosquito-borne diseases, we de-
velop a model with complete CI and imperfect maternal transmission, and present
a detailed mathematical analysis on the dynamics of Wolbachia spread. The main
purpose of this manuscript is to dissect the effect of imperfect maternal transmission
on Wolbachia spreading, which has not been studied in the existing literature.

To proceed, we divide the mosquitoes into four classes: uninfected females UF ,
infected females IF , uninfected males UM , and infected males IM . Assume that UF :
UM = IF : IM and hence the population can be formally considered hermaphroditic.
Let I and U denote the total numbers of infected, and uninfected mosquitoes,
respectively, i.e., I = IF + IM and U = UF +UM . Let µ ∈ (0, 1) be the proportion
of uninfected ova produced by an infected female. Following [22, 41], we let bU
denote the average number of offspring produced by one uninfected female. Let
δU denote the constant death rate for uninfected mosquitoes. For generality, we
introduce bI and δI as the corresponding parameters for infected mosquitoes as
Wolbachia infection usually modifies the fitness and the longevity [25, 35] of the
host. CI arises when an uninfected ova, born from infected females or uninfected
females, is fertilized by the sperm from an infected male. Then, with complete CI
between IM and UF [1, 2, 35, 39] and random mating, no uninfected adult progeny
will be observed from the crossing of IF × IM . Uninfected adult progeny still arise
from the crossing IF × UM due to imperfect transmission. With random mating,
the chance of a female crossing with UM is UM/(IM + UM ) = U/(I + U), and the
chance of a female crossing with IM is IM/(IM +UM ) = I/(I +U). The latter one
is also the probability of CI-occuring. Our model takes the form

dI

dt
= bII ·

I

I + U
+ bI(1− µ)I · U

I + U
− δII(I + U), (1)

dU

dt
= bIµI ·

U

I + U
+ bU · U ·

(
1− I

I + U

)
− δUU(I + U). (2)

In (2), the first term accounts for the birth of uninfected progeny from infected
mothers, and the second term accounts for the birth from uninfected mothers, who
have a probability I/(I+U) to mate with infected males, and a contribution to the
birth reduced by a factor 1− I/(I + U) = U/(I + U) due to complete CI.
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If we apply the rescaling

x =
δU
bU
I, y =

δU
bU
U, s = bU t, β =

bI
bU
, δ =

δI
δU
, (3)

and rewrite d · /ds as d · /dt, then we can transform (1)-(2) into

dx

dt
= β

x2

x+ y
+ β(1− µ)

xy

x+ y
− δx(x+ y) := f(x, y), (4)

dy

dt
= βµ

xy

x+ y
+

y2

x+ y
− y(x+ y) := g(x, y). (5)

In [41], we studied the case of perfect maternal transmission (i.e., µ = 0), and
included the average waiting time τ from parent mating to the emergence of repro-
ductive progeny as a time delay in the model. We proved that when δ = 1, i.e., the
infection does not alter the mean life span, Wolbachia can spread into the whole
population as long as the infection frequency stays strictly above a threshold value
for a period no less than the reproductive period τ . Interestingly, we also found
that such a threshold value of infection frequency cannot be well defined for δ 6= 1.
For the reduced system without maturation delay, we obtained sharp estimates on
a threshold curve determined by the population sizes of both infected and unin-
fected mosquitoes. This is different from a differential equation for the fraction of
Wolbachia-infected mosquitoes [29], with the assumptions of constant population
size and perfect maternal transmission of Wolbachia, where the threshold infection
frequency is unique.

The remaining part of this paper is divided into three sections. In Section 2, we
prove invariance and boundedness of solutions to system (4)-(5), and present two
useful identities together with additional preliminary results. These help us study
the global dynamics in Section 3 and prove that the system can exhibit monomor-
phic, bistable, and polymorphic dynamics, and give sufficient and necessary condi-
tions for each case. Imperfect maternal transmission could lead to infinitely many
polymorphic states, see Theorem 3.1. Also, our discussions in Section 4 highlights
some challenges associated with the release of wMelPop.

2. Preliminaries.

2.1. Invariance and boundedness. Noticing that f(x, y) → 0 and g(x, y) → 0
as (x, y) → (0, 0), we can extend the domain of system (4)-(5) to including (0, 0)
by defining f(0, 0) = g(0, 0) = 0. Then the system has the origin E0 = (0, 0) as
an equilibrium point. It is obvious that the x-axis, the y-axis, the first quadrant
R2

+ := {(x, y) : x ≥ 0, y ≥ 0} and its interior set R2
+0 := {(x, y) : x > 0, y > 0} are

all invariant sets of (4)-(5). For application purpose, we restrict our discussion on
the first quadrant R2

+ only.

Lemma 2.1. Every solution of (4)-(5) initiated from the first quadrant is bounded.
Moreover, for each (x0, y0) with x0 ≥ 0 and, y0 ≥ 0,

ω(x0, y0) ⊂ {(x, y) : 0 ≤ x ≤ β(2− µ)/δ, 0 ≤ y ≤ βµ+ 1}, (6)

where ω(x0, y0) is the set of limit points of solutions of (4)-(5) initiated from (x0, y0).

Proof. Let x(t) and y(t) be solutions of (4)-(5) with x0 ≥ 0, y0 ≥ 0. It is seen that

x′(t) < βx+ β(1− µ)x− δx2 = δx
[β(2− µ)

δ
− x
]
.
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Hence x′(t) < 0 when x(t) > β(2− µ)/δ, implying immediately that

lim sup
t→∞

x(t) ≤ β(2− µ)/δ.

Similarly, if y(t) > βµ+ 1, then

y′(t) < (βµ+ 1)y − y2 = y(βµ+ 1− y) < 0,

and so lim supt→∞ y(t) ≤ βµ+ 1 and (6) is verified.

2.2. The equilibrium points. Besides E0, system (4)-(5) always admits a
Wolbachia-fixation equilibrium point E1 = (β/δ, 0) and a Wolbachia-free equilib-
rium point E2 = (0, 1). Interior equilibria (x, y), if any, are the intersections of the
x-nullcline f(x, y) = 0 and the y-nullcline g(x, y) = 0, that is

Γx : βx+ β(1− µ)y = δ(x+ y)2, (7)

Γy : βµx+ y = (x+ y)2. (8)

Multiplying (8) by δ and then comparing the resulting equation with (7), we see
that Γx and Γy coincide if and only if

(C1) : µδ = 1, and β(1− µ) = δ.

When (C1) is not satisfied, we subtract (7) by the product of (8) with δ and
obtain

β(1− µδ)x =
[
δ − β(1− µ)

]
y. (9)

Lemma 2.2. System (4)-(5) admits interior equilibrium points if and only if one
of the following conditions holds:

(C2): µδ > 1, and β(1− µ) > δ;
(C3): µδ < 1, and β(1− µ) < δ.

In this case, there is exactly one interior equilibrium point given by E∗ = (x∗, y∗)
with

x∗ =
βµ+ k

(1 + k)2
, y∗ =

k(βµ+ k)

(1 + k)2
, (10)

where

k :=
β(1− µδ)
δ − β(1− µ)

. (11)

Proof. If the system admits interior equilibrium point (x, y), then (9) implies k > 0,
so one of (C2) and (C3) must hold. On the other hand, either (C2) or (C3) gives
k > 0 and (9) becomes y = kx. By inserting it into (8) we derive the expressions of
x∗ and y∗ as in (10).

If none of (C1)-(C3) holds, then system (4)-(5) does not admit any interior
equilibrium point. For convenience of later discussion, we classify the remaining
cases as the following 6 cases.

(C4): µδ < 1, and β(1− µ) > δ;
(C5): µδ < 1, and β(1− µ) = δ;
(C6): µδ = 1, and β(1− µ) > δ;
(C7): µδ > 1, and β(1− µ) < δ;
(C8): µδ > 1, and β(1− µ) = δ.
(C9): µδ = 1, and β(1− µ) < δ.
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2.3. The Jacobian matrix and two auxiliary functions. As f(x, y) > 0 and
g(x, y) > 0 when both x > 0 and y > 0 are sufficiently small, E0(0, 0) is a repeller.
To determine the stability of other equilibria, we first compute the determinant and
the trace of the Jacobian matrix [13] of system (4)-(5):

J =


β − βµ · y2

(x+ y)2
− δ(2x+ y) −βµ · x2

(x+ y)2
− δx

(βµ− 1) · y2

(x+ y)2
− y βµ · x2

(x+ y)2
+
y(2x+ y)

(x+ y)2
− (x+ 2y)

 . (12)

At E1(β/δ, 0) and E2(0, 1), direct calculations give

J(E1) =

(
−β −β(µ+ 1)
0 β(µδ − 1)/δ

)
, J(E2) =

(
β(1− µ)− δ 0
βµ− 2 −1

)
and at E∗(x∗, y∗) by using y∗ = kx∗ we find

J(E∗) =


β − βµk2

(k + 1)2
− δ(2 + k)x∗ − βµ

(k + 1)2
− δx∗

(βµ− 1) · k2

(k + 1)2
− kx∗ βµ

(k + 1)2
+
k(k + 2)

(k + 1)2
− (1 + 2k)x∗

 .

Lemma 2.3. (i) At E∗, we have

det J(E∗) =
βk

(k + 1)2

[β(1− µ)

δ
· µδ − 1

]
. (13)

(ii) The trace of J at E∗ is

trJ(E∗) =
−k2 + (1− β)k − β

(k + 1)2
. (14)

Proof. Write J(E∗) = (Jij)2×2. By using the definition of x∗ we obtain

J11 = β − βµk2

(k + 1)2
− δ(2 + k)

βµ+ k

(1 + k)2

=
1

(k + 1)2

[
β(k + 1)2 − βµk2 − δ(2 + k)(βµ+ k)

]
=

1

(k + 1)2

[
(β(1− µ)− δ)k2 + (2β − βµδ − 2δ)k + β(1− 2µδ)

]
.

By the definition of k in (11), we have the identity[
β(1− µ)− δ

]
k = −β(1− µδ),

and hence J11 can be further reduced to

J11 =
1

(k + 1)2

[
− β(1− µδ)k + (2β − βµδ − 2δ)k + β(1− 2µδ)

]
=

1

(k + 1)2

[
(β − 2δ)k + β(1− 2µδ)

]
.

The other three entries J12, J21 andJ22 can be simplified similarly, and J(E∗) is
reduced to

J(E∗) =
1

(k + 1)4

(
(β − 2δ)k + β(1− 2µδ) −δk − βµ(1 + δ)
k
[
(βµ− 2)k − βµ

]
k
[
− k + (1− 2βµ)

] ) .
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(i) For notation simplicity, instead of calculating detJ(E∗), we compute

J̄ :=
(k + 1)4

k
det J(E∗),

and then

J̄ =
[
(β − 2δ)k + β(1− 2µδ)

]
·
[
− k + (1− 2βµ)

]
+
[
δk + βµ(1 + δ)

]
·
[
(βµ− 2)k − βµ

]
= −β(1− µδ)k2 +

[
(βµ)2δ + (βµ)2 + 3βµδ − 2β2µ− 2βµ− 2δ

]
k

+3(βµ)2δ + β − (βµ)2 − 2β2µ− 2βµδ.

Note that (11) is equivalent to each of the following two identities

δk = β(1− µ)k + β(1− µδ), (15)

βµδ = β +
[
β(1− µ)− δ

]
k, (16)

which help us simplify J̄ to the following

1

β
J̄ = −(1− µδ)k2 +

{
βµ+ µ

[
β(1− µ)− δ

]
k + βµ2 + 3µδ − 2βµ− 2µ

}
k

−2(1− µ)k − 2(1− µδ) + 3µ
{
β +

[
β(1− µ)− δ

]
k
}

+1− βµ2 − 2βµ− 2µδ

= (βµ− βµ2 − 1)k2 + 2(βµ− βµ2 − 1)k + (βµ− βµ2 − 1)

= (βµ− βµ2 − 1)(k + 1)2 =
[β(1− µ)

δ
· µδ − 1

]
(k + 1)2.

Therefore

det J(E∗) =
k

(k + 1)4
J̄ =

βk

(k + 1)2

[β(1− µ)

δ
· µδ − 1

]
.

(ii) Again, by using of (15), trJ∗ can be simplified to

trJ∗ = J11 + J22

=
1

(k + 1)2

[
(β − 2δ)k + β(1− 2µδ)− k2 + (1− 2βµ)k

]
=

1

(k + 1)2

[
− k2 + (β − 2δ + 1− 2βµ)k + β(1− 2µδ)

]
=

1

(k + 1)2

[
− k2 + (β + 1− 2βµ)k − 2δk + β(1− 2µδ)

]
=

1

(k + 1)2

[
− k2 + (β + 1− 2βµ)k − 2β(1− µ)k

−2β(1− µδ) + β(1− 2µδ)
]

=
1

(k + 1)2

[
− k2 + (1− β)k − β

]
.

This completes the proof.

Lemma 2.4. Assume that γ(t) = (x(t), y(t)) is a solution of (4)-(5) in R2
+0, let

z(t) = ln
(
x1/δ(t)y−1(t)

)
. (17)
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Then the derivative of z(t) satisfies

z′(t) =
β

δ
(1− µδ) x

x+ y
+
[β(1− µ)

δ
− 1
] y

x+ y
. (18)

Proof. By rewriting z(t) = (1/δ) lnx(t)− ln y(t) and taking derivatives, we find

z′(t) =
f(x, y)

δx
− g(x, y)

y

=
β

δ

x

x+ y
+
β(1− µ)

δ

y

x+ y
− βµx

x+ y
− y

x+ y

=
β

δ
(1− µδ) x

x+ y
+
[β(1− µ)

δ
− 1
] y

x+ y
.

This completes the proof.

For fixed constant c > 0, we denote by Lc the ray y = cx, x > 0. Also for a
solution γ(t) = (x(t), y(t)) of (4)-(5) in R2

+0, let lc(t) = cx(t) − y(t). Obviously, if
γ(t) = (x(t), y(t)) ∈ Lc, then lc(t) = 0. Moreover, we have

Lemma 2.5. For fixed constant c > 0 and any solution (x(t), y(t)) of (4)-(5) in
R2

+0, we have

l′c(t)|Lc
= y
[
(δ − 1)

f(x, y)

δx
+ z′(t)

]
. (19)

Proof. By interchanging cx with y when necessary, we obtain from (4)-(5) that

l′c(t)|Lc

= c
[ βx2
x+ y

+ β(1− µ)
xy

x+ y
− δx(x+ y)

]
−
[
βµ

xy

x+ y
+

y2

x+ y
− y(x+ y)

]
= y

[ βx

x+ y
+ β(1− µ)

y

x+ y
− δ(x+ y)− βµ x

x+ y
− y

x+ y
+ (x+ y)

]
= y

[
β(1− µ)− y

x+ y
− (δ − 1)(x+ y)

]
= y

{
(δ − 1)

[β
δ
− βµ

δ

y

x+ y
− (x+ y)

]
+ β(1− µ)− y

x+ y

+
βµ(δ − 1)

δ

y

x+ y
− β(δ − 1)

δ

}
= y

{
(δ − 1)

[β
δ
− βµ

δ

y

x+ y
− (x+ y)

]
+
[β
δ
− βµ

δ

y

x+ y
− βµ x

x+ y
− y

x+ y

]}
= y

{
(δ − 1)

[β
δ
− βµ

δ

y

x+ y
− (x+ y)

]
+
β

δ
(1− µδ) x

x+ y

+
[β(1− µ)

δ
− 1
] y

x+ y

}
.

By applying the relation (18) and

β

δ
− βµ

δ

y

x+ y
− (x+ y) =

f(x, y)

δx
,

the proof is completed.
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3. Stability of equilibria. E0(0, 0) is always a repeller since f(x, y) > 0 and
g(x, y) > 0 when both x > 0 and y > 0 are sufficiently small. In this section, we
shall analyze the stability of equilibria and the global dynamics of system (4)-(5).
The primary tool in our proof is (13) and (14) in Lemma 2.3, differential identities
(18) in Lemma 2.4, and (19) in Lemma 2.5.

3.1. The degenerate case (C1). Assume that (C1) holds. Then both E1 and E2

are degenerate since J(E1) and J(E2) have zero as their eigenvalues. Furthermore,
system (4)-(5) is reduced to

dy

dx
=

y

δx
, (20)

and the two nullclines defined in (7) and (8) are identical. All points on this co-
incident nullcline in R2

+0, including E1 and E2 on the boundary, are equilibrium
points.

Theorem 3.1. Let (C1) hold. Let (x(t), y(t)) be the solution of (4)-(5) initiated
from (x0, y0) ∈ R2

+0 \ Γy. Then

y = y0

( x
x0

)1/δ
, (21)

and (x(t), y(t))→ (x+, y+) as t→ +∞, where (x+, y+) ∈ R2
+0 is the only intersect-

ing point of (21) and the coincident nullcline Γy.

Figure 1. The phase portrait in the degenerate case. (A) When
βµ ≤ 2, the curve Γy stays in the domain x + y > βµ/2 as a
decreasing curve connecting E1 and E2. (B) When βµ > 2, the
curve Γy starts from E2 in the domain 1/2 < x + y < βµ/2, in-
creases first and then intersects the line x+ y = βµ/2 to enter the
domain x + y > βµ/2, and remains in this domain as a decreas-
ing curve until reaching E1. In both cases, given the initial value
(x0, y0) ∈ R2

+0 \ Γy, solution of (4)-(5) tends to the unique inter-
secting point (the hollow point) of the curve (21) and the nullcline
Γy.



532 B. ZHENG, W. GUO, L. HU, M. HUANG AND J. YU

Proof. The relation (21) is easily derived by solving (20) with the initial condition.
The only non-trivial part in the proof of the remaining conclusions is to show
that (21) intersects the nullcline Γy (or Γx as they are identical) exactly once at
(x+, y+) ∈ R2

+0.
Let (x, y) ∈ Γy ∩ R2

+0. Since

β(1− µ) = δ =
1

µ
=⇒ βµ =

1

1− µ
> 1,

it holds that

x+ y < βµx+ y = (x+ y)2 < βµx+ βµy, 1 < x+ y < βµ.

Now if βµ ≤ 2, by taking derivative with respect to x on both sides of (8), we have

dy

dx
= −2(x+ y)− βµ

2(x+ y)− 1
< 0.

Hence y decreases in x along Γy in R2
+0, and the increasing curve (21) intersects it

exactly once for x+ ∈ (0, βµ), see Figure 1-(A).
If βµ > 2, then E2 lies between (0, βµ/2) and (0, 1/2), and Γy increases from E2

until hitting the straight line x + y = βµ/2, then decreases until reaching E1 (See
Figure 1-(B)). We only need to prove that if (21) cuts Γy within 1/2 < x+y < βµ/2,
then it can cut only once. To the end, it suffices to prove that the slope of the tangent
line to the curve (21) is always greater than the slope of the tangent line to Γy at
possible intersecting points when 1/2 < x+ y < βµ/2, i.e.,

y

δx
>
βµ− 2(x+ y)

2(x+ y)− 1
. (22)

Actually, by using µδ = 1 and the expression of Γy, we have

(22) ⇔ y
[
2(x+ y)− 1

]
> δx

[
βµ− 2(x+ y)

]
⇔ 2y(x+ y)− y > βx− 2δx(x+ y)

⇔ 2(x+ y)(y + δx) > βx+ y

⇔ 2(x+ y)2(y + δx) > (βx+ y)(x+ y)

⇔ 2(y + βµx)(y + δx) > (y + βx)(y + x)

⇔ y2 +
[
2δ + 2βµ− β − 1

]
xy + βx2 > 0.

The last inequality always holds for case (C1) due to

β =
δ

1− µ
=

1

µ(1− µ)
> 1,

and hence

2δ + 2βµ− β − 1 = 2β(1− µ) + 2βµ− β − 1 = β − 1 > 0.

This completes the proof.

3.2. Polymorphism and bistability. The following theorem shows that Condi-
tion (C2) leads to a polymorphic scenario.

Theorem 3.2. Let (C2) hold. Then both E1 and E2 are saddle points, and the
interior equilibrium point E∗(x∗, y∗) is globally asymptotically stable: for each point
(x, y) ∈ R2

+0, ω(x, y) = E∗.
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Proof. Both E1 and E2 are saddle points since their Jacobian matrix have one
positive and one negative eigenvalue. By (13), det J(E∗) > 0. Meanwhile, we have

µδ > 1⇒ δ > 1⇒ β(1− µ) > δ > 1⇒ β >
1

1− µ
> 1, (23)

and hence,

trJ(E∗) =
−k2 + (1− β)k − β

(k + 1)2
< 0.

Thus E∗ is locally asymptotically stable. To prove its global stability, it suffices to
show that there is no closed orbits. Take

B(x, y) = 1/(xy2) > 0 (24)

in R2
+0. The divergence of the vector field (Bf,Bg) satisfies

∇ · (Bf,Bg)

=
∂

∂x

[ βx

y2(x+ y)
+
β(1− µ)

y(x+ y)
− δ(x+ y)

y2

]
+
∂

∂y

[ βµ

y(x+ y)
+

1

x(x+ y)
− x+ y

xy

]
=

β

y(x+ y)2
− β(1− µ)

y(x+ y)2
− δ

y2
− βµ x+ 2y

y2(x+ y)2
− 1

x(x+ y)2
+

1

y2

= −βµ
[ x

y2(x+ y)2
+

1

y(x+ y)2

]
− 1

x(x+ y)2
+

1− δ
y2

< 0

which declares nonexistence of closed orbits in R2
+0 by the Dulac’s criterion [13].

The following theorem indicates that (C3) corresponds to a bistable scenario.

Theorem 3.3. Assume that (C3) holds. Then the unique interior equilibrium point
E∗(x∗, y∗) is a saddle point, and E1 and E2 are locally asymptotically stable. More-
over, denoting by y = h(x) the stable manifold of E∗, h(x) is continuous and
increasing, and is the separatrix that defines the basins of attraction of E1 and E2

in R2
+0, and it lies between h0(x) and h1(x), where

h0(x) =
y∗

x∗
x, h1(x) = y∗

( x
x∗

)1/δ
. (25)

Proof. Condition µδ < 1 (resp. β(1 − µ) < δ) in (C3) implies that J(E1) (resp.
J(E2)) has two negative eigenvalues, and hence both E1 and E2 are locally asymp-
totically stable under (C3). Moreover, det J(E∗) < 0 by (13), and hence E∗ is a
saddle point.

Noticing that along y = cx, (18) implies that

z′(t)|y=cx =
β(1− µδ)−

[
δ − β(1− µ)

]
c

δ(1 + c)
. (26)

We have

z′(t)|y=cx = 0⇔ c = k; z′(t)|y=cx < 0⇔ c > k; z′(t)|y=cx > 0⇔ c < k. (27)

By (19), we have

l′k(t)|Lk
= y(δ − 1)

f(x, y)

δx
.

There are three cases to consider.
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(i) δ = 1. Then l′k(t)|Lk
≡ 0, implying that Lk : y = kx consists of solution

curves of system (4)-(5), which also serves as the stable manifold of E∗.
(ii) δ > 1. Consider the domain

D1 =
{

(x, y) : 0 < x < x∗, h0(x) < y < h1(x)
}
.

We claim that D1 is negatively invariant with respect to the dynamics of (4)-(5). In
fact, on its upper boundary where y = h1(x), (27) implies that z′(t) < 0. On its
lower boundary y = h0(x),

l′k(t)|Lk
= y(δ − 1)

f(x, y)

δx
> 0.

It follows that solutions of system (4)-(5) initiated within D1 other than the origin
and E∗ will leave this region in finite time and stay outside thereafter.

Similarly, consider

D2 =
{

(x, y) : x > x∗, h1(x) < y < h0(x)
}
.

Then we have l′k(t)|Lk
< 0 on its upper boundary y = h0(x), and z′(t) > 0 on the

lower boundary y = h1(x). Consequently, the stable manifold of E∗ must locate
inside D1 and D2 and (2) is verified.

(iii) δ < 1. By using the same argument as above, the negative invariance of

D3 =
{

(x, y) : 0 < x < x∗, h1(x) < y < h0(x)
}

and

D4 =
{

(x, y) : x > x∗, h0(x) < y < h1(x)
}

could be proved by dissecting the sign of l′k(t)|Lk
and z′(t) on the boundaries.

3.3. Monomorphism.

Theorem 3.4. Assume that one of the Conditions (C4), (C5) and (C6) holds.
Then E1 is globally asymptotically stable: for each point (x, y) ∈ R2

+0, ω(x, y) = E1.

Proof. From (18), z′(t) > 0 always holds for these 3 cases, showing that (4)-(5)
does not have any non-trivival periodic solution. We claim that E2 could not be
the ω-limit set of the trajectory (x(t), y(t)) initiated from R2

+0. For cases (C4) and
(C6), it is trivial since E2 is a hyperbolic saddle point with the stable manifold
on the y-axis. However, E2 becomes non-hyperbolic for case (C5), whose local
stability cannot be determined by the Jacobian matrix approach. In this case, since
z′(t) > 0, it holds that z(t) > z(0) for all t > 0, and so E2 cannot be an ω-limit
point. Hence, ω(x, y) = E1 by the classical Poincaré-Bendixson theorem [13].

Theorem 3.5. Assume that one of the Conditions (C7), (C8) and (C9) holds.
Then E2 is globally asymptotically stable in the sense that for each point (x, y) ∈
R2

+0, ω(x, y) = E2.

Proof. It is easily seen that z′(t) < 0 for all cases, which again implies that (4)-(5)
does not have non-trivial periodic solution. The equilibrium point E1 could not be
the ω-limit set of any trajectory (x(t), y(t)) in R2

+0 for cases (C7) and (C8) since it
is a hyperbolic saddle point with the stable manifold on the x-axis. For case (C9),
since z′(t) < 0, it holds that z(t) < z(0) for all t > 0, and so E1 cannot be an
ω-limit point. Hence, ω(x, y) = E2 by the classical Poincaré-Bendixson theorem
[13].
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4. Discussion.

4.1. Polymorphism, bistability and monomorphism. The asymptotic behav-
ior of the Wolbachia spreading dynamics in a mixed population of infected and
uninfected mosquitoes depends strongly on the life parameters modified by the
Wolbachia infection. We classify the system parameters into Cases (C1) to (C9)
and identify their correspondence to three different scenarios:

Polymorphism: Theorems 3.1 and 3.2 show that the mixed population remains
polymorphic for which both infected and uninfected mosquitoes coexist when (C1)
or (C2) holds. If the degenerate case (C1) occurs, then the ultimate coexistent
state may change with the initial infection level. When (C2) occurs, the asymptotic
population size is independent of the initial value and the infection frequency at the
steady-state is x∗/(x∗ + y∗).

Bistability: For case (C3), Theorem 3.3 offers a sharp threshold given by the
separatrix y = h(x) on the initial values for successful Wolbachia invasion. If
Wolbachia does not alter the longevity of the mosquito, i.e., δ = 1, then the stable
manifold of E∗ coincides with h0(x) ≡ h1(x), see Figure 2-(A). If δ 6= 1, then
y = h(x) is nested by the straight line y = h0(x) and the curve y = h1(x), see
Figure 2-(B) (δ < 1) and Figure 2-(C) (δ > 1). For these three cases, the solution
initiated below y = h(x) approaches Wolbachia fixation equilibrium point E1, while
the solution initiated above y = h(x) approaches Wolbachia free equilibrium point
E2.

Figure 2. The separatrices y = h(x) are sandwiched by y = h0(x)
and y = h1(x).

Monomorphism: Theorem 3.4 implies that under either (C4) or (C5) or (C6),
for any initial positive release, the Wolbachia infected mosquitoes will eventually
replace the wild ones. Theorem 3.5 shows that under either (C7) or (C8) or (C9),
Wolbachia infection will fail to establish, regardless of the number of initial release.

With perfect maternal transmission rate, i.e., µ1 = µ2 = 0, system (4)-(5) is
reduced to

dx

dt
= βx− δx(x+ y), (28)

dy

dt
=

y2

x+ y
− y(x+ y) (29)

for which only (C3), (C4) and (C5) can occur. When β/δ ≥ 1, the environment is
more favorable (or at least equally favorable) for infected mosquitoes, and we say
that Wolbachia infection has a fitness benefit. In this case, system (28)-(29) only
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admits the Wolbachia free equilibrium point E2 and the Wolbachia replacement
equilibrium point E1. Theorem 3.4 for Cases (C4) or (C5) shows that successful
Wolbachia spreading is ensured from any initial release above 0 for the fitness benefit
case. When β < δ, we say that the infection has a fitness cost, and besides E1

and E2, there is a unique interior equilibrium point of system (28)-(29) which is a
saddle point. Theorem 3.3 for Case (C3) displays bistable dynamics for the fitness
cost case. These results are in line with the results in [41] which also include the
corresponding results in [41] as special cases.

Comparing to perfect maternal transmission, the imperfect maternal transmis-
sion generates richer dynamics. To see this, we fix β and δ and consider separately
the fitness cost case (i): β ≤ δ, and the benefit case (ii): β > δ. We explore the
impact of µ > 0 in terms of its relation with two critical values

ν1 =
1

δ
, ν2 = 1− δ

β
.

The detailed outcomes in different cases are shown in Figure 3. For example, in
the fitness cost case (i), small µ corresponds to the bistable case (C3). However,
increasing µ leads to (C9) and (C7), for which all solutions are attracted to E2, and
Wolbachia will be eventually wiped out, no matter how many infected mosquitoes
are initially released. Thus, we see a transition from the bistable state to the
monomorphic state E2 as µ increases. In the fitness benefit case (ii) with ν1 <
ν2, small µ corresponds to (C4) and (C6), for which all solutions converge to E1:
Wolbachia infected mosquitoes will eventually replace the wild ones, as long as
µ < ν1. But when µ is large, (C4) is replaced by (C2), (C8) and (C7) consecutively,
which again implies the failure of the release because all solutions converge to E2.
Thus, there is also a transition of convergences to equilibria when µ > 0 is increased:
transition from convergence to the replacement equilibrium E1 to convergence to
E∗ (the unique positive equilibrium, giving a unique polymorphic outcome), and
finally to the failure equilibrium E2. This is in contrast to the transition in (i)
which is a transition from the bistable state to the monomorphic state E2.

4.2. Success or failure: Review on some recent releases. We consider two
Wolbachia strains, the benign wMel and the virulent wMelPop, of Aedes aegypti
in Australia. It was found that wMel caused only 10% longevity reduction and
no significant fecundity cost [35], but wMelPop decreased the longevity of infected
female mosquitoes by ∼50% and resulted in a fecundity cost of ∼56% [25]. By using
the laboratory data in [25, 35], we estimated the birth rates bI and bU from the
oviposition rate, egg hatching rate and survival rate of larvae to adults, as well as the
death rates δI and δU from the half-life of adults [41]. We found that bU = 0.3976
and δU = 8.5034 × 10−6, and for the benign Wolbachia strain wMel: bI = 0.3976,
δI = 9.4482 × 10−6, and for the virulent Wolbachia strain wMelPop: bI = 0.2154,
δI = 1.4172× 10−5. These parameter values lead to

β =
0.3976

0.3976
= 1, δ =

9.4482× 10−6

8.5034× 10−6
≈ 1.1111

for the benign wMel, and

β =
0.2154

0.3976
≈ 0.5418, δ =

1.4172× 10−5

8.5034× 10−6
≈ 1.6667

for the virulent wMelPop.
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Figure 3. Dynamics complexity induced by imperfect maternal
transmission. (A) When β ≤ δ, small µ corresponds to bistable
case (C3). Increasing µ leads to (C9) and (C7), and the positive
solutions converge to the monomorphic state E2. (B) When β > δ,
we consider three subclasses. (B1): ν1 < ν2. As µ increases, (C4),
(C6), (C2), (C8) and (C7) occur consecutively, and the system
transits from the monomorphic state E1 to the polymorphic state
E∗ and finally the monomorphic state E2. (B2): When ν1 = ν2,
only (C1), (C2) and (C7) can occur. The system is polymorphic at
E∗ when µ < ν1, and is monomorphic at E2 when µ > ν1. (B3):
ν1 > ν2. As µ increases, (C4), (C5), (C3), (C9) and (C7) occur
one after another, and the system transits from the monomorphic
state E1 to the bistable state and finally the monomorphic state
E2.

In 2011, the Wolbachia strain wMel was introduced into Aedes aegypti popula-
tions in some northern Australian field sites [17] and had almost completely replaced
wild mosquitoes for more than 3 years [10, 18]. Since September 2014, the wMel
mosquitoes were released in two neighborhoods in Brazil [5]: Tubiacanga in Rio de
Janeiro (2014-2015) and Jurujuba in Niteroi (2015) to reduce dengue transmission.
Successful or ongoing field trials also include the wMel release in January 2014 in
Indonesia, and in May 2015 in Colombia. Achievements of these field trials have
been so encouraging that the strategy is becoming a worldwide plan to combat Zika
and other mosquito-borne viruses.

In contrast to the effective and sustainable invasion of the wMel release in Aus-
tralia, the 2013 wMelPop trial in central Vietnam (Tri Nguyen, Hon Mieu Island)
[26] was a failure: wMelPop could be established transiently, but not persistently,
in any of the two sites. The failure was largely attributed to the virulent prop-
erty of the wMelPop that causes the infected mosquitoes to have a shorter lifespan
(δ = 1.6667 > 1) and produce fewer offspring than the wild ones (β = 0.5418 < 1).

We can claim that maternal transmission leakage even makes a transient estab-
lishment of Wolbachia in the wild mosquito population a big challenge. Consider
again the wMelPop strain as an example. Given the uninfected mosquito’s den-
sity y0 and the leakage rate µ, if the maternal transmission leakage occurs, then
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(4)-(5) determines a unique Wolbachia release threshold x0 = x0(y0, µ). We plot
the ratio x0/y0 against the leakage rate in the left panel in Figure 4. It displays a
steep elevation of the threshold ratio x0/y0 for a successful Wolbachia invasion as
the leakage µ increases from 0.3 to 0.5, and reaches as high as 16 when µ = 0.5.
Furthermore, should the leakage is accompanied by incomplete CI as shown in [28],
the scenario is even more discouraging. It was shown in [28] that, among 1848 eggs
from the crossing of uninfected females and wMelPop-infected males, 301 (16.31%)
hatched. This leads to a reduction of the CI intensity sh from sh = 1 in (4)-(5) to
sh = 0.8369. With the incorporation of incomplete CI, the model is modified to

dx

dt
= β

x2

x+ y
+ β(1− µ)

xy

x+ y
− δx(x+ y), (30)

dy

dt
= βµ

xy

x+ y
+ y ·

(
1− sh ·

x

x+ y

)
− y(x+ y). (31)

Again, we can determine the unique threshold value x0 = x0(y0, µ, sh). In this case,
a small increase on the leakage rate could bring a catastrophic failure of Wolbachia
release. As shown in the right panel in Figure 4, the threshold ratio is as large as
7 when µ = 0.15. Further increase of the leakage rate from 0.15 to 0.25 results in
an augment of 6-fold on the threshold ratio. If µ = 0.3, we found that even if the
ratio is as large as 200, Wolbachia will be wiped out. Our example highlights some
challenges associated with releasing wMelPop, which is in line with the results in
[26, 28].

Figure 4. The maternal transmission leakage hinders the Wol-
bachia invasion. (Left) Fix y0 = 0.02, we plot the ratio of x0 to
y0 against the leakage rate µ = 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.45
and 0.5 for the leakage case (4)-(5). (Right) The combination of
negative effects of imperfect maternal transmission and incomplete
CI could make Wolbachia invasion impossible. Again, fix y0 = 0.02
and sh = 0.8369. When the leakage rate is 0.15, the incomplete CI
mechanism leads the threshold ratio increase from 1.95 to 7. Worse
than that, when the leakage rate is 0.3, the ratio as high as 200 is
still insufficient to ensure successful Wolbachia invasion.
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