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Abstract. In this paper an improved SEIR model for an infectious disease

is presented which includes logistic growth for the total population. The aim

is to develop optimal vaccination strategies against the spread of a generic
disease. These vaccination strategies arise from the study of optimal control

problems with various kinds of constraints including mixed control-state and

state constraints. After presenting the new model and implementing the op-
timal control problems by means of a first-discretize-then-optimize method,

numerical results for six scenarios are discussed and compared to an analytical

optimal control law based on Pontrygin’s minimum principle that allows to
verify these results as approximations of candidate optimal solutions.

1. Introduction. Infectious diseases have been feared by mankind for a long time,
just remember the black death in the 14th century, killing about one third of the
European population. Today humans can be vaccinated against many diseases,
but still not against all of them, as can be seen from the recent outbreak of the
ebola virus disease. Hence, it is hardly surprising that mathematical modelling
of spreading of diseases has found much interest in the relevant literature. In this
paper, we restrict ourselves to the textbooks of [15], [16], [1], and [4]. More references
can be found in Biswas, Paiva and de Pinho [2], on which the present work is mainly
based and the results of which we are going to extend.

As in [2], we consider a population of (N) individuals which is divided into four
disjoint groups (compartments): the susceptible population (S), the people (E),
that are exposed but not carrying symptoms, the infected ones, (I), and the recov-
ered (immunized) population (R), by either natural recovering or by vaccination.
The starting point is a generic SEIR model as used in [2] which goes back to [17].
This model will be expanded with logistic population growth.

Exponential population growth is realistic for a quite young or fast increasing
population, but in a highly developed country the population growth is known to
stagnate more and more. In this case, the dynamical behaviour may be better
represented by logistic population growth. The numerical results of this paper will
show that certain unrealistic growth as shown by the results of [2] can be avoided.
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Figure 1. The SEIR model with vaccination; cp. [2]

The basic model is assumed to have a continuous flow between the compartments
according to proportionality laws as indicated in Fig. 1. In the following model the
population growth is, in the first instance, modelled according to an exponential
growth law, where the total population is assumed to satisfy

Ṅ(t) = (b− d) ·N(t) (1)

while the complete SEIR model is given by

Ṡ(t) = bN(t)− dS(t)− c S(t) I(t)− u(t)S(t), (2)

Ė(t) = c S(t) I(t)− (e+ d)E(t), (3)

İ(t) = eE(t)− (g + a+ d) I(t), (4)

Ṙ(t) = g I(t)− dR(t) + u(t)S(t), (5)

Ṅ(t) = (b− d)N(t)− a I(t) (6)

with proportionality parameters given in the upper block of Table 1; cp. [2], p. 11.
See also Fig. 1. In this system of ordinary differential equations the variable u,
denoting the vaccination rate, is a degree of freedom. Later on it will turn into the
control variable. Note that the growth of the entire population N in Eq. 1 must be
reduced by the disease-induced death term.

A continuous flow between the compartments may not be realistic, but may be
accepted for qualitative conclusions for a sufficiently large population. To indicate
this, we introduce unit of capita for the real valued variables S, E, I, R, and N .
Herewith, the units for all proportionality parameters, hence their meanings become
apparent; see upper block of Table 1. In addition, this helps to check the equations.

The above model is exactly the one investigated in [2] and traces back to [17].
Our paper follows the organization of [2] in order to facilitate a comparison of the
results between exponential and logistic growth. We firstly present the new SEIR
model with logistic growth. Then a short excursus shows how analytical control
laws can be obtained from Pontryagin’s minimum principle. These laws are used
to validate our numerical results at least approximately. Finally, numerical results
for six optimal control scenarios are obtained and discussed including those with
a mixed control state constraint, also called state dependend control constraint or
zeroth-order state constraint, as well as a pure state constraint which turns out to
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Parameters Definitions Units Values
b natural birth rate unit of time−1 0.525
d natural death rate unit of time−1 0.5
c incidence coefficient 1

unit of capita ·unit of time
0.001

e exposed to infectious rate unit of time−1 0.5
g natural recovery rate unit of time−1 0.1
a disease induced death rate unit of time−1 0.1

umax maximum vaccination rate unit of time−1 1
WM maximum available vaccines unit of capita various

V0 upper bound in Eq. 34
unit of capita
unit of time

various

Smax upper bound in Eq. 38 unit of capita various

A1 weight parameter
unit of money

unit of capita ·unit of time
0.1

A2 weight parameter unit of money ·unit of time 1
t0 initial time unit of time (years) 0
T final time unit of time (years) 20
S0 initial susceptible population unit of capita 1000
E0 initial exposed population unit of capita 100
I0 initial infected population unit of capita 50
R0 initial recovered population unit of capita 15
N0 initial total population unit of capita 1165
W0 initial vaccinated population unit of capita 0

Table 1. Values from [17], also chosen in [2]1

be of first order, first each constraint of these constraints separately then both in
combination.

In addition to [2] we investigate an optimal control problem with a discounted
objective function, too.

2. The SEIR model with logistic population growth. The Belgian mathe-
matician Verhulst published in 1838 a logistic growth law [23], which sets the growth

rate Ṅ proportional to two terms, the population N on the one hand and the resid-
ual resources of the habitat compared with the carrying capacity K on the other
hand,

Ṅ(t) =
r

K
·N(t) · [K −N(t)] (7)

with r being a generic constant in the so-called Verhulst’s quadratical death term.
Comparing exponential and logistic population growth, i. e.,

Ṅlog(t) = r ·N(t)− r

K
N(t) ·N(t),

Ṅexp(t) = b ·N(t)− d ·N(t),

we see the following equivalences:

b↔ r and d↔ r

K
·N(t). (8)

1Note that the birth and death rates are far from reality if human populations are considered.
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The birth term must only appear in the susceptible population, since every one
is susceptible of birth and can be infected. However, the death terms must be split
up over the compartments, for exponential growth by

d ·N(t) = d · [S(t) + E(t) + I(t) +R(t)] , (9)

and for logistic growth by

r

K
N(t) ·N(t) =

r

K
N(t) [S(t) + E(t) + I(t) +R(t)] . (10)

Note that the additional parameters for the logistic growth model have been
chosen according to the equivalences (8) despite the unsoundness of the birth and
death rates.2

Hence, the original SEIR model turns into the new model

Ṡ(t) = rN(t)− r

K
N(t)S(t)− cS(t)I(t)− u(t)S(t), (11)

Ė(t) = c S(t) I(t)−
[
e+

r

K
N(t)

]
E(t), (12)

İ(t) = eE(t)−
[
g + a+

r

K
N(t)

]
I(t), (13)

Ṙ(t) = g I(t)− r

K
N(t)R(t) + u(t)S(t) (14)

with the algebraic equation

N(t) = S(t) + E(t) + I(t) +R(t). (15)

To complete the system of ordinary differential algebraic equations we choose
appropriate (consistent) initial conditions

S(0) = S0, E(0) = E0, I(0) = I0 and R(0) = R0; (16)

see the lower block in Table 1.

Remark 1. In [14], a slightly modified exponential-growth model is investigated,
where the term c S(t) I(t) in Eqs. (2) and (3) is replaced by c̃ S(t) I(t)/N(t). In order
not to mix up two modifications, we keep here the so-called Kermack-McKendrick
model, as used in the paper [2], too.

In the Kermack-McKendrick model, the force of infection, i. e. the the probability
per unit time for a susceptible to become infected, is assumed to be proportional
to I, analog to the law of mass action in chemistry; see [4], p. 17. The constant c
is called the transmission rate constant or incidence coefficient. Furthermore, it is
assumed that the infectives have a constant probability per unit time g, to become
removed. It is called the natural recovery rate g. In other words, the infectious
period has an exponential distribution with parameter g, i. e. the probability to be
still infectious τ units of time after infection is exp−g τ .

The Kermack-McKendrick model may be adequate, if huge crowds (demonstra-
tions, open air concerts, sport events, etc.) are infected by so-called super-spreaders.
An example is the SARS infection of sixteen guests on the nineth floor of the
Metropole Hotel in Kowloon, Hong Kong, by one person on February 21, 2003.

2The unrealistic data for the birth and death rates transfer here consequently to r and K and
lead to the pronounced logistic behaviour with a considerable increase of the entire population over

the chosen time interval; see Figs. 2 and 3: a price to be paid for a plain comparability between
the two growth models.
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Because of the subsequent continuation of the infected guests’ journeys, the infec-
tion has spread out worldwide.3 This behaviour of the spread of a disease can be
compared to the motion of gas molecules in random walk.

The term c̃ S(t) I(t)/N(t), used in [14], in contrast describes the spread of an
infectious disease when the per capita number of contacts per unit of time is inde-
pendent of the population size N . The force of infection here equals c̃ I

N ; see [4],

p. 22. Another interpretation is based on the conditional probabilty of contacts S
N

I
N

scaled by c̃ N . Here c̃ [unit of time−1] is a rate. Moreover, this modified model is
more appropriate if the total number N of individuals varies considerably. Hence,
our choice of the Kermack-McKendrick model is another concession in favour of a
plain comparison of our logistic growth model with the exponential one of [2].

For the sake of comparison of the two different growth models, we therefore
refrain from following the modified model of [14], moreover, since this paper deals
with L1-optimization.

3. The optimal control model. The dynamics of the flow between the com-
partments are given by the above four ordinary differential equations for the state
variables S,E, I and R, while u represents the only control variable. Note that
the differential-algebraic system (11)–(15) is overdetermined; one of the differen-
tial equations can be dropped. The hidden differential equation for the algebraic
equation (15) is automatically fulfilled by summing up equations (11)–(14). We will
later come back to this.

The cost of an epidemic for an economy is assumed to consist of the costs for
vaccination and for medical treatment of those who are infected. The latter term
may also include the loss of benefit of an economy due to sick individuals. The
vaccination costs usually amount to only a fraction of the costs for curing patients.
Since this turns out to be a multi-objective performance index, we have to obey
the scaling of these quantities when scalarizing the multi-objective functional; see
below.

If a region with only few physicians is considered, every doctor has to medi-
cate quite a large area and the costs may therefore depend quadratically on the
vaccination rate.4 So the cost functional can be modelled by

T∫
t0

A1 · I(t) +A2 u(t)2 dt ; (17)

here we investigate a period of 20 years, thus we set t0 = 0 and T = 20 and choose

the weight parameters A1 = 0.1 [
unit of money

unit of capita·unit of time
] and A2 = 1 [unit of

money · unit of time]; cp. Table 1, middle block. A smaller/larger value of A1 indi-
cates a lower/higher importance of healing costs in comparison to the vaccination
costs. Here we have to take into account the orders of magnitude of I and u which
differ by a factor of 1 000.

3See Super-spreader, http://en.wikipedia.org/wiki/Super-spreader, Feb. 28, 2017. Other
pandemic outbreaks of certain viral diseases are depicted on this web page, too.

4Instead of this so-called L2-functional, we also have obtained results for the L1-version. This
may be more appropriate for developed countries having a dense patient-centered care. L1-
optimization leads to bang-bang and singular subarcs; see [22]. Those results will be published

in a subsequent paper. Note that L2-functionals are under critical discussion for biological and
biomedical appications; see [21].

http://en.wikipedia.org/wiki/Super-spreader
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Remark 2. Therefore, the term quadratic in the control plays more the role of a
regularization term, to guarantee the existence of unique optimal solutions and to
get solutions of higher regularity, which approximate the L1-optimal solutions the
better the smaller the quotient A2/A1 is.

Another senceful term for including in the Pareto functional (17) is A3 u(t)S(t)
with A3 meassured in units of money per unit of capita. Later we will see that this
can also be taken into account by an appropriate mixed constraint such as (34).

Obviously, a box constraint to the vaccination rate must be imposed for practical
reasons, say

u ∈ Uad := {u : [t0, T ]→ [0, umax] a. e.} (18)

which defines the set Uad of admissible controls. Looking ahead on the subsequent
paper concerning L1-optimization, the box constraint is a must to guarantee the ex-
istence of a solution. On subarcs with u(t) ≡ umax, we have maximum rates for the
susceptible population to become immune, by vaccination and natural recovering.

Furthermore, it may be interesting how many vaccines have to be used over the
considered period of time. Therefore, we introduce an additional state variable
W (t) [unit of capita] defined by

Ẇ (t) = u(t) · S(t), W (0) = 0, and W (T ) ≤WM . (19)

We will consider values of 0 ≤ WM ≤ ∞ [unit of capita], which lead to a terminal
inequality constraint. This enables either to consider a restricted amount of avail-
able vaccines or to assume to have an unlimited amount of it. As we will see, the
numerical results surprisingly indicate that it may be sometimes more efficient not
to use all of the available serums. This common sense contradicting result however
has to be thoroughly discussed.

To complete the optimal control problem we have to mention that all other state
variables are unspecified at terminal time (except with respect to a trivial non-
negativity condition,

(S(T ), E(T ), I(T ), R(T )) ∈ R4
≥0. (20)

In summary, the optimal control problem reads as follows:
Minimize

T∫
0

A1 · I(t) +A2 · u(t)2 dt (21)

subject to

Ṡ(t) = rN(t)−
[ r
K
N(t) + cI(t) + u(t)

]
S(t), (22)

Ė(t) = c S(t)I(t)−
[
e+

r

K
N(t)

]
E(t), (23)

İ(t) = eE(t)−
[
g + a+

r

K
N(t)

]
I(t), (24)

Ṙ(t) = g I(t)− r

K
N(t)R(t) + u(t)S(t), (25)

Ṅ(t) =
r

K
N(t) [K −N(t)]− aI(t), (26)

Ẇ (t) = u(t)S(t), (27)

u(t) ∈ [0, umax] a.e. (28)
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Note that the state variable R does not enter the other equations. Hence, we
can omit its differential equation, moreover since R can be computed a posteriori
by (15). Alternatively, we also can omit the differential equation for N and substi-
tute the algebraic equation (15) into the above system. Now N can be computed a
posteriori by (15). Later, we will apply both of these alternatives. Obviously we can
eliminate any one of the above differential equations and substitute the algebraic
equation (15).

Remark 3. Note that the cancellation of one of the differential equations stabilizes
the numerical computations. Otherwise constraint qualifications would be violated
when optimizing.

4. Numerical results. In the following, we will firstly investigate five optimal
control scenarios differing with respect to certain inequality constraints that are
additionally imposed. These optimal control problems are solved numerically by a
standard first-discretize-then-optimize (direct) method based on the modelling lan-
guage Ampl of [5], providing exact derivatives via automatic differentiation, and the
well-known interior point algorithm for solving large-scale nonlinear programming
problems of [24], resp. [25] called IpOpt. All computations were performed using
the implicit Euler method with a constant discretization stepsize of 1/(20 ·365) [unit
of time]. The functional (21) has to be discretized suitably, i. e. compatibly with the
implicit Euler method. In order to get such a quadrature formula, we transform the
Lagrange functional (21) into a Mayer functional of type minu∈Uad

z(T ), where z is
an auxiliary state variable satisfying ż(t) = A1 I(t) +A2 u(t)2 with z(0) = 0. Then
the suitable quadrature formula becomes apparent and it is here the right-sided
rectangular formula.

For the first four of the five following scenarios, the existence of optimal solutions
can be guaranteed, as for the SEIR model with exponential growth in [2]; see
Theorem 2.1 there and its application to that SEIR model. This is due to the
facts, that we, too, have a Lagrangian functional with an integrand quadratically
dependent on the control and a constrained set of admissible controls as well as
dynamics affine in the control although nonlinear in the state variables.

In this paper we will additionally verify the discrete optimal control values ap-
proximately via an analytically determined optimal control law obtained from Pon-
tryagin’s maximum, resp. minimum principle5, in which we substitute the discrete
state and costate variables (multipliers). This consistency condition shows how ac-
curate the discrete solution of the finite dimensional optimization problem fulfills
the optimality condition of the maximum principle. For this purpose, we compute
an a posteriori error estimate defined by the mean square error MSE of all dis-
crete data points between the discrete optimal control values and the one we obtain
via Pontryagin’s optimality condition as mentioned above and explained in detail
below.

For recipes on how to apply of the necessary conditions of optimal control theory
to real-life applications, see [18].

4.1. A limitation of the entire amount of vaccines used. A limitation of the
entire amount of vaccines used can be modelled by the aforementioned terminal

5For remarks on the interesting history of the maximum principle against the background of
the beginning Cold War, see [20].
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constraint,
0 ≤W (T ) ≤WM . (29)

4.1.1. Scenario 0: No vaccination is used. If there is no serum available, the con-
straint (29) causes W (T ) = WM = 0 and the model allows solely an uncontrolled
simulation of the unlimited spreading of the disease and its provoked costs; see
Fig. 2. This scenario is considered in order to have a reference value for the yield
of the optimal vaccination strategies to be developed thereafter. Here the “opti-
mal control law” is the zero-function u∗(t) ≡ 0 and IpOpt deviates from it with
MSE(u, u∗) = 4.57 · 10−7 which is near the computational accuracy of this NLP
solver.
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Figure 2. Scenario 0: The progress of the population without control

The overall costs are ca. 3 173.8 units, which will be the reference point for making
up the balance of the gain of optimization.

All subsequent scenarios will now be optimal control problems. For this purpose
we make a short aside how to apply the minimum principle.

We firstly have to define

Definition 4.1 (The Hamiltonian). Let x ∈W 1,∞(0, T ;Rn) and u ∈ L2(0, T ;Rm)
be the state resp. control variable, f0(x, u) the cost functional, and f(x, u) = ẋ
represent the ODE constraints. The latter functions are assumed to be sufficiently
differentiable. Then the Hamiltonian function is defined as

H(x, u, λ) = λ0 · f0(x, u) + λ> · f(x, u)

with λ0 ∈ R and λ ∈W 1,∞(0, T ;Rn).
In general λ0 = 1 can be set. In few cases λ0 = 0 occurs, the so-called anormal

case. With free end conditions and given initial values for the state variable, λ0 = 0
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leads to a contradiction to the minimum principle saying that a vanishing of all
multipliers λ0 and λ can not happened simultaneously.

The core of the minimum principle says that for all t ∈ [0, T ] the optimal con-
trol u∗ is the global minimizer of the following finite dimensional optimization prob-
lem, pointwisely evaluated along an optimal trajectory (x∗(t), λ(t)),

u∗ = arg min
u∈Uad

H(x∗, u, λ) . (30)

For a precise and complete formulation of the minimum principle in the most general
form see [7], Informal Theorem 4.1 and Theorem 4.2.

This control law will be used to verify the discrete numerical results xd, ud,
and λd obtained by AMPL/IpOpt via (30) by substituting xd and λd into its
righthand side, yielding u∗ d := u∗(xd, λd) and computing MSE(u∗ d, ud).6

We now apply the core of the minimum principle and its associated verification to
five different optimal control problems differing in the kind and number of additional
inequality constraints.

4.1.2. Scenario 1: No limitation of serums. The normal case for, let’s say, a vacci-
nation against flu is that there are sufficiently many vaccines available, i. e.,

W (T ) < WM :=∞
or in other words there is no terminal inequality constraint for the state variable W ,
and Eq. 27 can be omitted. Nevertheless, we will keep W in order to simultaneously
derive the optimality condition if W (T ) < WM <∞ is bounded.

Taking into account the above mentioned redundancy, the Hamiltonian function
can be defined for example by

H(S,E, I,R,W, u, λ) = A1 I(t) +A2 u(t)2 + (31)

+λS Ṡ(t) + λE Ė(t) + λI İ(t) + λR Ṙ(t) + λW Ẇ (t).

In case the minimizer of the here convex optimization problem lies in the interior
of the admissible set of control values, it is uniquely given by

u∗(t) := uint(t) =
S(t) · [λS − λR − λW ]

2
. (32)

If uint(t) /∈ (0, umax) we have to project its values to [0, umax]. Thus we obtain the
control law

u∗(t) = min

{
umax; max

{
0; uint(t)

}}
. (33)

The progress of the population, i. e., the computed candidate optimal trajectory
for Scenario 1 is shown in Fig. 3.

The verification as described above yields a perfect match as also indicated by
the mean square error of 3.44 · 10−9; see Fig. 4.

The cost to the economy turns out to be 677.8, nearly a fifth of the cost without
vaccination. At a first glance it is surprising that the vaccination is stopped before
the end of the time period is reached. Usually one would keep the vaccination

6We want to point out that the discrete multipliers provided by IpOpt as by-product may have
the opposite sign — depending whether a maximum or a minimum principle is applied — and
may need to be scaled appropriately. For this, one can exploit the homogenity of the Lagrange
multipliers.

Since the Hamiltonian must be constant for autonomous problems, this property can be used
to check whether the implementation of the ODEs is correct.



494 MARKUS THÄTER, KURT CHUDEJ AND HANS JOSEF PESCH

 0

 10000

 0  5  10  15  20P
op

ul
at

io
n 

(N
)

Time in years

 0
 2500
 5000

 0  5  10  15  20S
us

ce
pt

ib
le

s 
(S

)

Time in years

 0
 2500
 5000

 0  5  10  15  20E
xp

os
ed

 (
E

)

Time in years

 0
 2500
 5000

 0  5  10  15  20

R
ec

ov
er

ed
 (

R
) 

   
  

Time in years

 0
 2500
 5000

 0  5  10  15  20In
fe

ct
ed

 (
I)

Time in years

 0
 0.5

 1

 0  5  10  15  20

O
pt

im
al

 C
on

tr
ol

 (
u)

Time in years

Figure 3. Scenario 1: The progress of the population for WM =∞
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Figure 4. Scenario 1: Discrete and verified optimal control for
WM =∞

rate at its maximum over the whole time period, but this would cause only slightly
higher costs. We later will discuss a discounted version of the functional (21), where
the same effect arises, which is typical, when functionals which should properly be
formulated over an infinite horizon, are truncated by a finite time.7

7For techniques to deal with infinite horizon optimal control problems we refer to [8], [12], [11],
and [26].
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Figure 5. Scenario 2: “Almost bang-bang” control for WM =
2 500 when vaccination is stopped

Using the optimal control approximately 22 860 vaccines have to be used in total.

4.1.3. Scenario 2: Limited serums. This scenario has actually happened in 2011 in
Germany. After flu vaccines of certain pharmaceutical companies did not get the
admission, other companies were not able to compensate for it. Such a situation
can be modelled, e. g., by

W (T ) < WM := 2 500.

The optimal control law stays the same as in the unlimited case, but of course
different state and costate values have to be inserted.

The most common solution may be: vaccination stays at the maximum limit
until all vaccines are exhausted. This optimal control strategy produces costs to
the economy amounting to 2 688.1 units.

Here, the optimal control is “almost bang-bang“ i. e. has a sharp decline from
the upper to the lower boundary of the admissible set; see Fig. 5. Note that due to
the L2-functional (21) the optimal control must be continuous. Likewise all state
variables are at least of class C1; see Fig. 6. Note that the control u enters the
differential equation for R but not for I. The verification leads here to an MSE of
1.21 · 10−8.

Bang-bang and even singular subarcs can only appear if an L1-functional is em-
ployed; see [22], i. e. if the control enters functional and right hand sides of the
ODEs linearely.

In summary, it is — not surprisingly — cheaper to vaccinate the population than
not immunizing them. In fact, a limit of WM = 3 113 serums leads to nearly the
same costs (3 173.7 units) than not vaccinating. The solution to this problem shows
the same qualitative behaviour as other solutions with different values WM , i. e. a
terminal limitation of serums, particularly exhibiting the sharp terminal decline in
the control values.

4.2. Scenario 3: Limited vaccines at each instant of time. In order to limit
the amount of vaccines at each instant of time we introduce a mixed control-state
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Figure 6. Scenario 2: The infected and the recovered population.
The latter exhibits an “almost kink“ when vaccination is stopped

constraint,

0 ≤ u(t) · S(t) ≤ V0 a.e., (34)

where V0 > 0 [unit of capita per unit of time] has to be chosen appropriately. Since
the number of susceptibles is positive this constraint is obviously equivalent to

0 ≤ u(t) ≤ V0
S(t)

a.e. (35)

We have chosen V0 = 125, which can be interpreted as approximately the number of
immunizations that can be accomplished within eight hours, if each immunization
takes not more than four minutes. In the following WM = ∞ is set, since an
additional limitation of the total amount of vaccines doesn’t make much sense.
Again Eq. 27 is dropped.

Remark 4. It is known that constraints of type (34) can be replaced by an ad-
ditional term in the scalarized Pareto functional (42) as mentioned in Remark 2.
Herewith the multiplier µ associated with that constraint, the upper bound V0, and
the weighting factor A3 are related to each other and determine a certain point on
the Pareto manifold.

Due to the mixed control-state constraints we have to augment the Hamiltonian
as follows. Since the system is overdetermined, as mentioned above, it is sufficient to
consider only four of the five ODE constraints (11) – (14) in addition to (7). Now,
we choose (7), (11) – (13) besides the inequality constraint (34) for the optimal
control problem describing senario 3,

H(S,E, I,N, u, λ, µ) = A1 I(t) +A2 u(t)2 + λS Ṡ(t) +

+λE Ė(t) + λI İ(t) + λN Ṅ(t) + µ [V0 − S(t)u(t)] .

Here, a new multiplier µ is introduced associated with the constraint (34). Note
that this multiplier must satisfy an additional necessary sign condition; see [7],
Informal Theorem 4.1, or [18]. This sign condition being a part of the so-called
complementarity condition, says that µ vanishes on unconstrained arcs and is non-
negative on arcs where the constraint (34), resp. (35) is active. Hence, the optimal
control law is, on unconstrained arcs, identical to (33). On constrained arcs, the
equation Hu = 0 determines the multiplier µ while the optimal control is obtained
by

ubound(t) = V0/S(t) > 0. (36)
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Due to the box constraint (18), the complete control law for scenario 3 can therefore
be summarized by

u∗(t) = min {umax;ubound; max {0;uint}} . (37)

In Figs. 7 the switching time between the control according to (32) and (36) is
marked, showing that control values in the interior of the admissible set are optimal,
iff these values are less than those obtained by the competing values according
to (36).
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Figure 7. Scenario 3: The upper picture shows the two competing
control candidates according to (33) and (36), the latter for V0 =
125. The optimal control is the boundary control (36) of the mixed
control-state constraint (34) almost over the entire time interval.
Only at the end, the control (32) in the interior of the admissble set
becomes active. In the lower picture the discrete and the verified
control values are compared showing again a perfect coincidence.
The upright bar marks the switching time.

Overall, there is quite a low final amount of infected people, I(20) ≈ 2 516 vs.
≈ 2 740 compared to the model for a total limitation of vaccines, with using only
about 30 vaccines less; see Figs. 6 and 8. On the other hand, the costs of 2 950.1 units
are a bit higher. Again, we see the typical decline of the control values at the end
here, too.

4.3. Augmenting the model by state constraints. In order to calm down an
epidemic or pandemia it may be advantageous to limit the number of susceptibles or
infected individuals by isolation independent of costs or the influence on the other
compartments.
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Figure 8. Scenario 3: Time behaviour of the infected and recov-
ered population. The terminal value of the recovered population is
a bit higher than in the model with a finite amount of vaccines.

4.3.1. Senario 4: State constraint on the number of susceptibles. A limitation of
the number of susceptibles is acchieved by the following pointwise state constraint,

S(t) ≤ Smax (38)

with an appropriately chosen parameter Smax [unit of capita].
Following the guidlines in [18] we firstly examine the order of the state constraint

and derive the candidate optimal boundary control on boundary arcs. If the state
constraint (38) is active on a non-vanishing time intervall, i. e., if there holds the
identity in time,

S(t) ≡ Smax, (39)

a further differentiation of (39) with respect to time, while substituting the right
hand sides of the ODE system (11)–(14), reveals the boundary control and therefore
that the state constraint is of first order,

ubound1
(t) =

r N(t)

Smax
− r

K
N(t) + c I(t). (40)

From optimal control theory, we know that the associated costate λS will be
discontinuous at entry and/or exit points or at any point along constrained subarcs.
Hence. the control will generally be discontinuous at those so-called junction points;
cp. (32), (33).

Moreover, since the state constraint is of first order, effective touch points cannot
occur; see [9] and [6].

Following the indirect adjoining approach of Bryson, Denham and Dreyfus [3]
— see also Ref. [18] — we augment the Hamiltonian similar to the case of mixed

control-state constraints by a term µ̄ Ṡ with µ̄ satisfying the same necessary sign
conditions as µ for mixed control-state constraints. Here, we obtain the boundary
control (40) directly from Ṡ ≡ 0 whereas the multiplier µ̄ can be obtained from the
vanishing partial derivative of the modified Hamiltonian with respect to the control
variable.8

8Here we would like to point out that, besides the core of the minimum principle, i. e. Eq. 37,
the other necessary conditions associated with the minimum principle can be checked, too, such
as the sign of the multipliers associated with path constraints and the signs of the jumps occuring

at the junction points of boundary arcs in case of pure state constraints; see [7], Theorem 4.1
and 4.2. See also [10].
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Recapitulating, we obtain the same optimal control law (37) as for the mixed
control-state constraint; only replace ubound by ubound1 . The discrete approxima-
tions for the candidate optimal number of susceptibles and the associated control
scenario 4 are shown in Figs. 9.9

Numerically we have found that below a value of Smax = 1 200 the manifold
defined by the constraint seems to be empty, at least IpOpt was not able to compute
a feasible solution. Here the vaccination rate is already at its maximum level from
about 10 years on, while the number of susceptible individuals anyway rises since
the population is still in its linerarly increasing phase. Hence, it is obviously not
possible to tighten the constraint (38) much further.

Increasing the fineness of the discretization we see that an extremely precise
resolution of the switching structure can be obtained even by a method of type
First discretize then optimize as used here.

Remark 5. This accuracy could be even increased when we pass on to a switching
point optimization technique; see [13]. For this postprocessing step one has to intro-
duce the switching points as new optimization variables. These can be guessed —
in our example surely beyond reasonable doubt — from the First-discretize-then-
optimize approximations. For this, the control variable needs only to be discretized
on subintervals where the control law depends on adjoint variables. With other
words, in many subinterval the control values can be prescribed either by con-
stants, i. e. the maximal, resp. minimal values allowed by the admissble control
set Uad, or by the feedback control laws, e. g. (37) with ubound replaced by ubound1

in view of scenario 4. This approach leads to new finite dimensional optimization
problems with considerably less optimization variables.

Herewith, an accuracy can be obtained which is surely beyond the accuracy of
the model, but gives almost as much inside as using a First-optimize-then-discretize
method based on the full minimum principle and using a multipoint boundary value
solver for the resulting multi-point boundary value problem with jump conditions.10

We will not pursue these ideas furtheron. They would be inappropriate for the
more qualitative models discussed here.

The costs for scenario 4 add up to 1 271.2 units, and, in addition, a quite low
number of infected individuals, namely I(20) ≈ 1 519, can be observed.

4.3.2. Scenario 5: Combining mixed control-state and state constraint. For our last
scenario we impose both constraints (35) and (38),

S(t) ≤ Smax and 0 ≤ S(t)u(t) ≤ V0 a.e. (41)

After some numerical experiments we have chosen the parameters

V0 = 400 and Smax = 1 700.

This choice results in a small time interval, approximately [7.39; 7.56], in which the
first-order state constraint is active (see Fig. 11, left), and, for almost the entire
remaining time, the mixed control-state constraint is active (see Fig. 10). The

9Here we have rounded the output along state-constrained boundary arcs by maximal 1
2

in

order to avoid small oscillations which seem to be typical for direct methods.
10This approach pays off only if an extremely accurate solution is desired enabling the check

of additional necessary conditions. However, there is a tremendous price to be paid, since the
user must have sufficient experience to implement all the necessary conditions and to handle the

usually sensitive boundary-value-problem solvers such as, for example, multiple shooting codes;
see [18].
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Figure 9. Scenario 4: Susceptible population and optimal control
for Smax = 1 200. The upright lines mark the switching points
from unconstrained boundary arcs on state-constrained ones or vice
versa. Three boundary arcs occur here; the last one is extremely
short; see the zoom. Note that a touch point cannot exist here [6].
The optimal control is discontinuous at entry and/or exit points
due to the jump discontinuities of λS at these junction points; see
[7].

distinction between the boundary controls associated with the mixed constraint (35)
and the pure state constraint (38) is below the resolution of a direct method and can
only be detected by the verification technique; see the inserted enlargement. Only
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at the very beginning and close to the final time the unconstrained control (32)
becomes active; see Fig. 10.
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Figure 10. Scenario 5: The approximate candidate optimal con-
trol: the verification test yields 8.5 · 10−8, hence indicating again a
perfect coincidence.

The numerical results for the susceptibles and infected are shown in Fig. 11. The
mixed control-state constraint (35) is active over almost the entire time interval,
only interrupted by a tiny state-constrained boundary arc associated with (38).
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Figure 11. Scenario 5: Susceptible and infected population: entry
and exit point to the state constrained arc are marked in green resp.
red. The maximal allowed values Smax and V0/u(t) are marked in
blue and purple respectively.

The overall costs amount to 2 320.5 units, which is an intermediate value of the
optimal control scenarios investigated.
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4.3.3. Scenario 6: A discounted version of the functional. In economical applica-
tions optimal control problems often pertain to functionals that are of discounted
type,

T∫
t0

exp(−r t)
(
A1 · I(t) +A2 u(t)2

)
dt, (42)

with r denoting the interest rate. Here r = 0.02 is chosen.

Remark 6. The valuation method of a discounted cash flow is used to estimate the
attractiveness of an investment. Discounted cash flow analysis takes into account
future cash flow projections and discounts them to a value estimate at present
time. This is used to evaluate the potential for an investment. If the value ob-
tained through discounted cash flow analysis is higher than the current cost of the
investment, the investment is considered to be more advantageous.

Concerning realistic models for the spread of vaccinable diseases discounted func-
tionals may be more appropriate. Usually functionals of type (42) arise from infinite
horizon optimal control problems which are naively approximated by truncation of
the infinite horizon to a finite time interval. Lykina [11] and Lykina, Pickenhain
and Wagner[12] have shown that this truncation is an improper modelling since
one often cannot assure the existence of solutions. This is caused by the fact that
improper spaces are chosen in which the solutions are assumed to exist. To over-
come this hurdle Pickenhain [19] has suggested to use a weighted Sobolev space for
the state and a weighted Lebesgue space for the control variables. Moreover, these
authors have developed various techniques for solving such problems correctly; see
particularly [11]. Unfortunately, there is no single method of choice; it depends on
the particular problem.

Let us firstly consider the approximate solution for the discounted functional
with time horizon T = 20 and an unlimited amount of serums, i. e., WM = ∞.
Hence, Scenario 6 is a modification of Scenario 1. The numerical results are shown
in Figs. 12 and 13.

There one can hardly see any difference to Figs. 3 and 4, even not for higher (more
or less realistic) values of r. Again, we see the sharp decline in the control behaviour
at terminal time. If we continue to vaccinate the population on the maximum vac-
cination rate, the costs increases only slightly from 677.8 units to 678.1 units while
the number of infected individuals decreases slightly from 1 194 to 1 184, by less
than 0.1 %. However, the number of immunized individuals shows a larger differ-
ence: 5 282 (constant maximum vaccination rate) versus 4 781 individuals (optimal
control on finite horizont). The effect with respect to the terminal behaviour of
the approximate control may be unexpected on the first glance but is typical for
optimal control problems which should be modelled on an infinite horizont but are
truncated by a finite horizont; see [12], [11], [19], and [26]. This can be interpreted
as devil-may-care solution.

5. Conclusion. In the present paper a modified SEIR model for infectious diseases
is developed which includes logistic growth. It is more appropriate for developed
societies. The results of our paper complement the results of the twin paper by
Biswas, Paiva and de Pinho [2], where exponential growth is taken into account. In
particular several inequality constraints have been included, among others mixed
control-state and pure state constraints. Although the numerical results have been
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Figure 12. Scenario 6: Discounted functional. The progress of
the population for WM =∞
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Figure 13. Scenario 6: Discounted functional. Discrete and veri-
fied optimal control for WM =∞

obtained only by a first-discretize, then-optimize method — however on the basis
of an existence result —, optimality is validated by use of Pontryagin’s minimum
principle. This verification technique shows that the results obtained are close
approximations of at least candidate optimal solutions.
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As conclusion concerning the numerical method used here, the investigations
show that the easy-to-use direct method, particularly the combination of the mod-
elling language AMPL providing the user with exact gradients via automatic differ-
entiation, and the high performance large-scale NLP solver IpOpt, yields numerical
results which even allow the determination of the switching structure of the problems
if the switching points are not too dense. However, even in these cases a switching
point optimization, if meaningful in view of the model accuracy, may yield further
improvements; see [13]. This approach may also be used to improve the validation
technique towards approximate sufficiency conditions for local optimality; see [13],
too.

Concerning the interpretation of the results in view of the application we have
seen that there is a correlation between low costs to the economy and a high vacci-
nation rate, which is, of course, to be expected by common sense. What contradicts
common sense is not to vaccine at maximal rate in the case of unlimited serums, but
the optimal results are quite close to those of common practise with a 100 % rate
over the entire time period exhibiting only slightly higher costs and may be caused
by an improper approximation of an infinite horizont optimal control problem by
a finite horizont one. For this purpose and due to economical reasons we also have
investigated a discounted version of the functional proposed in [2].

Finally it should be mentioned that results have been obtained also for functionals
of L1-type with both exponential and logistic growth leading to candidate optimal
solutions with bang-bang and singular subarcs; see [22]. Such functionals may be
more appropriate for realistic modelling, although the differences are minor when
the weighting parameters are chosen to regularize the problem as in the present
paper. The publication of L1-optimal solutions will follow in a subsequent paper.

Further investigations should focus on the mentioned alternative contact term
for time varying populations. However, then the incidence rate c̃ must be enlarged
and must undergo a parameter study. To keep the value of c̃ = c as used here,
would considerably diminish the influence of the contact term due to the term 1

N .
Furthermore, it is important to acquire more realistic data in cooperation with
edidemiologists and to investigate sensitivity studies for the parameters. In addition
the SEIR systems should be rewritten in dimensionless forms which certainly would
simplify the numerical treatment.

Finally, infinite horizont models could also be worth of future research, since
our numerical results, particularly for the L2-optimization, indicate this wellknown
weakness for truncated infinite horizon problems by the typical singular perturbed
behaviour of solutions at final time.
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[25] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006),
25–57.

[26] D. Wenzke, V. Lykina and S. Pickenhain, State and time transformations of infinite horizon
optimal control problems, Contemporary Mathematics Series of The AMS , 619 (2014), 189–
208.

Received July 30, 2016; Accepted May 15, 2017.

E-mail address: markus.thaeter@gmx.de

E-mail address: kurt.chudej@uni-bayreuth.de

E-mail address: hans-josef.pesch@uni-bayreuth.de

http://www.ams.org/mathscinet-getitem?mr=MR1343211&return=pdf
http://dx.doi.org/10.1137/1037043
http://dx.doi.org/10.1137/1037043
http://www.ams.org/mathscinet-getitem?mr=MR1882810&return=pdf
http://dx.doi.org/10.1137/S0363012900369423
http://www.ams.org/mathscinet-getitem?mr=MR0284905&return=pdf
http://dx.doi.org/10.1016/0022-247X(71)90219-8
http://dx.doi.org/10.1016/0022-247X(71)90219-8
http://dx.doi.org/10.1016/j.protcy.2014.10.249
http://dx.doi.org/10.1016/j.protcy.2014.10.249
http://opus.kobv.de/btu/volltexte/2010/1861/pdf/dissertationLykina.pdf
http://www.ams.org/mathscinet-getitem?mr=MR2460296&return=pdf
http://dx.doi.org/10.1016/j.amc.2008.05.041
http://www.ams.org/mathscinet-getitem?mr=MR2460293&return=pdf
http://dx.doi.org/10.1016/j.amc.2008.05.035
http://dx.doi.org/10.1016/j.amc.2008.05.035
http://www.ams.org/mathscinet-getitem?mr=MR3523816&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1908418&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1952568&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2744727&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1284506&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3305689&return=pdf
http://dx.doi.org/10.1007/s11228-014-0304-5
http://dx.doi.org/10.1007/s11228-014-0304-5
http://www.ams.org/mathscinet-getitem?mr=MR2991495&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3275020&return=pdf
http://dx.doi.org/10.3934/dcdsb.2014.19.2657
http://dx.doi.org/10.3934/dcdsb.2014.19.2657
http://www.ams.org/mathscinet-getitem?mr=MR2195616&return=pdf
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://www.ams.org/mathscinet-getitem?mr=MR3222938&return=pdf
http://dx.doi.org/10.1090/conm/619/12391
http://dx.doi.org/10.1090/conm/619/12391
mailto:markus.thaeter@gmx.de
mailto:kurt.chudej@uni-bayreuth.de
mailto:hans-josef.pesch@uni-bayreuth.de

	1. Introduction
	2. The SEIR model with logistic population growth
	3. The optimal control model
	4. Numerical results
	4.1. A limitation of the entire amount of vaccines used
	4.2. Scenario 3: Limited vaccines at each instant of time
	4.3. Augmenting the model by state constraints

	5. Conclusion
	REFERENCES

