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Abstract. Pair approximation models have been used to study the spread
of infectious diseases in spatially distributed host populations, and to explore

disease control strategies such as vaccination and case isolation. Here we intro-

duce a pair approximation model of individual uptake of non-pharmaceutical
interventions (NPIs) for an acute self-limiting infection, where susceptible in-

dividuals can learn the NPIs either from other susceptible individuals who are
already practicing NPIs (“social learning”), or their uptake of NPIs can be

stimulated by being neighbours of an infectious person (“exposure learning”).

NPIs include individual measures such as hand-washing and respiratory eti-
quette. Individuals can also drop the habit of using NPIs at a certain rate.

We derive a spatially defined expression of the basic reproduction number R0

and we also numerically simulate the model equations. We find that exposure
learning is generally more efficient than social learning, since exposure learn-

ing generates NPI uptake in the individuals at immediate risk of infection.

However, if social learning is pre-emptive, beginning a sufficient amount of
time before the epidemic, then it can be more effective than exposure learning.

Interestingly, varying the initial number of individuals practicing NPIs does

not significantly impact the epidemic final size. Also, if initial source infec-
tions are surrounded by protective individuals, there are parameter regimes

where increasing the initial number of source infections actually decreases the

infection peak (instead of increasing it) and makes it occur sooner. The peak
prevalence increases with the rate at which individuals drop the habit of using

NPIs, but the response of peak prevalence to changes in the forgetting rate are
qualitatively different for the two forms of learning. The pair approximation

methodology developed here illustrates how analytical approaches for study-

ing interactions between social processes and disease dynamics in a spatially
structured population should be further pursued.
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1. Introduction. Mathematical models in epidemiology often make the assump-
tion that successful control of epidemics is only determined by the availability and
effective deployment of control measures such as vaccination and isolation, whose
success largely depends on factors such as quantity of vaccine and logistical con-
straints. In recent years, some mathematical models are focusing on endogenously
incorporating the impact of human behavioral patterns on the regulation of com-
municable diseases. Upon gaining awareness about an infectious disease outbreak,
susceptible individuals may decrease their infection risk by isolating themselves or
reducing interactions with their friends, colleagues, etc, through staying at home
and avoiding social contacts. This practice is known as social distancing [16, 22].
Along with social distancing, hand-washing, use of masks, and other respiratory eti-
quette are further examples of so-called ‘non-pharmaceutical interventions’ (NPIs)
that can reduce infection spread [31]. While healthcare providers often advise the
public on appropriate NPIs, behavioral choices of individual members of the host
population partially determine the dynamics and feasibility to control an infectious
disease outbreak.

Social distancing and other NPIs have assisted the control of infections such as
flu, severe acute respiratory syndrome (SARS) and plague [6, 12, 40, 23, 14, 36, 15,
38, 21, 2]. However despite the availability of a large amount of information about
the dangers and risks of sexually transmitted infections (STIs), actions like unsafe
sexual behavior and needle sharing during intravenous drug use have been linked
to the pandemic-scale dissemination of STIs such as HIV/AIDS [26, 24, 39, 25].
Generally, negligence or relaxation of precautionary measures is brought about by
factors such as lack of awareness and engaging in infection-enhancing social practices
such as handshakes, hug, kisses, sharing of food and concurrent sexual partner, as
well as some cultural practices. The 2014 epidemic outbreak of Ebola in West Africa
is an example of how cultural or religious practices, such as engaging in risky rituals
and inappropriate handling of the sick or deceased, also influence the dynamics of
infectious diseases [28].

Human behavior also plays a role in the regulation of some animal infectious
diseases. For instance, the use of dogs in hunting and grazing cattle in countries
such as Kenya and Botswana, influences transmission of canine diseases between
domestic dogs and the African wild dog [1]. Although culling (slaughtering of
infectious or at-risk animals) has been found to effectively control foot and mouth
disease, farmers’ resistance towards this intervention measure (because of fear of
loss of livestock) often makes it difficult to bring the disease under control.

In [12] the authors explore the impact of social distancing on the spread of
an infection by incorporating health status-based contact behavior patterns into a
mean-field equations epidemic model. Thus, the transmission dynamics are gov-
erned by differing contact levels between individuals of different health types. For
example, due to the perceived risk of infection, susceptible individuals are likely to
avoid contact with infected individuals, while maintenance contact with recovered
individuals may have a less significant impact.

In [15] the authors explore the idea that the adoption of social distancing or other
NPIs is driven by the level of information individuals have, such that members of
the host population who possess first hand information become more cautious and
therefore less susceptible than those who have second hand information. Similarly,
individuals who have second hand information are less susceptible than those who
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posses third hand information, etc. This study was carried out by modeling in-
formation transmission and spread of an infection using mean-field equations and
individual-based epidemic models. The research also discusses the significance of
repeated re-generation of awareness into the population to ensure that most indi-
viduals have access to primary, or close-to-primary, information, which increases
the number of individuals who exercise contact precautions and/or NPIs.

In [14] the authors capture the dynamic nature of individuals’ decisions lead-
ing to adoption or non-practice of social distancing, by assuming that the network
geometry within which the host population resides (particularly the neighborhood
size) changes over time, depending on individuals’ perceived risk of infection. Thus,
adjustment of individuals’ perceptions about the disease over time results in vari-
ation of contact pattens and, therefore, it affects the infection dynamics. Other
researchers have explored game-theoretical [33] or rule-based simulation models
[35, 37] of social distancing.

The spatial dimension of social distancing has been explored in some of this pre-
vious work [15, 14, 35, 37]. Spatial dynamics can be analytically intractable, hence
the frequent decision to employ agent-based models. However, one method for im-
plicitly capturing spatial dynamics that often permits analysis is moment closure
approximation (MCA). MCAs employ pairs, triples, quadruples, etc., of connected
individuals, as model state variables, such that transmission takes place only be-
tween connected susceptible and infectious individuals on the network. MCAs are
usually comprised by a system of differential equations, where each equation de-
scribes time evolution of second order, third order, fourth order, etc., spatial cor-
relations between individual members of the host population. Equations of motion
for pairs involve terms in triples, equations of motion for triples involves terms
in quadruples, etc. Therefore in order to obtain a closed system of equations,
this hierarchy is truncated by techniques referred to as moment closures. Car-
rying out the closure at the level of pairs produces a pair approximation model
[34, 8, 7, 5, 29, 30, 32, 13, 9, 19, 11, 17].

Here our objective is to demonstrate how pair approximations and analyti-
cal expressions for the basic reproduction number can be developed for spatially-
structured socio-epidemiological systems. We develop and analyze a pair approxi-
mation model and explore the impacts of NPIs on the spread of an infectious disease.
We incorporate impacts of NPIs by dividing the susceptible population into suscep-
tible individuals who protect (Sp) (i.e., those who practice NPIs) and individuals
who do not (S). State S individuals learn from state Sp and/or infectious (state I)
individuals in their network neighborhood, and then decide whether or not to adopt
NPIs. The dichotomy between adopting NPIs due to being next to an infectious
person, versus learning NPIs from other individuals who adopt NPIs, captures the
distinction between practicing NPIs reactively because of an immediate threat due
to an infectious neighbour versus changing one’s habits pre-emptively based on ob-
serving the actions of other individuals, and forming new habits (such as using hand
sanitizers, or using a paper towel to open a bathroom door). We refer to learning
NPIs from other state Sp contacts as “social learning”, versus “exposure learning”
that occurs from reacting to infection in an immediate network neighbour. Be-
cause social learning cannot occur without individuals who have first adopted NPIs
through exposure learning in the early stages of the outbreak, exposure learning
can be viewed as a first order effect, while social learning can be viewed as a second
order effect. We also derive the basic reproduction number and analyze the pair
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approximation equations to understand how control success depends on epidemio-
logical and behavioral change parameters. The model is described in the following
section.

2. Model. A state S individual who is neighbouring a state Sp individual transi-
tions to the Sp state at a per capita rate ξ. Similarly, a state S individual neigh-
bouring a state I individual transitions to the Sp state at a per capita rate ρ. These
interactions thereby result in susceptible individuals adopting NPIs. Switching from
state Sp back to state S occurs at a per capita rate κ, representing forgetting, or
complacency.

The rate of infection transmission from an infectious individual to a neighbouring
state Sp individual is τp, whereas transmission to a neighbouring state S individ-
ual occurs at a rate τ > τp. Infected individuals recover at per capita rate σ.
Thus, the state variables of the pair approximation model are numbers of suscep-
tible, protective, infectious and recovered individuals denoted by [S], [Sp], [I] and
[R], respectively, and numbers of paired individuals, [XY ] where, for instance [SpI]
represents the number of edges comprising of susceptible protective and infectious
individuals. We derive equations of motion for our model in the Appendix. We as-
sume that the disease spreads on a regular network in which all nodes have the same
degree n, in a population of size N , and we use the binomial ordinary pair approx-
imation (Equation (14)), to approximate triples in terms of pairs and singletons,
resulting in:

d[S]
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2.1. The basic reproduction number. The basic reproduction number R0 is
the expected number of secondary infection cases produced by a single infectious
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individual upon introduction into a wholly susceptible population [10, 5, 3, 20, 27].
An epidemic may occur if R0 > 1, but the infection will die out if R0 ≤ 1. Therefore,
effective disease control reduces R0 below 1.

Here we use the pair approximation model above to derive an expression for R0

that incorporates some effects of spatiality and allows us to study the impact of
adoption of NPIs on the dynamics of the disease at the initial stage of an outbreak.
For simplicity, we derive R0 for a scenario where individuals start to learn and
practice contact precautions during an outbreak (Sp(0)� N).

The condition under which the infection will spread is

d[I]

dt
>0⇒ τ [SI] + τp[SpI]− σ[I]>0, (2)

which can be rearranged to yield

τ [SI] + τp[SpI]

σ[I]
>1. (3)

Therefore, we write R0 in terms of (i) susceptibility of individuals who do not protect
(captured by a high transmission parameter τ), (ii) susceptibility of individuals who
practice NPIs (captured by a low transmission rate τp), (iii) the rate of recovery
σ, and (iv) the numbers of S-I and Sp-I pairs as well as the overall number of
infections individuals [I]:

R0 =
τ [SI]

σ[I]
+
τp[SpI]

σ[I]
. (4)

Next we express pairs [SI] and [SpI] in terms of the correlations between state
S individuals and their infectious neighbors, and state Sp individuals and their
infectious contacts, respectively. The correlation between individuals with status
X and Y is given by

CXY =
N

n

[XY ]

[X][Y ]
, (5)

where n and N are the number of contacts each individual has and the total popula-
tion size, respectively. CXY<1 implies avoidance of interaction between state X and
state Y individuals, CXY = 1 assumes homogeneous mixing, while CXY>1 implies
strong correlation between state X and state Y individuals. Note that Equation
(5) can be re-written as

[XY ] =
[n]

N
[X][Y ]CXY , (6)

therefore,

R0 =
n

σN
(τ [S]CSI + τp[Sp]CSpI). (7)

At the initial stage of an epidemic, we assume that the population is comprised
mainly by susceptible individuals, only a few of whom practice NPIs:

[S] + [Sp] ≈ N,where [Sp] << [S] (8)

We define sp ≡ [Sp]/N , thus the proportion of state S individuals at the beginning
of the epidemic is 1− sp, and R0 becomes:

R0 =
n

σ

(
τ(1− sp)CSI + τpspCSpI

)
. (9)

To estimate the values for CSI and CSpI , we use biologically reasonable assump-
tions about disease spread, as follows. There is a very small number of infectious
individuals at the beginning of an outbreak, so CSI ≈ 1. However as the infection
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spreads, CSI decreases and the clustering of infected individuals leads to a decrease
in the rate of spread, and the disease may die out if there are not enough susceptible
individuals in the vicinity of the infected cluster to transmit the disease to. The
dynamics of the disease at this point (referred to as the local minimum and denoted
by CminSI ) determine whether an epidemic will succeed or fail to take off. Thus, we
need to evaluate CminSI [18]. Similar reasoning applies to CminSpI

. Hence

R0 =
n

σ

(
τ(1− sp)CminSI + τpspC

min
SpI

)
. (10)

The quantities CminSI and CminSpI
are the solutions of d

dtCSI = 0 and d
dtCSpI = 0,

respectively.
The derivation of these quantities as well as the full expression of R0 are presented

in the Appendix. The full expression of R0, Equation (17), is unwieldy but it
depends on epidemiological parameters τ, τp and σ, NPIs-based parameters ξ, ρ and
κ, as well as initial network configuration-dependent correlations CSpS and CSpSp .
It is clear from Equation (17) that a higher rate of recovery σ, reduces R0, but the
equation is too complicated to directly infer the impacts of other model components.
Hence, numerical computations will be used to explore dependence of R0 on model
parameters and initial network configurations (Section 3).

We derive reduced versions of R0 by considering special cases where individuals
adopt NPIs through (a) social learning only (i.e. ξ > 0 day−1 and ρ = 0 day−1)
and (b) exposure learning only (i.e. ξ = 0 day−1 and ρ > 0 day−1). For both of
these scenarios we assumed that protective individuals consistently practice NPIs
throughout the outbreak so that state Sp individuals do not switch back to state S
(i.e. κ = 0 day−1). Furthermore, we assumed that the initial network configuration
constitutes one infectious (state I) individual with one protective (state Sp) neighbor
who also has one state Sp contact, and the rest of the population is completely
susceptible (i.e. state S) such that at the initial stage of the outbreak [S] ≈ N ,
where the population size N is very large.

2.1.1. High efficacy NPIs adopted through social learning only. In the Appendix we
simplified Equation (17) to derive the expression for the basic reproduction number
for dynamics in which adoption of NPIs results from social learning only (case (a)
above), and that NPIs are highly effective as a control measure (τp << τ), and for
typical model parameters (N = 40000, sp = 2/N , n = 4, τ = 1 day−1, τp = 0.0025
day−1, σ = 0.25 day−1 and ξ = 0.25 day−1), to obtain

R0 ≈
τnχ− ξ +

√
τ2n2χ2 + ξ(ξ + 2τnχ)

2σ
, (11)

where

χ ≈
τ(n− 2) +

√
τ2(n− 2)2 + 4ττp(n− 1)

2τn
.

Equation (11) confirms that social learning (ξ) reduces the initial spread of the
infection. As expected, a highly transmissible infection (large τ) will increase R0.
We note that R0 increases with χ. We discuss in the Appendix that χ approximates
the minimum of the correlation function CminSI between susceptible and infectious
individuals. Therefore, factors that increase χ should also increase R0. The quantity
χ increases with the transmission rate to protective susceptible neighbours (τp), as
well as the number of neighbours per individual (n), confirming the mitigating
effects of spatially localized transmission.
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2.1.2. High efficacy NPIs adopted through exposure learning only. For comparison
to Equation (11), in the Appendix we also simplified Equation (17) to derive the
expression for the basic reproduction number for dynamics in which adoption of
NPIs results from exposure learning only (case (b) above), and that NPIs are highly
effective as a control measure (τp << τ), and for typical model parameters (N =
40000, sp = 2/N , n = 4, τ = 1 day−1, τp = 0.0025 day−1, σ = 0.25 day−1 and
ξ = 0.25 day−1), to obtain

R0 ≈
τnχ+

√(
τ2n2χ+ 4τpρn

)
χ

2σ
, (12)

where

χ ≈
τ(n− 2)− ρ+

√
τ2(n− 2)2 − 2τρ(n− 2) + ρ2 + 4ττp(n− 1)

2τn
.

Hence, more rapid adoption of NPIs due exposure learning (ρ) decreases χ, and
therefore also decreases R0. Spatial structure has a mitigating effect in this case as
well.

In the Appendix we show that when adopted NPIs are not strict (such that
τp << τ does not hold), then the corresponding expressions of R0 for cases where
individuals practice cautious behavior due to social learning only and exposure
learning only are given by Equations (18) and (21), respectively.

3. Results.

3.1. Dependence of R0 on model parameters and network configuration.
The spatial distribution of susceptible individuals (S) and individuals who practice
NPIs (Sp) around the infection source at the initial stage of an epidemic have
a strong influence on R0, as computed from the full expression appearing in the
Appendix, Equation (17) (Figure 1).

As expected, R0 decreases with the proportion of protective individuals around
the infection source cluster and in the entire population (Figures 1a versus 1c).
This finding implies that upon inception of an outbreak it is crucial to identify
the infection source promptly, and sensitize members of the host population about
the disease and prevention measures, so that they can propagate awareness further
through interactions with their spatial neighbours. We note that associating R0

(and the overall disease dynamics) with specific network configurations in which
diseases and social interactions disseminate would not be possible under a mean-field
equations approach, which ignores spatial structure altogether. Spatial processes
such as transmission of most infectious diseases and dessemintion of information
can be understood better by the study of spatially oriented models such as pair
approximation models.

Increasing the rate of adopting NPIs, either through exposure learning (ρ) or
through social learning (ξ), decreases R0. However, increasing the rate of adoption
via infectious neighbours reduces R0 more effectively than increasing the rate of
adoption via protective susceptible neighbours (Figure 2a, b). This occurs because
being next to infectious neighbors results in prompt adoption of preventative mea-
sures and avoidance of infection from that infectious neighbor, and hence it reduces
R0 better than a scenario where adoption of NPIs results from interaction with
protective neighbors only, which may leave some infectious individuals in a part of
the network with no protective individuals, while other parts of the network may
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Figure 1. Typical network distributions of susceptible contacts,
S, neighbors who practice social distancing techniques, Sp (as well
as the respective calculations of the basic reproduction number)
around the initial infection source, where all other members of the
host population are fully susceptible (i.e. state S). The population
size is N = 40000, each individual has n = 4 neighbors and model
parameters are τ = 0.75 day−1, τp = 0.1 day−1, σ = 0.25 day−1,
ξ = ρ = 0.5 day−1 and κ = 0.01 day−1.

have significant populations of protective individuals, but no infections. However,
we note that this only applies when social learning can only begin at the start of
an outbreak, and not beforehand as a pre-emptive measure.

3.2. Numerical analysis of pair approximation differential equations.

3.2.1. Social and exposure learning during an outbreak. Numerical analysis of our
model was carried out in MATLAB using the ode45 solver. Similar to the results
from the R0 derivation, numerical simulation of Equation (1) shows that if both
forms of learning can begin only during an outbreak, then NPIs adopted due to
exposure learning (ρ) have a much larger impact on the size of the epidemic peak,
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Figure 2. The basic reproduction number as a function of social
learning from protective contacts at a rate ξ, and from infectious
contacts at a rate ρ, where the transmission rate to protective in-
dividuals is τp = 0.1 day−1 (a) and τp = 0.5 day−1 (b). In all
these plots N = 40000, n = 4, τ = 0.75 day−1, σ = 0.25 day−1,
CSpSp = 0, CSpS = 3/4, κ = 0 day−1 and sp = 1/N .

than NPIs adopted due to social learning (ξ) (Figure 3 i,l versus 3 c,f). We also find
that, adoption of NPIs stimulated by neighbouring infectious individuals leads to a
higher number of protective individuals throughout and at the end of the epidemic,
than practice of NPIs due to social learning (Figures 3 h,k versus Figures 3 b,e). This
occurs because in this situation, learning from a neighbouring protective susceptible
contact may not reach the parts of the network that need to be protected, resulting
in those parts of the network being infected before they can adopt NPIs.

Increasing the initial number of infection source points with n protective neigh-
bours (i.e. completely surrounded by individuals who practice NPIs) generally
increases the infection peak (Figures 3 a,g,j). This confirms intuition. However,
contrary to phenomena normally observed in homogeneous-mixing models, increas-
ing the number of infection source points who are surrounded by highly protective
individuals can actually decrease the infection peak in other parameter regimes
(τp = 0.1 day−1, see Figures 3 d and 3 f). On the other hand, when NPIs are not
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Figure 3. Infection peak versus initial distribution of single in-
fected individuals with 4 state Sp neighbors (a, d, g, j), time series
for susceptible individuals who protect (b, e, h, k) and time series
for infectious individuals (c, f, i, l), varying the number of 1 in-
fected node plus 4 Sp neighbors at the beginning of the outbreak
(the rest of the population is fully susceptible ). In (a to f) ξ = 0.25
day−1, ρ = 0 day−1; in (g to l) ξ = 0 day−1, ρ = 0.25 day−1; in
(a, b, c and g, h, i) τp = 0.6 day−1; in (d, e, f and j, k, l) τp = 0.1
day−1. Model parameters common to all graphs are τ = 0.8 day−1,
σ = 0.25 day−1 and κ = 0 day−1.

strictly practiced (leading to a relatively high value of τp), increasing the number
of infection source points will increase the infection peak, as usual, even when each
of the initial infection sources are surrounded by a large proportion of protective
contacts (see Figure 4 a).

Cumulative infections over a period of two months decrease with adoption of
precautionary behavior due to social learning at a rate ξ, and exposure learning at
a rate ρ, but, also as observed in Figures 2 and 3, the decrease in cumulative infec-
tions is more profound when individuals use exposure learning than social learning
(Figure 5). Furthermore, adoption of NPIs only moderately decreases cumulative
infections if upon learning about the disease and becoming protective, the new
state Sp individuals practice less effective precautionary measures, resulting in an
increased rate of transmission to state Sp individuals, τp (Figure 5a versus Figure
5b versus Figure 5c). The asymmetry between effects of ξ and ρ, and the impact of
complacency, on cumulative infections, shown in Figure 5, are even more obvious
in the corresponding surface plot of the same model outcomes (see Figure 6).
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Figure 4. Infection peak versus rate of disease transmission to
protective individuals, τp, and the initial distribution of single in-
fected individuals with 4 state Sp neighbors (and all other members
of the host population are fully susceptible, S), where ξ = 0.25
day−1, ρ = 0 day−1 (a) and ξ = 0 day−1, ρ = 0.25 day−1 (b).
Other model parameters are τ = 0.8 day−1, σ = 0.25 day−1 and
κ = 0 day−1.

If individuals who practice NPIs lose this habit (captured by conversion from
state Sp to state S at a ‘forgetting’ rate κ) then the population susceptibility in-
creases, leading to a large number of infection cases and occurrence of large epidemic
outbreaks, which are characterized by high infection peaks (Figure 7). However,
with respect to the governing model equations used in this paper, the response of
infection peaks to changes in the rates of forgetting is qualitatively different for the
two types of learning: κ scales linearly or logistically with infection peak, depending
on whether only ρ or only ξ, respectively, is active. This stems from the fact that per
capita success of exposure learning–which operates only in immediate neighbours
of an infected node–depends less on population prevalence than social learning. In
particular, when the rate of forgetting is low, then the infection peak is roughly the
same for both types of learning. However, when the rate of forgetting is high, then
infection peaks are very high under social learning, but only moderately high under
exposure learning. This occurs because effective social learning requires large parts
of the network to be ‘ready’ for any infections which may enter the area by having
high and stable populations of protective susceptible individuals, and large rates of
forgetting prevent this from happening.
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Figure 5. Cumulative infections as a function of social learning
from both infectious and state Sp neighbors at rates ρ and ξ, re-
spectively, where the initial conditions are 1 infected node and 1
state Sp neighbor while the rest of the population is fully suscep-
tible (i.e. state S), and τp = 0.1 day−1 (a), τp = 0.2 day−1 (b),
τp = 0.3 day−1 (c). Other model parameters are τ = 0.8 day−1,
σ = 0.25 day−1 and κ = 0 day−1.

Figure 6. Cumulative infections as a function of social learning
from both infectious and state Sp neighbors at rates ρ and ξ, re-
spectively, where the initial conditions are 1 infected node and 1
state Sp neighbor while the rest of the population is fully suscep-
tible (i.e. state S). Model parameters are τ = 0.8 day−1, σ = 0.25
day−1 and κ = 0 day−1.
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Figure 7. Infection peak versus the rate at which protective sus-
ceptible individuals forget, κ, varying regimes for social contagion
parameters ξ and ρ. Initial conditions are 1 infected node and 2
state Sp neighbors while the rest of the population is fully suscep-
tible (i.e state S). Other model parameters are τ = 0.8 day−1,
τp = 0.3 day−1 and σ = 0.25 day−1.

3.2.2. Social learning before and during an outbreak, and exposure learning during
an outbreak. Many of the behaviours that fall under the rubric of NPIs, such as
hand-washing and respiratory etiquette, are learned preventively and are practiced
in a population even before an epidemic. This builds up the proportion of protec-
tive individuals before introduction of the disease. Thus, the effectiveness of social
learning may thus be considerably improved, although it is not clear how far in ad-
vance social learning must begin for it to be useful. In this subsection we consider
scenarios where social learning can occur both prior to and after the introduction
of an infection. In particular, we contrast a scenario where only social learning is
practiced (but social learning begins to spread before the epidemic starts), to a sce-
nario where only exposure learning takes place, and we compare their performance.

In the absence of exposure learning (ρ = 0), model simulations confirm how social
learning before an epidemic creates large pools of protective individuals before the
epidemic begins, leading to a decreased epidemic final size (Figure 8). At baseline
parameter values, introducing social learning as early as possible is a highly effective
way of decreasing the epidemic final size; increasing the initial number of protective
individuals, Sp, also works but is less effective than stimulating social learning as
early as possible (Figure 8 a-c). Either of these measures is made more effective
when social learning is more rapid (large ξ, Figure 8 c versus b and a).

In contrast to observations made in most of the simulations in the previous
subsections, social learning reduces the epidemic final size more effectively than
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Figure 8. Cumulative infections as a function of the initial num-
ber of state Sp individuals and the time at which the infection is
introduced, varying ξ and ρ, for the scenario of exposure learn-
ing only (dark grey surface) and social learning only (light grey
surface). Other model parameters are τ = 0.8 day−1, τp = 0.001
day−1, σ = 0.25 day−1 and κ = 0 day−1.

exposure learning, except when social learning is not introduced soon enough before
the epidemic, or when there are not enough initial protective individuals (Figure 8 a-
c). In either of these two exceptional cases, there is an insufficient pool of protective
susceptible individuals in the population at the beginning of the epidemic, for social
learning to be effective.

4. Discussion. NPIs partly determine the feasibility of infection control for many
infectious diseases, especially ones where pharmaceutical interventions are not yet
available. Here, we constructed a pair approximation model of a self-limiting in-
fectious disease where individuals can choose to adopt NPIs either in response to
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learning it from other susceptible individuals, or having been stimulated to learn it
from neighbouring an infectious person. Our objective was to demonstrate how pair
approximation methods might be useful for studying socio-epidemiological processes
in spatially structured populations.

We found that the impact of NPIs depends on the structure of the initial net-
work configuration, particularly, the number and the neighborhood distribution of
infectious, susceptible and individuals who practice NPIs, at the beginning of an
outbreak. Both social learning and exposure learning lead to a decrease in the final
size. At baseline parameter values, exposure learning is much more effective than
social learning if social learning can only begin during the outbreak. However, so-
cial learning can outperform exposure learning if social learning begins early enough
before the epidemic (although the initial number of protective individuals is not as
important). While peak disease prevalence increases with the rate at which protec-
tive susceptible individuals stop the habit of practicing NPIs, the response of the
infection peak to the rate of forgetting is qualitatively different for the two types of
learning. We also found that, under certain parameter regimes, if infection source
points are initially surrounded by protective individuals, increasing the number of
infection source points at the beginning of an outbreak actually decreases the infec-
tion peak. This phenomena would not be revealed by the non-spatial, mean-field
equations models.

Our model makes several simplifying assumptions. The model is based on the
assumption that disease propagation and spatially localized learning take place
only between connected neighbors on a regular network. In real life, networks
within which infections spread are more complex, and mean-field effects (such as
mass media) may be important. Future work could extend the pair approximation
model to account for these effects. On the other hand, the importance of higher-
order spatial correlations in many spatial systems is known. In spatially-structured
epidemic systems in particular it may be necessary to use triple approximations
instead of just pair approximations in order to capture dynamics of the full spatially
explicit model with a high degree of accuracy [4]. Our paper did not evaluate the
importance of higher-order correlations in spatial socio-epidemiological dynamics,
and this aspect is left for future research as well.

In Section 3.2.2 we found that social learning is more effective in reducing cu-
mulative infections than exposure learning, provided there is a sufficient pool of
protective susceptible individuals in the population at the beginning of the epi-
demic. Future work could include derivation of the threshold for the initial popu-
lation size of protective susceptible individuals, above which social learning will be
more effective than exposure learning. Also, in general, social networks are struc-
turally different from networks in which infections spread. Thus, future work could
also develop pair approximations for dual-level networks consisting of both a social
network and a disease spread network.

In conclusion, we have shown how pair approximation models that incorporate
both spatial transmission of diseases and impacts of NPI decision-making can be de-
veloped and analyzed. Future research using this methodology might yield insights
regarding infection control in spatially-structured socio-epidemiological systems.

Appendix.

Derivation of the equation of motion for [SI]. Here we demonstrate the con-

struction of equations of motion for pair approximation models by deriving d[SI]
dt .
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In moment closure approximations the equation of motion for a state variable

g(t), is determined by expressing dg(t)
dt as a function of the sum of all events that

affect the state variable. That is

dg(t)

dt
=

∑
ε∈events

r(ε)∆g(ε), (13)

where r(ε) is the rate of event ε and ∆g(ε) is the change this event causes in g(t).
Equation (13) is referred to as the master equation. As illustrated below, at each
node on the network the rates r(ε) and change ∆g(ε) are expressed in terms of their
population-averaged values and the deviations of those values from the expected
means at a given node. The summation over each node is carried out in such a
way that any significant stochasticity is incorporated in the evaluation of a state
variable while the remaining stochasticity can be treated as random noise and may
be discarded. We illustrate this concept below.

The time evolution of the number of S-I pairs is determined by the following
events.

Infection at a rate τ of a susceptible, S individual by their infectious, I neighbour
(in a S-I pair) converts S into I, i.e. SI 7→ II, where 7→ means ‘transformed to’.
This process destroys a S-I pair. Similarly, infection at a rate τ of a susceptible
individual ‘from the left’ in a triple I-S-I, i.e. I ↔ SI also destroys a S-I pair.
However a S-I pair is created as a susceptible individual is infected at the same
rate, τ , in a triple I-S-S.

Transmission of the disease from an infectious, I individual to their protective
contact, Sp at a rate τp in a triple S-Sp-I transforms Sp to I, and therefore create
a S-I pair.

Recovery of the infectious individual at a rate, σ in a pair S-I implies SI 7→ SR.
Therefore the process destroys S-I.

Adoption of NPIs at a rate ξ, by a state S individual as a result of social learning
from their state Sp neighbor in a triple Sp-S-I converts S to Sp, and therefore it
destroys a S-I link.

Adoption of NPIs at a rate ρ, by a state S individual due to being in the neigh-
borhood of a state I individual in a pair S-I or a triple I-S-I converts S to Sp, and
therefore it destroys a S-I link.

Stopping the use of NPIs by a protective individual at a rate κ in a Sp-I pair
increases their susceptibility, i.e. Sp converts to S, and the process creates a S-I
pair.

To demonstrate the next steps of the derivation of the equation of motion for
[SI], the following notations will be useful:

nx(i): number of state i neighbours of a node x;

nxy(i): number of state i neighbours of a node x, which has node y as a neighbour;

ζx: disease state of node x;

ζxy: disease state of an edge involving x and y.

Using this notation, the master equation for the dynamics of [SI] can now be rep-
resented as the sum of all the events (listed above) as d[SI]

dt
=

∑
ζxy=SS

τ(nxy(I))(+1)+
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∑
ζxy=SI

τ(nxy(I))(−1)+
∑

ζxy=SSp

τp(nxy(I))(+1)+
∑
ζx=S

σ(nx(I))(−1)+
∑

ζxy=SI

ψ(nxy(I))(−1)

+
∑

ζxy=SI

ξ(nxy(Sp))(−1) +
∑

ζxy=SI

ρ(nxy(I))(−1) +
∑
ζx=I

κ(nx(Sp))(+1).

The positive (+) and negative (−) signs in the master equation above indicate that
the corresponding events create or destroy S-I pairs, respectively.

Next we replace quantities such as nx(I) and nxy(I) by their population-averaged
values (means) plus the stochastic deviations of those quantities from the means at
nodes x and pairs xy. Let n(i|j) be the population-averaged value of nx(i) when
ζx = j and let n(i|jk) be the population-averaged value of nxy(i) when ζxy = jk.
Then at each node we replace nxy(I) by n(I|SI) + θxy(I|SI) where θxy(I|SI) rep-
resents the stochastic fluctuation from the mean. The resulting expression is then
simplified by taking out constants such as n(I|SI) and the model parameters out
of the sums and further noting that terms such as

∑
ζx=S

θx(I|S) that represent fluc-

tuations are zero by definition. Furthermore the following identities (which apply
to all network types):

n(i|jk) = [ijk]
[jk] ; n(i|ji) = 1 + [iji]

[ji] ; n(i|j) = [ij]
[j and n(i|i) = 1 + [ii]

[i] ,

enable us to write the equation of motion for [SI] as

d[SI]
dt = τ([ISS]−[ISI]−[SI])+τp[SSpI]−σ[SI]−ξ[SpSI]+κ[SpI]−ρ([ISI]+[SI]).

We assume the disease spreads a regular network where neighbors of an individual
are themselves conditionally independent, therefore, third order correlations take
the form

n(i|jk) = (n−1)
n n(i|j) and n(i|ji) = 1 + (n−1)

n n(i|j).

That is, to close the system (i.e. approximate higher-order moments by lower-order
moments) of equations we use the binomial ordinary pair approximation (OPA):

[ijk] =
(n− 1)

n

[ij][jk]

[j]
. (14)

The binomial OPA is based on the idea that the disease state of a node j is directly
influenced by the states of two of its indirectly connected neighbors i and k. That
is, there are no triangles in the network.

Derivation of the basic reproduction number. Here we derive the expressions
for CminSI and CminSpI

, and present expressions of the basic reproduction number

resulting from a number of disease scenarios.

CSI = N
n

[SI]
[S][I] , therefore the equation of motion for CSI is given by

d
dtCSI = N

n

(
1

[S][I]
d
dt [SI] + [SI]

[S][I](−
1

[I]
d
dt [I]− 1

[S]
d
dt [S])

)
.

We substitute the equations of motion for the number of susceptible-infectious pairs,
[SI], the number of infectious individuals, [I], and the number of susceptible indi-
viduals, [S] from Equation (1) into the equation above, and approximate triples by
the OPA to show that
d
dt
CSI = τ(n− 1) [S]

[N ]
CSSCSI − τ(n− 1) [I]

N
C2
SI − τCSI + τp(n− 1)

[Sp]

N
CSpSCSpI − σCSI −

ξ(n−1)
[Sp]

N
CSpSCSI +κ

[Sp]

[S]
CSpI −ρ(n−1) [I]

N
C2
SI −ρCSI − τn [S]

N
C2
SI − τpn

[Sp]

N
CSpICSI +

σCSI + τn [I]
N
C2
SI + ξn

[Sp]

N
CSpSCSI − κ

[Sp]

[S]
CSI + ρn [I]

N
C2
SI .
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Similarly, the equation of motion for the correlation between susceptible individ-
uals who protect and infectious individuals can be written as
d
dt
CSpI = τ(n − 1) [S]

[N ]
CSSpCSI + τp(n − 1)

[Sp]

N
CSpSpCSpI − τp(n − 1) [I]

N
C2
SpI − τpCSpI −

σCSpI+ξ(n−1) [S]
N
CSpSCSI−κCSpI+ρ

[S]
[Sp]

CSI−τpn [Sp]

N
C2
SpI−τn

[S]
N
CSpICSI+σCSpI+

τpn
[I]
N
C2
SpI − ξn [S]

N
CSpSCSpI + κCSpI .

We make biologically reasonable assumptions about the disease to simplify the
equations above as follows. At the beginning of the epidemic there are very few
infectious individuals (initial inoculation: [I] = 1) such that the entire population,
N comprises almost only of susceptible individuals who protect, [Sp] and those who
do not protect, [S] i.e. [I] << N (where total population N is very large) and
[Sp] + [S] ≈ N . We remind the reader that our derivation of R0 is based on the
idea that both social and exposure learning take place only after the disease has
been introduced. Therefore, we assume that at the initial stage of an outbreak the
public has little information about the disease and only a small proportion of the
population is aware and can decide to practice NPIs. Thus, at the beginning of an
outbreak [Sp]/N = sp, [S]/N = 1 − sp, where 0 < sp << 1. Therefore, we can
simplify further the equations of motion for CSI and CSpI above by equating to
zero all terms in which the denominator is large and [I] is the numerator.

Although it may be necessary to also derive the equations of motion for three
other correlation functions (for CSS , CSpS and CSpSp) that appear in the equations
of motion for CSI and CSpI above, we estimate them from the network configuration
of the disease at the beginning of an outbreak. This step will help explore the
relationship between the initial network configuration of the population with respect
to the disease, and the evolution of the epidemic outbreak. We assume that at the
beginning of the outbreak susceptible neighboring individuals mix homogeneously.
That is, CSS ≈ 1. This value remains constant throughout calculations of the basic
reproduction number for the initial network configurations considered in this paper,
but the same does not hold for CSpS and CSpSp , since the latter take different values
depending on various initial distributions of state S and state Sp individuals around
the infection source. Since at the beginning of the outbreak sp is very small, it is
reasonable to assume that [S] ≈ N . Therefore, at the initial stage of an infection

CSpS = N
n

[SpS]
[Sp][S] ≈

1
n

[SpS]
[Sp] while CSpSp = N

n
[SpSp]
[Sp][Sp] . These values are calculated

from actual initial network configurations as shown in Figure 1. We proceed with
the derivation of CminSI and CminSpI

.

Note that now
d
dt
CSI = τ(n− 1)(1− sp)CSI − τCSI + τp(n− 1)spCSpSCSpI + ξspCSpSCSI + κspCSpI −

ρCSI − τn(1− sp)C
2
SI − τpnspCSpICSI − κspCSI

and
d
dt
CSpI = τ(n − 1)(1 − sp)CSpSCSI + τp(n − 1)spCSpSpCSpI − τpCSpI + ξ(n − 1)(1 −

sp)CSpSCSI + ρ
1−sp
sp

CSI − τpnspC
2
SpI − τn(1− sp)CSpICSI − ξn(1− sp)CSpSCSpI .

Solving d
dtCSI = 0 and d

dtCSpI = 0 yields:

C
min
SI =

R− τpnspCminSpI
+

√
(R− τpnspCminSpI

)2 + 4τnsp(1− sp)

(
τp(n− 1)CSpS + κ

)
CminSpI

2τn(1− sp)
, (15)

C
min
SpI

=

Q+

√(
T − τn(1− sp)CminSI

)2

+ 4τpnsp(1− sp)

(
(n− 1)(τ + ξ)CSpS + ρ/sp

)
CminSI

2τpnsp
, (16)

where
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Q = T − τn(1 − sp)C
min
SI , R = τ(n − 1)(1 − sp) − τ − ρ − κsp + ξspCSpS and

T = τp(n− 1)spCSpSp − τp − ξn(1− sp)CSpS .
Simplifying assumptions

Note that at the beginning of an outbreak the initial network configuration consti-
tutes very few susceptible individuals who practice NPIs, so that while sp ≈ O(1/N)
(for a network where the infection source has at least 1 protective contact), CSpI
is large (i.e. CminSpI

= O(N)). Therefore we can simplify Equation (15) by assum-

ing that spC
min
SpI
≈ 1, so that CminSI ≈

R−τpn+

√√√√(R−τpn)2+4τn(1−sp)

(
τp(n−1)CSpS+κ

)
2τn(1−sp)

= χ

is a constant determined by the initial proportion of susceptible individuals who
protect, sp, the model parameters τ, τp, σ, ρ, ξ and κ, as well as the initial network
configuration-specific values of correlation functions CSpS and CSpSp . Substituting

χ and the resulting expression of CminSpI
into Equation (10) yields

R0 ≈
T + nτ(1 − sp)χ +

√(
T − τn(1 − sp)χ

)2
+ 4τpnsp(1 − sp)

(
(n− 1)(τ + ξ)CSpS + ρ/sp

)
χ

2σ
, (17)

where T = τp(n− 1)spCSpSp − τp − ξn(1− sp)CSpS ,

χ ≈
R−τpn+

√√√√√(R−τpn)2+4τn(1−sp)

(
τp(n−1)CSpS+κ

)
2τn(1−sp) and R = τ(n − 1)(1 − sp) − τ −

ρ− κsp + ξspCSpS .
Simulation results involving the basic reproduction number (in the Results sec-

tion) are based on Equation (17).
Below we explore other scenarios of the disease to present simpler expressions

of R0. We consider cases where protective susceptible individuals are assumed
to maintain the habit of practicing NPIs throughout the epidemic outbreak (i.e.
κ = 0). Also let the initial network configuration constitute 1 infectious individual
with 1 state Sp neighbor (who also has 1 state Sp contact) and let the rest of
the population be state S individuals so that for a large population size, initially
[S] ≈ N . Thus, the properties of the network at the initial stage of an outbreak are
sp = 2/N,CSpS = 5/2n,CSpSp = N/4n.
(a) Adoption of NPIs through social learning only

Here individuals are assumed to learn about the disease, and therefore adopt
NPIs, from their contacts who already practice preventative behavior, and not from
their infectious neighbors. That is we let ξ>0, and ρ = 0.
If the population size, N is very large, and there are very few state Sp individuals

at the beginning of the outbreak, so that sp =
[Sp]
N ≈ 0, then we can simplify R

by noting that 1 − sp ≈ 1 and ξspCSpS ≈ 0 (since 0 ≤ ξ ≤ 1 and CSpS = O(1) ).
Therefore
R ≈ τ(n− 2).
Also, we simplify T by further noting that spCSpSp ≈ O(1) and nCSpS ≈ O(1), so
that
T ≈ τp(n− 2)− ξ.
Thus, the expression of the basic reproduction number can be written as

R0 ≈
τp(n− 2)− ξ + τnχ+

√(
τp(n− 2)− ξ − τnχ

)2

+ 4τpsp(n− 1)(τ + ξ)χ

2σ
, (18)
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where χ ≈
τ(n−2)−τpn+

√√√√√(τ(n−2)−τpn

)2

+4ττp(n−1)

2τn .

High efficacy case
Here we estimate the expression of R0 for a case where individuals acquire pre-

ventive behavior through interaction with contacts who practice NPIs only, and the
adopted NPIs are highly effective (i.e. τp is small so that τ2

p ≈ 0). Therefore,(
τp(n−2)−ξ−τnχ

)2

= τ2n2χ2−2τp(n−2)(ξ+τnχ)+ξ(ξ+2τnχ)+τ2
p (n−2)2 ≈

τ2n2χ2 − 2τp(n− 2)(ξ + τnχ) + ξ(ξ + 2τnχ)
and(
τ(n−2)−τpn

)2

= τ2(n−2)2−2ττpn(n−2)+τ2
pn

2 ≈ τ2(n−2)2−2ττpn(n−2) =

τ(n− 2)

(
τ(n− 2)− 2τpn

)
.

The resulting expression of the basic reproduction number is

R0 ≈
τp(n− 2) − ξ + τnχ +

√
τ2n2χ2 − 2τp(n− 2)(ξ + τnχ) + ξ(ξ + 2τnχ) + 4τpsp(n− 1)(τ + ξ)χ

2σ
, (19)

where

χ ≈
τ(n−2)−τpn+

√√√√√τ(n−2)

(
τ(n−2)−2τpn

)
+4ττp(n−1)

2τn
.

Model parameter-based R0 for high efficacy case
We simplify Equation (19) further by prescribing a reasonable model parameter

regime. Let N = 40000, sp = 2/N, n = 4, τ = 1 day−1, τp = 0.0025 day−1, σ = 0.25
day−1 and ξ = 0.25 day−1. Then the following features of Equation (19) become
apparent:
τ(n− 2) >> τpn;
τ(n− 2) >> 2τpn;
ξ >> τp(n− 2);
τnχ >> τp(n− 2);
τ2n2χ2 >> 4τpsp(n− 1)(τ + ξ)χ;
τ2n2χ2 >> 2τp(n− 2)(ξ + τnχ);
ξ(ξ + 2τnχ) >> 4τpsp(n− 1)(τ + ξ)χ;
ξ(ξ + 2τnχ) >> 2τp(n− 2)(ξ + τnχ).
We use these observations to cancel terms of Equation (19) that are insignificant
(as per the prescribed parameter regime) to write the expression of the basic repro-
duction number as

R0 ≈
τnχ− ξ +

√
τ2n2χ2 + ξ(ξ + 2τnχ)

2σ
, (20)

where

χ ≈ τ(n−2)+
√
τ2(n−2)2+4ττp(n−1)

2τn .
(b) Adoption of NPIs due to exposure learning only

Here we consider a scenario where individual members of the population gain
awareness about the disease, and in turn adopt NPIs, due to being next to infectious
contacts only. Thus, we assume ρ > 0 and ξ = 0.
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Applying similar arguments as in part (a) above, we simplify the original values of
R, T and χ so that R ≈ τ(n− 2)− ρ, T ≈ τp(n− 2) and

R0 ≈
τp(n− 2) + τnχ+

√(
τp(n− 2)− τnχ

)2

+ 4τpnsp

(
τ(n− 1)CSpS + ρ/sp

)
χ

2σ
, (21)

where

χ ≈
τ(n−2)−ρ−τpn+

√√√√√(τ(n−2)−ρ−τpn

)2

+4ττp(n−1)

2τn .

High efficacy case
Applying the condition for a high efficacy case (i.e. τp << τ) and simplifying

assumptions also applied in part (a) to a scenario where susceptible individuals
adopt positive behavior through exposure learning only, transforms Equation (21)
to

R0 ≈
τp(n− 2) + τnχ+

√[
τ2n2χ− 2ττpn(n− 2) + 4ττpsp(n− 1) + 4τpρn

]
χ

2σ
, (22)

where

χ ≈
τ(n− 2)− ρ− τpn+

√
τ2(n− 2)2 − 2τ(n− 2)(ρ+ τpn) + ρ(ρ+ 2τpn) + 4ττp(n− 1)

2τn
.

Model parameter-based R0 for high efficacy case
We prescribe the same parameter regime used in part (a) above, but note that

here ξ = 0. Thus, N = 40000, sp = 2/N, n = 4, τ = 1 day−1, τp = 0.0025 day−1,
σ = 0.25 day−1 and ρ = 0.25 day−1. We cancel out parts of Equation (22) that are
numerically less significant so that the expression of the basic reproduction number
becomes

R0 ≈
τnχ+

√(
τ2n2χ+ 4τpρn

)
χ

2σ
, (23)

where

χ ≈
τ(n− 2)− ρ+

√
τ2(n− 2)2 − 2τρ(n− 2) + ρ2 + 4ττp(n− 1)

2τn
.

Scenarios considered for the development of the above expressions of the basic
reproduction number, are summarized in Table 1.

REFERENCES

[1] K. A. Alexander and J. W. McNutt, Human behavior influences infectious disease emergence
at the human-animal interface, Frontiers in Ecology and the Environment, 8 (2010), 522–526.

[2] M. C. Auld, Estimating behavioral response to the AIDS epidemic, Contributions to Economic

Analysis and Policy, 5 (2006), Art.12.
[3] N. Bacaer, Approximation of the basic reproduction number for vector-borne disease with

periodic vector population, Bulleting of Mathematical Biology, 69 (2007), 1067–1091.

[4] C. T. Bauch, A versatile ODE approximation to a network model for the spread of sexually
transmitted diseases, Journal of Mathematical Biology, 45 (2002), 375–395.

[5] C. T. Bauch, The spread of infectious diseases in spatially structured populations: An invasory

pair approximation, Mathematical Biosciences, 198 (2005), 217–237.
[6] C. T. Bauch, A. d’Onofrio and P. Manfredi, Behavioral epidemiology of infectious diseases:

An overview, Modeling the interplay between human behavior and the spread of infectious

diseases, Springer-Verlag, (2013), 1–19.
[7] C. T. Bauch and A. P. Galvani, Using network models to approximate spatial point-process

models, Mathematical Biosciences, 184 (2003), 101–114.

http://www.ams.org/mathscinet-getitem?mr=MR2295844&return=pdf
http://dx.doi.org/10.1007/s11538-006-9166-9
http://dx.doi.org/10.1007/s11538-006-9166-9
http://www.ams.org/mathscinet-getitem?mr=MR1942371&return=pdf
http://dx.doi.org/10.1007/s002850200153
http://dx.doi.org/10.1007/s002850200153
http://www.ams.org/mathscinet-getitem?mr=MR2187875&return=pdf
http://dx.doi.org/10.1016/j.mbs.2005.06.005
http://dx.doi.org/10.1016/j.mbs.2005.06.005
http://www.ams.org/mathscinet-getitem?mr=MR3025958&return=pdf
http://dx.doi.org/10.1007/978-1-4614-5474-8_1
http://dx.doi.org/10.1007/978-1-4614-5474-8_1
http://dx.doi.org/10.1007/978-1-4614-5474-8_1
http://www.ams.org/mathscinet-getitem?mr=MR1983822&return=pdf
http://dx.doi.org/10.1016/S0025-5564(03)00042-7
http://dx.doi.org/10.1016/S0025-5564(03)00042-7


482 NOTICE RINGA AND CHRIS T. BAUCH

Table 1. Summary of expressions of the basic reproduction num-
ber R0 developed in this paper

(a) General expression of R0 Equation (10)
(b) Expression of R0 used in simulation results in this manuscript:
obtained by assuming that initially the proportion of susceptible
individuals who practice NPIs is very small sp ≈ O(1/N) Equation (17)
(c) Simplification of R0 in Part (b) above by further assumptions:
adoption of NPIs is through social learning only (i.e. ξ > 0, ρ = 0);
once adopted NPIs are practised consistently (i.e. κ = 0); at initial
stage there is 1 state I with 1 state Sp contact who has 1 state Sp,
and the rest of the population is of state S Equation (18)
(d) Simplification of R0 in Part (c) above by a further assumption:
high efficacy NPIs (i.e. τp ≈ 0) Equation(19)
(e) Simplification of R0 in Part (d) above by cancelling out
insignificant terms dependent on the parameter regine: N = 40000;
initially sp = 2/N ; n = 4; τ = 1; τp = 0.0025; σ = 0.25; ξ = 0.25 Equation (20)

(f) Simplification of R0 in Part (b) above by further assumptions:
adoption of NPIs is through exposure learning only (i.e. ξ = 0, ρ > 0);
other conditions are as in Part (c) above Equation(21)
(g) Simplification of R0 in Part (f) above by a further assumption:
high efficacy NPIs (i.e. τp ≈ 0) acquired through exposure learning only Equation (22)
(h) Simplification of R0 in Part (g) above by cancelling out
insignificant terms dependent on the parameter regine: N = 40000;
initially sp = 2/N ; n = 4; τ = 1; τp = 0.0025; σ = 0.25; ξ = 0.25 Equation (23)

[8] C. T. Bauch and D. A. Rand, A moment closure model for sexually transmitted disease

transmission through a concurrent partnership network, The Royal Society, 267 (2000), 2019–

2027.
[9] J. Benoit, A. Nunes and M. Telo da Gama, Pair approximation models for disease spread,

The European Physical Journal B , 50 (2006), 177–181.

[10] K. Dietz, The estimation of the basic reproduction number for infectious diseases, Statistical
Methods in Medical Research, 2 (1993), 23–41.

[11] S. P. Ellner, Pair approximation for lattice models with multiple interaction scales, Journal
of Theoretical Biology, 210 (2001), 435–447.

[12] E. P. Fenichel, C. Castillo-Chavez, M. G. Geddia, G. Chowell, P. A. Gonzalez Parra, G. J.

Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings, M. Springborn, L. Velazquez and C.
Villalobos, Adaptive human behavior in epidemiological models, Proceedings of the National

Academy of Sciences, 108 (2011), 6306–6311.

[13] N. M. Ferguson, C. A. Donnelly and R. M. Anderson, The foot and mouth epidemic in Great
Britain: pattern of spread and impact of interventions, Science, 292 (2001), 1155–1160.

[14] M. J. Ferrari, S. Bansal, L. A. Meyers and O. N. Bjφrnstad, Network frailty and the geometry
of head immunity, Proceedings of the Royal Society B, 273 (2006), 2743–2748.

[15] S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact

on epidemic outbreaks, Proceedings of the National Academy of Sciences, 106 (2009), 6872–

6877.
[16] R. J. Glass, L. M. Glass, W. E. Beyeler and H. J. Min, Targeted social distancing designs for

pandemic influenza, Emerging Infectious Diseases, 12 (2016), 1671–1681.
[17] D. Hiebeler, Moment equations and dynamics of a household SIS epidemiological model,

Bulletin of Mathematical Biology, 68 (2006), 1315–1333.

[18] M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proceedings
of The Royal Society of London B , 266 (1999), 859–867.

[19] M.J. Keeling, D. A. Rand and A. J. Morris, Correlation models for childhood epidemics,

Proceedings of The Royal Society of London B , 264 (1997), 1149–1156.
[20] J. Li, D. Blakeley and R. J. Smith?, The failure of R0, Computational and Mathematical

Methods in Medicine, 12 (2011), 1–17.

[21] C. N. L. Macpherson, Human behavior and the epidemiology of parasitic zoonoses, Interna-
tional Journal for Parasitology, 35 (2005), 1319–1331.

[22] S. Maharaj and A. Kleczkowski, Controlling epidemic spread by social distancing: Do it well

or not at all, BMC Public Health, 12 (2012), p679.
[23] L. Mao and Y. Yang, Coupling infectious diseases, human preventive behavior, and networks–

a conceptual framework for epidemic modeling, Social Science Medicine, 74 (2012), 167–175.

http://dx.doi.org/10.1098/rspb.2000.1244
http://dx.doi.org/10.1098/rspb.2000.1244
http://dx.doi.org/10.1140/epjb/e2006-00096-x
http://dx.doi.org/10.1177/096228029300200103
http://dx.doi.org/10.1006/jtbi.2001.2322
http://dx.doi.org/10.1073/pnas.1011250108
http://dx.doi.org/10.1126/science.1061020
http://dx.doi.org/10.1126/science.1061020
http://dx.doi.org/10.1073/pnas.0810762106
http://dx.doi.org/10.1073/pnas.0810762106
http://www.ams.org/mathscinet-getitem?mr=MR2249752&return=pdf
http://dx.doi.org/10.1007/s11538-006-9080-1
http://dx.doi.org/10.1098/rspb.1999.0716
http://dx.doi.org/10.1098/rspb.1997.0159
http://www.ams.org/mathscinet-getitem?mr=MR2821972&return=pdf
http://dx.doi.org/10.1186/1471-2458-12-679
http://dx.doi.org/10.1186/1471-2458-12-679
http://dx.doi.org/10.1016/j.socscimed.2011.10.012
http://dx.doi.org/10.1016/j.socscimed.2011.10.012


MODELLING DISEASE-BEHAVIOR INTERACTIONS 483

[24] J. P. McGowan, S. S. Shah, C. E. Ganea, S. Blum, J. A. Ernst, K. L. Irwin, N. Olivo and P.
J. Weidle, Risk behavior for transmission of Human Immunodeficiency Virus (HIV) among

HIV- seropositive individuals in an urban setting, Clinical Infectious Diseases, 38 (2004),

122–127.
[25] T. Modie-Moroka, Intimate partner violence and sexually risky behavior in Botswana: Impli-

cations for HIV prevention, Health Care for Women International , 30 (2009), 230–231.
[26] S. S. Morse, Factors in the emergence of infectious diseases, Factors in the Emergence of

Infectious Diseases, (2001), 8–26.

[27] S. Mushayabasa, C. P. Bhunu and M. Dhlamini, Impact of vaccination and culling on control-
ling foot and mouth disease: A mathematical modeling approach, World of Journal Vaccines,

1 (2011), 156–161.

[28] S. O. Oyeyemi, E. Gabarron and R. Wynn, Ebola, Twitter, and misinformation: A dangerous
combination?, British Medical Journal , 349 (2014), g6178.

[29] P. E. Parham and N. M. Ferguson, Space and contact networks: Capturing of the locality of

disease transmission, Journal of Royal Society, 3 (2005), 483–493.
[30] P. E. Parham and B. K. Singh and N. M. Ferguson, Analytical approximation of spatial

epidemic models of foot and mouth disease, Theoretical Population Biology, 72 (2008), 349–

368.
[31] F. M. Pillemer, R. J. Blendon, A. M. Zaslavsky and B. Y. Lee, Predicting support for non-

pharmaceutical interventions during infectious outbreaks: A four region analysis, Disasters,
39 (2014), 125–145.

[32] D. A. Rand, Correlation equations and pair approximations for spatial ecologies, CWI Quar-

terly, 12 (1999), 329–368.
[33] C. T. Reluga, Game theory of social distancing in response to an epidemic, Plos Computa-

tional Biology, 6 (2010), e1000793, 9pp.

[34] N. Ringa and C. T. Bauch, Dynamics and control of foot and mouth disease in endemic
countries: A pair approximation model, Journal of Theoretical Biology, 357 (2014), 150–159.

[35] A. Rizzo and M. Frasca and M. Porfiri, Effect of individual behavior on epidemic spreading

in activity-driven networks, Physical Review E , 90 (2014), 042801.
[36] M. Salathe and S. Bonhoeffer, The effect of opinion clustering on disease outbreaks, Journal

of The Royal Society Interface, 5 (2008), 1505–1508.

[37] L. B. Shaw and I. B. Schwartz, Fluctuating epidemics on adaptive networks, Physical Review
E , 77 (2008), 066101, 10pp.

[38] R. L. Stoneburner and D. Low-Beer, Population-level HIV decline and behavioral risk avoid-
ance in Uganda, Science, 304 (2004), 714–718.

[39] R. R. Swenson, W. S. Hadley, C. D. Houck, S. K. Dance and L. K. Brown, Who accepts a

rapid HIV antibody test? The role of race/ethnicity and HIV risk behavior among community
adolescents, Journal of Adolescent Health, 48 (2011), 527–529.

[40] J. M. Tchuenche and C. T. Bauch, Dynamics of an infectious disease where media coverage
influences transmission, ISRN Biomathematics, 2012 (2012), Article ID 581274, 10pp.

Received October 20, 2016; Accepted May 05, 2017.

E-mail address: ringan@biust.ac.bw

E-mail address: cbauch@uwaterloo.ca

http://dx.doi.org/10.1086/380128
http://dx.doi.org/10.1086/380128
http://dx.doi.org/10.1080/07399330802662036
http://dx.doi.org/10.1080/07399330802662036
http://dx.doi.org/10.1057/9780230524248_2
http://dx.doi.org/10.1136/bmj.g6178
http://dx.doi.org/10.1136/bmj.g6178
http://dx.doi.org/10.1098/rsif.2005.0105
http://dx.doi.org/10.1098/rsif.2005.0105
http://www.ams.org/mathscinet-getitem?mr=MR2659804&return=pdf
http://dx.doi.org/10.1371/journal.pcbi.1000793
http://www.ams.org/mathscinet-getitem?mr=MR3232528&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2014.05.010
http://dx.doi.org/10.1016/j.jtbi.2014.05.010
http://dx.doi.org/10.1103/PhysRevE.90.042801
http://dx.doi.org/10.1103/PhysRevE.90.042801
http://dx.doi.org/10.1098/rsif.2008.0271
http://www.ams.org/mathscinet-getitem?mr=MR2496146&return=pdf
http://dx.doi.org/10.1103/PhysRevE.77.066101
http://dx.doi.org/10.1126/science.1093166
http://dx.doi.org/10.1126/science.1093166
http://dx.doi.org/10.1016/j.jadohealth.2010.08.013
http://dx.doi.org/10.1016/j.jadohealth.2010.08.013
http://dx.doi.org/10.1016/j.jadohealth.2010.08.013
http://dx.doi.org/10.5402/2012/581274
http://dx.doi.org/10.5402/2012/581274
mailto:ringan@biust.ac.bw
mailto:cbauch@uwaterloo.ca

	1. Introduction
	2. Model
	2.1. The basic reproduction number

	3. Results
	3.1. Dependence of R0 on model parameters and network configuration
	3.2. Numerical analysis of pair approximation differential equations

	4. Discussion
	Appendix
	Derivation of the equation of motion for [SI]
	Derivation of the basic reproduction number

	REFERENCES

