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Departamento de Matemáticas y Estad́ıstica
Facultad de Ciencias Exactas y Naturales

Universidad de Nariño, Calle 18 Cra 50, Pasto, Colombia

Lourdes Esteva
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Departamento de Bioloǵıa, Facultad de Ciencias Exactas y Naturales
Universidad de Nariño, Calle 18 Cra 50, Pasto, Colombia

(Communicated by Abba Gumel)

Abstract. In this work we formulate a model for the population dynamics of

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB).

Our main interest is to assess the impact of the competition among bacteria
on the infection prevalence. For this end, we assume that Mtb population has

two types of growth. The first one is due to bacteria produced in the interior

of each infected macrophage, and it is assumed that is proportional to the
number of infected macrophages. The second one is of logistic type due to the

competition among free bacteria released by the same infected macrophages.

The qualitative analysis and numerical results suggests the existence of forward,
backward and S-shaped bifurcations when the associated reproduction number

R0 of the Mtb is less unity. In addition, qualitative analysis of the model

shows that there may be up to three bacteria-present equilibria, two locally
asymptotically stable, and one unstable.

1. Introduction. Tuberculosis (TB) is an infectious disease whose etiological agent
is the Mycobacterium tuberculosis (Mtb), in 2015 was one of top 10 causes of death
worldwide and it is the second leading cause of death due to communicable diseases,
preceded only by the human immunodeficiency virus (HIV). From 2014 to 2015 the
rate of decline in TB incidence was 1.5%, although the battle against the tuberculo-
sis epidemic is gaining WHO established that is necessary to accelerate to a 4− 5%
annual decline by 2020 to reach the first milestones of the End TB Strategy [37].

In 2015, there were an estimated 10.4 million new (incident) TB cases worldwide,
1.4 million TB deaths and an additional 0.4 million deaths resulting from TB disease
among people living with HIV. Without treatment, the death rate from TB is high.
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Studies of the natural history of TB disease in the absence of treatment with anti-
TB drugs (that were conducted before drug treatments became available) found
that about 70% of people with sputum smear-positive pulmonary TB died within
10 years, as did about 20% of people with culture-positive (but smear-negative)
pulmonary TB [37].

Most of the infected individuals with Mtb are capable to control the infection
and remain in a latent stage in which they cannot transmit the disease. It is
estimated that about one third of the world population has latent TB, and around
10% of the infected population develop the active form of the illness, whether in
short-term (primary infection) or long-term (reactivation) [36]. Factors associated
to reactivation are malnutrition, diabetes, tobacco, HIV and immune compromised
situations.

The Mtb bacteria may affect different tissues of the organism, but the most
common form of the disease is pulmonary TB. In the lung, Mtb is restricted to
discrete sites of infection called granulomas which are well-organized, dynamical
structures formed at the site of the bacteria and mediated by specific immune
responses during the infection process. The granuloma formation process starts
shortly after infection, when the inhaled Mtb is ingested and transported across the
alveolar epithelium into the lung tissue and adjacent lymph nodes.

A granuloma is composed of immune cells at various stages of differentiation
with the infected macrophages forming the centre of the cellular accumulation.
The recruited T cells secrete cytokines that activate infected cells to control their
mycobacterial load and activate cytotoxic T cells. The cellular composition of TB
granulomatous lesions includes blood-derived infected and uninfected macrophages,
foamy macrophages, epithelioid cells (uniquely differentiated macrophages), and
multinucleated giant cells (Langerhans cells), B and T lymphocytes, and fibroblasts
[10, 25, 26].

A characteristic of the granulomas is the formation of caseous centre contain-
ing necrotic tissue, cell debris and killed mycobacteria. Bacteria are found within
macrophages (intracellular bacteria) and within the zone between the necrotic cen-
tre and the cellular wall of the granuloma (extracellular bacteria) [7].

The value of an experimental model of mycobacterial persistence has at least two-
fold: to uncover fundamental processes associated with clinical latency, and to guide
new interventions, diagnostics, antibiotics, and vaccines, to detect, manage, and
prevent disease [3, 32]. Unfortunately, despite extensive studies on the interactions
between Mtb and macrophages, and the granuloma formation, the mechanisms by
which pathogen evades anti-microbial responses and establishes persistence within
the host cell is not well understood [10].

Numerous theoretical studies have been done to understand the information
available on Mtb infection, both from the point of view epidemiological as im-
mune. To this respect, diverse mathematical models have been proposed to as-
sess the impact on the infection progression of factors like Mtb population dy-
namics, immune system, treatment, and bacterial resistance. See for example
[1, 2, 4, 5, 6, 8, 18, 35, 22, 21, 24, 29, 30].

In particular, in this work we propose a model to evaluate the impact of Mtb
growth on the outcome of infection . For this end, we formulate a model that
takes into account two ways of bacterial growth, the first one results of the average
number of bacteria produced in the interior of an infected macrophage, and the
other of logistic type that takes into account the competition to infect a macrophage
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between the outer bacteria. This model is a continuation of previous studies given
in [13, 14, 15, 16], and its content is organized in the following way: in the second
section we formulate the mathematical model. In the third and fourth sections we
do the qualitative analysis of the model. Finally, in the fifth, sixth and seventh
sections we present the sensitivity analysis, numerical results and the discussion.

2. Model formulation. Following [13], we denote by M̄U (t), M̄I(t), B̄(t), and
T̄ (t) the populations densities at time t of non infected macrophages, infected
macrophages, bacilli Mtb, T cells, respectively.

We assume that non infected macrophages are recruited at a constant rate ΛU ,
become infected at a rate βM̄U B̄, and are removed at a per capita constant rate
µU .

dM̄U

dt
= ΛU − µUM̄U − β̄B̄M̄U . (1)

Infected macrophages grow at a rate βM̄U B̄, die at a per capita constant rate
µI ≥ µU , and are eliminated by T cells at rate proportional to the product of M̄I

and T̄ , with proportionality constant ᾱT .

dM̄I

dt
= β̄B̄M̄U − ᾱT M̄I T̄ − µIM̄I (2)

Mtb population grows inside of an infected macrophage up to a limit where the
macrophage dies and releases bacteria. Accordingly to this, we assume that growth
rate of Mtb inside macrophages is given by r̄µIM̄I , where r̄ is the average number
of bacilli produced by an infected macrophage. The released bacteria begin to
spread outside the macrophage and start to compete among themselves by infecting
new macrophages. Therefore, we assume that outside the macrophage, the Mtb
population has a logistic growth with intrinsic reproduction rate ν, and carrying
capacity K. Finally, we assume that bacteria die at a per capita constant rate
µB ≥ ν, and that non infected macrophages eliminate Mtb at a rate γ̄UM̄U B̄, with
proportionality constant γ̄U .

dB̄

dt
= r̄µIM̄I + ν

(
1− B̄

K

)
B̄ − γ̄UM̄U B̄ − µBB̄ (3)

T cells are recruited up to a maximum number Tmax at a proportional rate to the
number of infected macrophages with proportionality constant kI , and they die at
a per capita constant rate µT .

dT̄

dt
= k̄I

(
1− T̄

Tmax

)
M̄I − µT T̄ . (4)

Figure 1 shows the flow diagram of macrophages, T cells and bacteria described in
the differential equations (1)-(4). In order to reduce the number of parameters we
introduce the following change of variables:

MU =
M̄U

ΛU/µU
, MI =

M̄I

ΛU/µU
, B =

B̄

K
, T =

T̄

Tmax
. (5)

Replacing the new variables the system (1)-(4) becomes

dMU

dt
= µU − µUMU − βBMU

dMI

dt
= βBMU − αTMIT − µIMI
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T̄ B̄

M̄U M̄I

µU M̄U µIM̄I

µT T̄ µBB̄

ΛU βB̄M̄U ᾱT M̄I T̄

k̄I

(
1 − T̄ /Tmax

)
M̄I γ̄U M̄U B̄

ν
(
1 − B̄/K

)
B

r̄µIM̄I

Figure 1. The flow diagram of macrophages, T cells and bacteria

dB

dt
= rMI + ν (1−B)B − γUMUB − µBB

dT

dt
= kI (1− T )MI − µTT, (6)

where

αT = ᾱTTmax, β = β̄K, γU = γ̄U
ΛU
µU

, r =
r̄

K
µI

ΛU
µU

, kI =
k̄IΛU
µU

. (7)

It is a simple matter to verify that system (6) satisfies the existence and uniqueness
conditions. Moreover, the region of biological interest is given by

Ω =




MU

MI

B
T

 ∈ R4 : 0 ≤MU ,MI ≤ 1, 0 ≤MU +MI ≤ 1, 0 ≤ B ≤ BM , 0 ≤ T ≤ Tc

 ,

(8)

where Tc =
kI

kI + µT
, and BM =

1 +
√

1 + 4r/ν

2
.

The following lemma establishes that system (6) is well posed in the sense that
solutions with initial conditions in Ω remain there for all t ≥ 0.

Lemma 2.1. The set Ω defined by (8) is positively invariant for system (6).

The proof is similar to the one given in Lemma 1 of [14].

3. Equilibrium solutions. The equilibria of system (6) are given by the solutions
of the following algebraic system

µU − µUMU − βBMU = 0

βBMU − αTMIT − µIMI = 0

rMI + ν (1−B)B − γUMUB − µBB = 0

kI (1− T )MI − µTT = 0. (9)



GROWTH OF MYCOBACTERIUM TUBERCULOSIS IN THE GRANULOMA 411

It is clear that P0 = (1, 0, 0, 0) is an equilibrium of system (6) which represents the
state of non infection. The solutions of (9) with B 6= 0 are called the bacteria-
present equilibria, and correspond to the chronic infection state. In order to find
these equilibria, we start to solving MU and T from the first and fourth equations
of (9):

MU =
µU

µU + βB
and T =

kIMI

kIMI + µT
. (10)

Replacing MU defined by (10) in the second equation of (9) we get

MI =
βBµU

(µU + βB)(αTT + µI)
, (11)

which is equivalent to

MI =

(
βB

µU + βB

)(
µI

αTT + µI

)
µU
µI
.

We observe that 0 ≤MU ≤ 1 and 0 ≤ T ≤ 1, and since µI ≥ µU , then 0 ≤MI ≤ 1.
Replacing the expression for T given by (10) in (11) we get

MI =
βBµU (kIMI + µT )

(µU + βB) [(αT + µI)kIMI + µIµT ]
. (12)

From (12) we obtain the following quadratic equation

M2
I + b(B)MI − c(B) = 0, (13)

where

b(B) =
µIµT

(αT + µI)kI
− βBµU

(αT + µI)(µU + βB)

c(B) =
µTβBµU

kI(αT + µI)(µU + βB)
. (14)

Since c(B) > 0, the only positive solution of (13) is

MI = ḡ1(B) =
−b(B) +

√
[b(B)]2 + 4c(B)

2
. (15)

Now, replacing MU defined in (10) in the third equation of (9), and solving for MI

we obtain

MI =

[
βνB2 + (µUν − βν + βµB)B + µU (γU + µB)(1−R0)

]
B

r(µU + βB)
, (16)

with

R0 =
ν

γU + µB
. (17)

Equation (16) can be written as

MI = ḡ2(B) =
βν
[
B2 +

γU
ν

(σ − σc)B + µU (βR0)
−1

(1−R0)
]
B

r(µU + βB)
, (18)

with

σ =
νµU
γUβ

and σc =
ν − µB
γU

. (19)
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Let us observe that ḡ1, and ḡ2 are two different expression for MI , to study the
intersections of above functions is important to determine the intersections of the
functions:

g1(B) = r(µU + βB)ḡ1(B)

g2(B) =
[
βνB2 + (µUν − βν + βµB)B + µU (γU + µB)(1−R0)

]
B.

(20)

From (20) we obtain that g1(0) = g2(0), in addition since ḡ1 defined in (15) is
positive and strictly increasing, then g1 is positive, strictly increasing, and concave.
The following proposition establishes some obvious properties of g1 and g2.

Proposition 1. The functions g1 and g2 intersect in B = 0. Also, g1 is positive,
strictly increasing, and concave in the first quadrant.

The roots of the cubic polynomial g2 are B = 0, and

B± =

−γU
ν

(σ − σc)±
√[

γU
ν (σ − σc)

]2 − 4µUR
−1
0 (1−R0)

β

2
. (21)

Furthermore, we see that the derivatives of g1 y g2 are given by

g′1(B) = rβg1(B) +
r(µU + βB)

2

[
−b′(B) +

b(B)b′(B) + 2c′(B)√
[b(B)]2 + 4c(B)

]

g′2(B) = βν

[
3B2 + 2

γU
ν

(σ − σc)B +
µU
β
R−1

0 (1−R0)

]
. (22)

From (22) we obtain

g′1(0) =
rµUc

′(0)

b(0)
=
rµUβ

µI

g′2(0) = νµU

(
1

R0
− 1

)
. (23)

Observe that
g′1(0)− g′2(0) = µU (γU + µB)(R0 +R1 − 1),

where

R1 =
rβ

µI(γU + µB)
. (24)

In order to have a biological interpretation of the existence results for the bacteria-
present equilibria in terms of dimensionless variables, in addition to R0, and R1, we
introduce the following parameters (the significance of each of these parameters is
given in section 3.1).

RB =
ν

µB
, Rβ =

β

µI
, RγU =

γU
µB

. (25)

In terms of the above parameters, σ and σc defined in (19) can be rewritten as

σ =
µU
µI

RB
RβRγU

, and σc =
RB − 1

RγU
. (26)

Furthermore, when RB > 1 we have the following results:

1. σ < σc is equivalent to Rβ > ρ
2. σ = σc is equivalent to Rβ = ρ
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3. σ > σc is equivalent to Rβ < ρ,

where

ρ =
µU
µI

RB
RB − 1

.

To analyze the existence of bacteria-present equilibria, we consider two cases, R0 ≥
1, and R0 < 1. For the first case we have the following result:

Proposition 2. If R0 ≥ 1, there exists a unique bacteria-present equilibrium.

Proof. Assume first R0 > 1. From (21) we see that in this case the non zero roots
of g2 satisfy B+ > 0 and B− < 0. Also, g1 is concave and g2 is convex in the first
quadrant, g′1(0) > 0, g′2(0) < 0, limB→∞ g1(B) = ∞, and limB→∞ g2(B) = ∞. All
these conditions imply that g1 and g2 intersect only once in the positive quadrant.
For R0 = 1 we have

B± =
−γU
ν

(σ − σc)±
∣∣∣γU
ν

(σ − σc)
∣∣∣

2
.

Then, for σ < σc, B
+ = 0 and B− > 0, when σ = σc, B

± = 0 and for σ > σc,
B+ < 0 and B− = 0. In all cases it is easy to verify form the qualitative behavior
of g1 y g2 that these functions have only one positive intersection for R0 = 1.

In the case R0 < 1 we have the following results.

Proposition 3. Assume R0 < 1 and Rβ ≤ ρ. If R0 + R1 ≥ 1, there is a unique
bacteria-present equilibrium, an none if R0 +R1 < 1.

Proof. The assumptions of the proposition are equivalent to 1 − R0 > 0, and σ −
σc ≥ 0, which in turn imply that g2 is positive and strictly increasing in the first
quadrant. It follows that both g1 and g2 are strictly increasing positive functions
with g1(0) = g2(0) = 0, and the existence of a unique intersection in the first
quadrant will depend only on their derivatives evaluated at B = 0. Since g1 and
g2 are respectively convex and concave functions, we conclude that g1 and g2 have
a unique positive intersection if and only if g′1(0) ≥ g′2(0). Since this inequality is
equivalent to R0 +R1 ≥ 1, we have proved the proposition.

In the following we will assume RB > 1, Rβ > ρ (or equivalent σ < σc), and
R0 < 1. Now, B± defined in (21) are positive real zeros if and only if[γU

ν
(σ − σc)

]2
− 4µUR

−1
0 (1−R0)

β
≥ 0,

or equivalently, R0 ≥ R∗0, where

R∗0 =
1

1 + β
4µU

[
γU
ν (σ − σc)

]2 .
When σ < σc, and R0 < 1, then g′2(0) > 0 and g′′2 (0) = 2βγU (σ − σc) < 0, which
implies g2 increasing and concave in B = 0. Also since g2 intersects the B-axis in
the positive quadrant, it gets its maximum and minimum in two positive values of
B denoted by Bmax and Bmin respectively. This implies the following result:

Proposition 4. Assume R∗0 ≤ R0 < 1 and Rβ > ρ then

1. If R0+R1 ≤ 1, g1 and g2 intersect twice in the positive quadrant, and therefore
there exist two bacteria-present equilibria.
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2. If R0 + R1 > 1 and g1(Bmax) > g2(Bmax), then g1 and g2 have only one
positive intersection, and therefore only one bacteria-present equilibrium.

3. If R0 + R1 > 1 and g1(Bmax) < g2(Bmax), then g1 y g2 have three positive
intersections, and therefore three bacteria-present equilibria.

Now, if R0 < R∗0 the roots B± are complex, however since g2 is increasing and
concave in B = 0, then it gets its local maximum and minimum Bmax and Bmin

respectively. This implies similar results to the ones in Proposition 4.

Proposition 5. Assume R0 < R∗0 < 1, RB > 1, and Rβ > ρ then

1. If R0 + R1 ≤ 1 and g1(Bmin) < g2(Bmin), then g1 and g2 have no positive
intersection, and therefore there is no bacteria-present equilibrium.

2. If R0 + R1 ≤ 1, g1(Bmin) > g2(Bmin) and g1(Bmax) < g2(Bmax), g1 y g2

intersect twice in the positive quadrant, and there are two bacteria-present
equilibria.

3. If R0 + R1 > 1 and g1(Bmin) < g2(Bmin), then g1 and g2 have only one
positive intersection, and therefore only one bacteria-present equilibrium.

4. If R0 +R1 > 1, g1(Bmin) > g2(Bmin) and g1(Bmax) < g2(Bmax), then g1 y g2

have three positive intersections and, therefore three bacteria-present equilib-
ria.

5. If R0 + R1 > 1 and g1(Bmax) > g2(Bmax), then g1 and g2 intersect in one
positive point, and there is only one bacteria-present equilibrium.

3.1. Interpretation of the bifurcation parameters. In this section we will give
a biological interpretation of the parameters RB , Rβ , RγU , R0 and R1 defined in
the section above.

In the formulation of the model is not consider the explicit distinction between
internal and external bacteria. However, for the purposes of interpretation we will
denote interior (exterior) bacteria the ones in the interior (exterior) of the infected
macrophages. In this sense, the product between the average number of bacteria
produced by an infected macrophage, r̄, times the rate of infection β̄ is interpreted
as the growth rate of the interior or intracellular bacteria, while the logistic growth
rate ν is the the growth rate of external or extracellular bacteria. Under these
considerations, and knowing that 1/µB is the average life expectancy of bacteria,

RB =
ν

µB
(27)

represents the average number of bacteria generated by an exterior Mtb.
On the other hand, in a healthy organism, the population of uninfected

macrophages is given by ΛU/µU , and this population eliminates invasive bacteria
at a rate γU = γ̄UΛU/µU , thus

RγU =
γU
µB

=
γ̄U

ΛU
µU

µB
, (28)

represents the average number of invasive bacteria eliminated during their lifetime.
Therefore, this number is a measure of the effectiveness of macrophages in control-
ling bacteria.

Now, once infected, a macrophage on average generates K/µI bacteria, which in
turn infect β̄K/µI macrophages. Therefore, the parameter

Rβ =
β̄K

µI
=

β

µI
, (29)
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is named the Basic Reproductive Number of the infection since it represents the
average number of infected macrophages derived from one infected macrophage
when bacteria is introduced for the first time into the organism.

We notice that the parameter R0 defined in (19) can be rewritten in terms of RB
as

R0 =
ν

γU + µB
= F (γU )RB , (30)

where
F (γU ) =

µB
γU + µB

= 1− γU
γU + µB

. (31)

Since γU = γ̄U
ΛU
µU

represents the rate at which non infected macrophages eliminate

bacteria, then can be interpreted as the fraction of invasive bacteria eliminated by
macrophages. From (31) we conclude that F is equal to the bacteria fraction that
survive macrophage attack. Therefore, R0 represents the bacteria produced by the
fraction of external bacteria that survive to macrophages attack, and it is called the
Associate Reproductive Number.

Finally, we see that

R1 =
rβ

µI(γU + µB)
=

r̄β̄K

γU + µB

ΛU
µU

,

can be interpreted as the bacteria produced by the fraction of internal bacteria that
survive to the control of the population of infected macrophages at equilibrium.

4. Stability of equilibrium solutions. In this section we analyze conditions for
stability of the equilibrium points. For this, we calculate the eigenvalues relative to
the Jacobian of system (6) evaluated at the equilibrium points, given by

J


MU

MI

B
T

 =


−(µU + βB) 0 −βMU 0

βB −(αTT + µI) βMU −αTMI

−γUB r a 0
0 (1− T )kI 0 −(kIMI + µT )

 ,

(32)
where

a = ν

(
1− 2B

K

)
− γUMU − µB . (33)

For the infection free equilibrium P0 = (1, 0, 0, 0), the Jacobian is given by

J (P0) =


−µU 0 −β 0

0 −µI β 0
0 r ν − (γU + µB) 0
0 kI 0 −µT

 . (34)

Simple calculations show that the eigenvalues are given by λ1 = −µU , λ2 = −µT ,
and the roots of the quadratic equation

λ2 + [µI + γU + µB − ν]]λ+ µI(γU + µB)[1− (R0 +R1)] = 0

or equivalently

λ2 + [µI + (γU + µB)(1−R0)]]λ+ µI(γU + µB)[1− (R0 +R1)] = 0. (35)

From Routh-Hurwitz criterion we conclude that all the eigenvalues of the equation
(35) have negative real part if and only if R0 + R1 < 1. Therefore we have the
following
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Proposition 6. The infection free equilibrium P0 = (1, 0, 0, 0) is locally asymptot-
ically stable if R0 +R1 < 1, and unstable when R0 +R1 > 1.

Now, we analyze the stability of bacteria-present equilibria which reflects the
infection persistence. From the equations at equilibrium (9) we get the following
equalities

µU
MU

= µU + βB

βBMU

MI
= αTT + µI

ν (1− 2B)− γUMU − µB = −
(
rMI

B
+ νB

)
kIMI

T
= kIMI + µT . (36)

Replacing (36) in (34) we obtain

J (Pi) =



− µU
MU

0 −βMU 0

βB −βBMU

MI
βMU −αTMI

−γUB r −
(
rMI

B
+ νB

)
0

0 (1− T )kI 0 −kIMI

T


. (37)

To get the conditions for negative eigenvalues of J(Pi), i = 1, 2, 3, we obtain after
tedious calculations its characteristic polynomial given by

p1(λ) =

(
λ+

µU
MU

)(
λ+

βBMU

MI

)(
λ+

rMI

B
+ νB

)(
λ+

kIMI

T

)
+rβMU

(
λ+

kIMI

T

)[
βB −

(
λ+

µU
MU

)]
+βMUαTMI(1− T )kI

(
λ+

rMI

B
+ νB

)(
λ+

µU
MU

)
−βMUγUB

[(
λ+

βBMU

MI

)(
λ+

kIMI

T

)
+ αTMI(1− T )kI

]
= λ4 + s1λ

3 + s2λ
2 + s3λ+ s4, (38)

where

s1 =
µU

MU
+
βBMU

MI
+
rMI

B
+ νB +

kIMI

T

s2 =

(
rMI

B
+ νB

)
kIMI

T
+

µU

MU

βBMU

MI
+

(
µU

MU
+
βBMU

MI

)(
rMI

B
+ νB +

kIMI

T

)
+βMUαTMI(1− T )kI − rβMU − βMUγUB

s3 =
µU

MU

βBMU

MI

(
rMI

B
+ νB +

kIMI

T

)
+

(
rMI

B
+ νB

)
kIMI

T

(
µU

MU
+
βBMU

MI

)
+βMUαTMI(1− T )kI

(
rMI

B
+ νB +

µU

MU

)
+ rβMUγUB

−rβMU

(
µU

MU
+
kIMI

T

)
− βBγUMU

(
βBMU

MI
+
kIMI

T

)
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s4 =
µU

MU

βBMU

MI

(
rMI

B
+ νB

)
kIMI

T
+ αTMI(1− T )kI

(
rMI

B
+ νB

)
µU

MU

+rβMUβB
kIMI

T
− βMUγUB

βBMU

MI

kIMI

T
− βMUγUBαTMI(1− T )kI

−rβMU
µU

MU

kIMI

T
. (39)

The coefficient s1 > 0 since all the parameters are positive. We rewrite the other
coefficients as:

s2 =
βBMU

MI

(
µU
MU

+ νB +
kIMI

T

)
+
kIMI

T

(
µU
MU

+
rMI

B
+ νB

)
+
µU
MU

rMI

B
+ βMUαTMI(1− T )kI +

βγUB

MU

(
σ −M2

U

)
s3 =

(
βBMU

MI
+
kIMI

T

)
βγUB

MU

(
σ −M2

U

)
+ rβMUβB

+
rMI

B

(
µU
MU

kIMI

T
+ βBαTMI(1− T )kI

)
+

[
βBMU

MI

kIMI

T
+ βBαTMI(1− T )kI

](
µU
MU

+ νB

)
s4 =

[
βBMU

MI

kIMI

T
+ αT kIMI(1− T )

]
βγUB

MU

(
σ −M2

U

)
+αTMI(1− T )kI

µU
MU

rMI

B
+ rβMUβB

kIMI

T
, (40)

where σ is given in (19). Since s1 > 0, the Routh-Hurwitz criteria sets that the
roots of a polynomial p1(λ) of order four have negative real part if and only if its
coefficients satisfy

s4 > 0

D1 = s1 > 0

D2 = s1s2 − s3 > 0 (41)

D3 = (s1s2 − s3)s3 − s2
1s4 > 0.

See [9], in order to determine the conditions for which the previous inequalities are
satisfied; we define the following constants:

A =
µU
MU

, N =
βBMU

MI
, C =

rMI

B
, D = νB, E =

kIMI

T
,

F = βBαT kIMI(1− T ), F̄ = αT kIMI(1− T ), G = rβMUβB

X(MU ) = AD − βMUγUB =
βγUB

MU

(
σ −M2

U

)
.

(42)

Replacing A, N , C,D, E, F , F̄ , G and X(MU ) in s1, . . . , s4 we obtain

s1 = A+N + C +D + E

s2 = N(A+D + E) + E(A+ C +D) +AC + F +X(MU )

s3 = (N + E)X(MU ) +G+ C(AE + F ) + (NE + F )(A+D)

s4 = (NE + F̄ )X(MU ) + F̄AC +GE (43)
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Furthermore, after some simplifications, D2, and D3 can be written as

D2 = (N + E)[(A+D)2 + C(C +D) + (N + E)(A+ C +D) +AC + F ]

+(A+D)[C(A+ E) +X(MU )] + C[AC +X(MU )]

D3 = r0 + r1(EN − F̄ ) + r2(ANC −G) + r3(ADEN − F̄X(MU ))

+AN2(DEN − CF̄ ) + (AC + 2AN)(D2EN − C2F̄ )

+GN(AD −X(MU )), (44)

with

r0 =

172∑
n=1

anA
α1Nα2Cα3Dα4Eα5Fα6 F̄α7Gα8 [X(MU )]α9

r1 =
[
(A+D)2 +AC + 2CD

]
(AC +X(MU ))

+AC(AC + 2AE + 2CD + 2DE + E2 + 2AN + 2DN + EN)

r2 = s1E
2 + (AC +AN +DN +X(MU ))E + (A+ C +D)F +G

r3 = (2A+ 2C + 2D + E +N)E + (2A+ 2C +D +N),

and an ∈ {1, 2, 3, 4, 5, 6} for n = 1, . . . , 172 and αk ∈ {0, 1, 2, 3} for k = 1, . . . , 9.
The following theorem summarizes the stability results of the unique bacteria-

present equilibrium when R0 > 1.

Theorem 4.1. If R0 > 1 there exists a unique bacteria-present equilibrium P1

which is locally asymptotically stable.

Proof. The existence of a unique bacteria-present equilibrium under the hypothesis
of the theorem is proved in Proposition 2. It can easily verify that the Routh-
Hurwitz conditions for the coefficients given in (43) are satisfied ifX(MU ) = σ−M2

U ,
and D−C = ν− γMU −µB are both bigger or equal to zero, therefore it is enough
to show that those expressions are positive when R0 > 1.

Indeed, if R0 > 1 then ν − γU − µB > 0, and since MU ≤ 1 it follows that
D − C > 0. On the other hand, from R0 > 1 we get

σ =
ν − µB
γU

>
γU
γU

= 1,

which implies σ ≥ M2
U , or equivalently X(MU ) ≥ 0. These results prove the local

stability of P1.

In the following we will assume R0 ≤ 1, and R0 +R1 > 1. Propositions 3, 4, and
5 assure the existence of a unique bacteria-present equilibrium when g1(Bmin) <
g1(Bmin), or g1(Bmax) > g2(Bmax). Under these condition we have the following
stability results:

Theorem 4.2. Assume R0 < 1, R0 + R1 > 1, and g1(Bmin) < g1(Bmin), or
g1(Bmax) > g2(Bmax), then
a) if Rβ ≤ ρ, and RB ≥ RγU + 1,
or
b) Rβ > ρ and σ > 1,
the bacteria-present equilibrium P1 is locally asymptotically stable.

Proof. As in the above theorem it is enough to show that D − C and X(MU ) are
bigger than zero. To prove a) we observe that D − C can be written as

D − C = ν − γUMU − µB = γU (σc −MU ).
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Since RB ≥ RγU + 1 is equivalent to σc ≥ 1 then D − C ≥ 0. On the other hand,
as Rβ ≤ ρ is equivalent to σc ≤ σ, and MU ≤ σc then X(MU ) > 0. Therefore, we
conclude that P1 is l.a.s.

The stability of P1 in the case b) follows from the assumption σ > 1.

In the following we assume Rβ > ρ. The next theorem summarizes the stability
results when there are more than one bacteria-present equilibrium.

Theorem 4.3. Assume Rβ > ρ.

I. If R∗0 < R0 < 1, then
a. if R0 +R1 ≤ 1 there are two bacteria-present equilibria, one l.a.s and the

other one unstable,
b. if R0 + R1 > 1 and g1(Bmax) > g2(Bmax), there are three equilibria, two

l.a.s and the third one unstable.
II. If R0 < R∗0 < 1, then

a. if R0 + R1 ≤ 1, g1(Bmin) > g2(Bmin), and g1(Bmax) < g2(Bmax), there
are two bacteria-present equilibria, one l.a.s, and the other one unstable

b. if R0 + R1 > 1, g1(Bmin) > g2(Bmin), and g1(Bmax) < g2(Bmax), there
are three bacteria-present equilibria, two l.a.s, and the third one unstable.

Proof. We will prove the stability properties in the cases where there are three
equilibria finding intervals in the B axis were X(MU ) takes positive and negative
values. A similar argument works in the cases with two bacteria-present equilibria.
For this end, let M̃U =

√
σ, then X(M̃U ) = 0. Since

MU = f1(B) =
µU

µU + βB

is continuous and strictly decreasing function of B, then

B̃ =
µU
β

(
1√
σ
− 1

)
,

is the unique value of B that satisfies M̃U = f1(B̃) =
√
σ. Substituting R0 =

ν/(γU + µB) in the function g2, and evaluating in B̃ we obtain

g2(B̃) = βν

{[
µU

β

(
1√
σ
− 1

)]2
+
γU
ν

(σ − σc)
µU

β

(
1√
σ
− 1

)
+
µU

νβ
(γU + µB − ν)

}
B̃

(45)

After some simplifications (45) becomes

g2(B̃) =
2µUγU√

σ

(√
σ − σ + σc

2

)
B̃. (46)

We observe that for σ << 1, the function g2 satisfies g2(B̃) < −µUγUσc < 0. In
addition, g2 has one root in B = 0 and two positive roots B− and B+, that satisfy
0 < B− < B+. Since g2 is positive in (0, B−), and negative in (B−, B+) then
g2 reaches a maximum Bmax ∈ (0, B−), and a minimum Bmin ∈ (B−, B+). It

follows that B− < B̃ < B+. Now, since f1 is continuous and strictly decreasing,
there are positive M−U and M+

U such that M−U = f(B−) and M+
U = f(B+), with

M+
U < M̃U < M−U . Furthermore, it can be verified that for all B ∈ (0, B̃) there

exists MU < M̃U such that X(MU ) < 0, and for all B ∈ (B̃,∞), MU > M̃U such
that X(MU ) < 0. Now, let B1 < B2 < B3 the points where g1 and g2 intersect,

then from the properties of these functions, it is verified that B1 < B̃,B2 < B̃ and
B3 > B̃ , and it follows that there are M1U = MU (B1) > M̃U , M2U = MU (B2) >
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M̃U , and M3U = MU (B3) > M̃U , which implies that X(M1U ) > 0, X(M2U ) > 0,
X(M3U ) > 0, (see Figure 2). This concludes the proof of the Theorem.

B

g(B)

g2(B)

g1(B)

B1 Bmax B2 B− Bmin

B

B+ B3

Figure 2. The graph of functions g1 and g2 defined in (20).

5. Sensitivity analysis. The results of model (6) depend of several parameters,
hence it is expected that uncertainities arise in the numerical estimates of those
parameters which affect the model results. In this section we are interesting to
perform global sensitivity analysis of the parameters related to the bacterial growth,
infection rate, and elimination by macrophages (ν, µB , β̄, ΛU/µU , γ̄U , r̄) in order
to quantify the impact of their variations in the model outcome. For this end
we follow [22, 27] to carry out a global sensitivity analysis using latin hypercube
sampling (LHS) to account for the effect of the uncertainties using R0 and R1 given
by (17), and (24) as the response functions, and the parameter ranges of Table 1.

We sampled the space of the input values using LHS with a uniform probability
distribution. In LHS, each parameter probability distribution is divided into N
equal intervals, and sampling from each interval exactly once guarantees that the
entire parameter space is explored. Furthermore, a Monte Carlo simulation was
done by drawing N = 10000 independent parameters set with i = 1, ..., N , and
evaluating R0 and R1 for the corresponding parameter set. Assuming that the
relation between output and input is linear, a linear regression model is used to
assess the Ri, i = 0, 1 sensitivity to each parameter.

Figure 3 shows the standard regression coefficients (SCR) for R0 =
ν

γU + µB

with γU = γ̄U
ΛU
µ

assuming the parameter values and ranges given in Table 1. In

all simulations, the sensitivity based on the SCR can capture 96% of the variation on
R0. As it is expected R0 increases when Mtb growth rate ν increases, and decreases
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Table 1. Interpretation and values of the parameters. Data are
deduced from the literature (references).

Parameter Description Value Reference

ΛU growth rate of unfected Mtb 600 - 1000 day−1 [19, 23, 30]

β̄ infection rate of Mtb 2.5 ∗ 10−11 − 2.5 ∗ 10−7day−1 [13, 30]

ᾱT elim. rate of infected Mtb by T cell 2 ∗ 10−5 − 3 ∗ 10−5 day−1 [13, 30]

µU nat. death rate of MU 0028-0.0033 day−1 [22, 30]

µI nat. death rate of MI 0.011 day−1 [22, 35, 30]

ν growth rate of Mtb 0.36 - 0.52 day−1 [12, 20, 38]

µB natural death rate of Mtb 0.31 - 0.52 day−1 [39, 30]

γ̄U elim. rate of Mtb by MU 1.2 ∗ 10−9 − 1.2 ∗ 10−7 day−1 [30]
K carrying cap. of Mtb in the gran. 108 − 109 bacteria [7]

k̄I growth rate of T cells 8 ∗ 10−3 day−1 [11]

Tmax maximum recruitment of T cells 5.000 day−1 [11]

µT natural death rate of T cells 0.33 day−1 [35, 30]

r̄ Average Mtb released by one MU 0.05-0.2 day−1 [30, 35]

when Mtb mortality, µB , and bacteria elimination rate by macrophage population
γU increases. The sensitivity analysis reveals that the top parameters that play the

parameters
U
/
U U B

S
C
R
(R
0
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 3. Standard regression coefficients (SCR) for R0 = ν
γU+µB

assuming the values given in Table 1 for ν, γU = γ̄
ΛU
µU

and µB

more dominant role on the dynamics of the Mtb are the growth rate ν, and death
rate µB of Mtb bacteria. Thus, variations of the Mtb growth rate accounts for
almost 60% of the R1 positive variation, while the death rate for almost the 80%
of the negative one, which implies that the bacteria dynamics have more influence
on the initial evolution of the Mtb infection than the immune response due to
macrophages.
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Figure 4. Standard regression coefficients (SCR) for R1 =
r̄β̄

ΛU
µ

γU+µB

assuming the values given in Table 1 for r̄, β̄,
ΛU
µU

, γU = γ̄
ΛU
µU

and

µB .

Next, we quantify the impact of the variations or sensitivity of the parameters r̄,
β̄, ΛU/µ, γ̄U , and K on the bacteria produced and releases by the internal bacteria.
For this, we perform sensitivity analysis using R1 given in (24) as the response
function. The results are illustrated in Figure 4. We observe that the dominant
parameters are the bacteria generated by a macrophage with almost 80% of the
positive variation, followed by the infection rate of Mtb with almost 50% of the
positive variation, respectively. According to these results, R1 is very sensitive
to the generation and release of the Mtb bacteria by the macrophages. These
findings for R0, and R1 could explain why the macrophage response is not enough
to control an initial invasion of bacteria, and the need of the immune system to
carry out a more complex defensive mechanisms to contain infections by Mtb such
as the recruitment of different elements of the immune system, and the formation
of granulomas.

6. Numerical solutions. In this section we present numerical simulations of sys-
tem (6). It is important to make clear that the parameters variability depends
of the immunological conditions of each patient. However, we will present some
estimations based in a bibliographic revision.

In the following we verify numerically the existence of three equilibria for con-
ditions according to the results given in last sections. Taking the parameters
ΛU = 1000, β = 0.000025, µU = 0.033, µI = 0.11, µB = 0.12, µT = 0.33,
ᾱT = 0.00003, r̄ = 2, ν = 0.4, γ̄U = 0.000029, k̄I = 0.00015, K = 25000
and Tmax = 50000 we obtain σ < σc, R0 < 1, R0 + R1 > 1, R∗0 < R0 and
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Figure 5. The numerical simulations of temporal course for bac-
teria with ten initial conditions show the stability of the bacteria-
present equilibrium P2 and the infection free equilibrium P0 given
in (47) when σ = 0.24, σc = 0.319, R0 = 0.4, R0 = 0.34, R1 = 1.5,
g1(Bmax) = 1.37× 10312 and g2(Bmax) = 1.32× 10942.

g1 (Bmax) < g2 (Bmax), which implies by Proposition 4 that g1 and g2 intersect in
three points, B1 = 0.0081, B2 = 0.0765, and B3 = 0.5566.

Therefore, the equilibrium solutions are

P1 =


0.8298
0.1847
0.0081
0.2028

 , P2 =


0.4575
0.36

0.0765
0.3315

 , P3 =


0.1099
0.4875
0.5566
0.4018

 . (47)

Numerical simulations confirm that P1 and P2 are l.a.s, and P3 unstable. Even
more, they suggest that the unstable branch of P2 divides the stability regions of
P1 and P3. In fact, we verified numerically that the initial condition

P (0) = (0.457461, 0.360034, B(0), 0.331513),

with B(0) < 0.0765 (B(0) > 0.0765 ) is in the attraction region of P1 (P3), as can be
seen in Figure 5 which shows the temporal course of B(t) with ten initial conditions.
In this case we have two stable equilibria (P1 and P2), and two unstable ones (P0

and P3). In the following simulations we show a bi-stability region in the case where
there are only two bacteria-present equilibria (one stable and one unstable), and
the trivial equilibrium is stable. The parameters in the simulations are ΛU = 1000,
β̄ = 0.00025, µU = 0.033, µI = 0.1, µB = 0.12, µT = 0.15, ᾱT = 0.003, r̄ = 5,
ν = 0.4, γ̄U = 0.0029, k̄I = 0.01, K = 250000 and Tmax = 50000. It can be verified
that the conditions Rβ > ρ, R∗0 < R0 < 1 and R0 +R1 < 1 are satisfied, then again
by Proposition 4 it follows the existence of two bacteria-present equilibria P1 and
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Figure 6. The numerical simulations of temporal course for bac-
teria with ten initial conditions show the stability of the bacteria-
present equilibria P1 and P3 given in (48) when σ = 2.4 × 10−6,
σc = 0.003, R0 = 0.0045, R∗0 = 0.0043, R1 = 0.43.

P2 with

P1 =


0.0019
0.0004
0.2679
0.4802

 , P2 =


0.0009
0.0004
0.4315

0.1

 . (48)

Theorem 4.3 implies that P0 and P2 are l.a.s. and P1 unstable. We observe this
behavior in Figure 6 which illustrate the temporal course of bacteria for ten initial
conditions. From the existence and stability results it follows that for Rβ ≤ ρ
the bifurcation diagram corresponds to a translation of a forward bifurcation in
which the stable disease-free equilibrium P0 bifurcates to the stable bacteria-present
equilibrium P0 in the value R0 = 1 − R1 (see Figure 7). In contrast, from the
existence and stability analysis of equilibria when Rβ > ρ, the bifurcation diagrams
are the ones shown in Figure 8. It is worth to notice that the bacteria-present
equilibrium is stable when R0 ≥ 1, that is, all the bifurcation diagrams have the
same behavior for R0 ≥ 1.

7. Discussion. In this work we explore the effect on the progression to TB disease
due to the population growth of tuberculosis bacterium and the patient immune
system control. For this end we formulated a non linear system of ordinary differ-
ential equations to describe in a simple way the interaction of Mtb with T cells and
macrophages. The immune response to TB infection is a very complex phenom-
ena that involve process of cellular differentiation and activation that have been
described in several works [30, 35], but due to the difficulties that involve modelling
all of these process, we only considered the most important cells in the activation
of the immune system against Mtb.
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R0

Forward bifurcation (Rβ ≤ ρ)

1−R1 1

P1

P

Figure 7. The stable infection free equilibrium P0 bifurcates to
the stable bacteria-present equilibrium P1 in the value R0 = 1−R1.

The model formulated in this work arises as a necessity to complement previous
works given in [13, 14, 15]. Here we assume two forms of bacterial growth, the first
one is the growth in the interior of the infected macrophages considered in previous
works, and the second one is a logistic growth of external bacteria competing for
the resources. Both assumptions are justified [17, 26]

As it was expected, the complexity of the results increased with the assumption
of logistic growth. The qualitative analysis of the model revealed different scenarios
in which there is always the infection-free state, while depending on certain condi-
tions there may be one, two or even three bacteria-present equilibria. An interesting
fact is that for certain values of the parameters there are two kinds of bi-stability
regions. In the first one the disease-free equilibrium and the bacteria-present equi-
librium coexist, which means that depending on the initial conditions of the host
and bacteria, the infection will be cleared out or will progress to TB, either in a
latent or active form. In the second case the introduction of bacteria always will
progress to infection, and depending on the initial conditions, the population will
approach to a state with low or with high number of Mtb. The first state could be
associated to latent TB, and the second one to active TB.

The above results were obtained in terms of the following parameters: i) number
of bacteria generated by an external bacteria, RB ; number of bacteria generated by
external bacteria that survive to macrophages control, R0; iii) number of bacteria
generated by internal bacteria that survive to macrophages control at equilibrium,
R1; iv) number of infected macrophages derived of one infected macrophage, Rβ ;
and finally, v) threshold parameters ρ and R∗0 that do not have biological interpre-
tation but are involved in the bifurcation of equilibrium solutions.

The qualitative analysis and numerical results suggest that for Rβ ≤ ρ there
is a forward bifurcation in which the infection free equilibrium P0 bifurcates to
the bacteria-present equilibrium. Unlike the classical bifurcation which appears for
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(b) g1(Bmı́n) > g1(Bmı́n) y g1(Bmáx) < g2(Bmáx)

R0 R0

Bifurcation diagrams for Rβ > ρ y R0 < R∗0

(a) g1(Bmı́n) < g1(Bmı́n) o g1(Bmáx) > g2(Bmáx)

1−R1 1 1

P1

P3

P2

P1

P P

1−R1

Bifurcation diagrams for Rβ > ρ y R∗0 < R0

(c) g1(Bmáx) > g2(Bmáx) (d) g1(Bmáx) < g2(Bmáx)

1−R1 R0 R01 1

P2

P1

P3

P2

P1

P P

1−R1

Figure 8. The results suggest forward and backward bifurcations,
and a type of S-shaped bifurcation

R0 = 1, in this case it occurs for R0 = 1−R1. This indicates the existence of a range
in which the external bacteria population can not grow, but with the participation
of the internal bacteria, reactivation of TB may occur in a patient with latent TB.

When Rβ > ρ could be occur three kind of bifurcations, one forward in the
case of a unique bacteria-present equilibrium, a second one backwards [14] with an
horizontal translation in which two bacteria-present equilibria coexist forming two
branches of a tangential bifurcation when 0 < R0 < 1− R1, and a S-shaped bifur-
cation when there are three bacteria-present solutions. In terms of the infection,
these bifurcations indicate that depending the relation between the growth rates of
external and internal bacteria as well as the bacteria elimination rate by T cells and
macrophages the infection can dye out, progress to latent or active TB, or to both
types of TB.

On the other hand, sensitive analysis of the model parameters indicates why
macrophagues are not enough to control an initial invasion by Mtb and the need of
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the immune system to carry out a more complex defensive mechanisms to contain
infection by Mtb such as the recruitment of different elements of the immune system,
and the formation of granulomas.

Concluding, in this work we proved that including competition between bacteria
it is possible to obtain a greater variety of scenarios observed in the development of
pulmonary tuberculosis.
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[16] E. Ibargüen-Mondragón, S. Mosqueraa, M. Cerón, E. M. Burbano-Rosero, S. P. Hidalgo-

Bonilla, L. Esteva and J. P. Romero-Leiton, Mathematical modeling on bacterial resistance
to multiple antibiotics caused by spontaneous mutations, BioSystems, 117 (2014), 60–67.

[17] S. Kaufmann, How can immunology contribute to the control of tuberculosis?, Nat Rev Im-

munol , 1 (2001), 20–30.
[18] D. Kirschner, Dynamics of Co-infection with M. tuberculosis and HIV-1, Theor Popul Biol,

55 (1999), 94–109.

http://dx.doi.org/10.1098/rspb.1996.0040
http://dx.doi.org/10.1098/rspb.1996.0040
http://dx.doi.org/10.1016/S1473-3099(13)70253-6
http://dx.doi.org/10.1038/nm1102
http://dx.doi.org/10.1038/nm1102
http://www.ams.org/mathscinet-getitem?mr=MR2130673&return=pdf
http://dx.doi.org/10.3934/mbe.2004.1.361
http://dx.doi.org/10.1146/annurev.immunol.021908.132703
http://dx.doi.org/10.1098/rspb.2000.1328
http://www.ams.org/mathscinet-getitem?mr=MR1657129&return=pdf
http://dx.doi.org/10.3389/fimmu.2013.00098
http://dx.doi.org/10.3389/fimmu.2013.00098
http://dx.doi.org/10.1006/cbir.2000.0679
http://dx.doi.org/10.1006/cbir.2000.0679
http://www.ams.org/mathscinet-getitem?mr=MR2831782&return=pdf
http://dx.doi.org/10.3934/mbe.2011.8.973
http://dx.doi.org/10.3934/mbe.2011.8.973
http://www.ams.org/mathscinet-getitem?mr=MR2945670&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3481227&return=pdf
http://dx.doi.org/10.1142/S0218339016500078
http://dx.doi.org/10.1142/S0218339016500078
http://dx.doi.org/10.1038/35095558
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