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Abstract. In this paper, a novel multiscale method is proposed for the study

of heterogeneous tumor spheroid growth in vitro. The entire tumor spheroid

is described by an ellipsoid-based model while nutrient and other environmen-
tal factors are treated as continua. The ellipsoid-based discrete component is

capable of incorporating mechanical effects and deformability, while keeping a

minimum set of free variables to describe complex shape variations. Moreover,
our purely cell-based description of tumor avoids the complex mutual conver-

sion between a cell-based model and continuum model within a tumor, such

as force and mass transformation. This advantage makes it highly suitable for
the study of tumor spheroids in vitro whose size are normally less than 800 µm

in diameter. In addition, our numerical scheme provides two computational
options depending on tumor size. For a small or medium tumor spheroid, a

three-dimensional (3D) numerical model can be directly applied. For a large

spheroid, we suggest the use of a 3D-adapted 2D cross section configuration,
which has not yet been explored in the literature, as an alternative for the

theoretical investigation to bridge the gap between the 2D and 3D models.

Our model and its implementations have been validated and applied to various
studies given in the paper. The simulation results fit corresponding in vitro

experimental observations very well.

1. Introduction. The biological complexity of tumor growth is astounding [56],
as it involves a hierarchy of temporal and spatial scales. Temporal scales range
from seconds for individual cell reactions, to years for the emergence of mutation
and tumor growth. Spatial scales range from the molecular level of gene regulation,
to the cellular level of cell movement, and ultimately to the tissue level of tumor
description and nutrient evolution. In addition to the biochemical signal in the tu-
mor microenvironment (TM), tumor cells are also subject to mechanical forces that
arise from cell-cell adhesion, cell growth, cell-substrate interaction during move-
ment. Experimental studies have shown that the mechanical property of the TM
can have a great impact on tumor growth [72, 34]. Moreover, tumor growth is a
complex evolutionary process driven by the dynamic feedback between diverse cell
populations and the TM [21, 41, 43] . For instance, the growth of tumor cells often
results in a TM of limited oxygen and nutrient, which in its turn requires cells to
adapt by altering their metabolism.
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It is now commonly accepted that tumors are heterogeneous entities [20, 7, 29,
53, 67]. Individual tumors contain diverse cell populations that may differ in impor-
tant cancer-specific traits and in molecular properties such as adhesion, mobility,
growth rate, response to a certain drug, etc. Tumor heterogeneity may result from
the accumulation of genetical mutations and epigenetic variation as cells divide.
For instance, drug resistance is often developed in the presence of anti-cancer drugs
[60]. Moreover, the TM plays a major role in tumor progression and the determi-
nation of the heterogeneity within and across tumors [10]. As tumors grow, various
environmental pressures select clones which respond to these changes and survive.
Eventually, subclones with relative fitness advantage rapidly grow and dominate
the tumor. Tumor heterogeneity poses one of the biggest challenges for drug de-
velopment [30]. For instance, a single agent that is targeted at known tumor types
may simply fail due to the presence of distinct non-targeted clones.

Three-dimensional (3D) tumor spheroids in vitro are increasingly recognized as a
promising tool to investigate tumor complexity and expand our understanding of the
molecular mechanism by which individual cancers are driven [35, 46, 3, 33]. They
are also considered as state-of-the-art anti-cancer therapy test platforms. Tumor
spheroids are commonly used as 3D multicellular cultures to obtain and maintain
the functional phenotype of human tumor in vivo [91, 35]. A 3D cell culture is estab-
lished to restore histomorphological, functional and microenvironmental features of
human tumor tissue in vivo, such as cell-cell interaction, cell migration, cellular sig-
naling, and drug penetration, response and resistance [78]. It fills the gap between
a conventional 2D culture in vitro and an animal model [93]. Consequently, tumor
spheroids have proven to be a prevailing tool for the positive selection in innova-
tive drug development initiatives as well as the study of the microenvironmental
regulation of tumor cell physiology and therapeutic problems both in vitro and in
silico [35, 48, 52, 68, 77, 1, 28, 39, 49]. In vitro spheroids are either self-assembling
or growing as a cell aggregate from a single cell suspension. The size of a spher-
oid affects tumor cell growth with respect to microenvironment, metabolic state,
response to treatment, etc. Small spheroids, less than 150 µm in diameter, may dis-
play 3D cell-cell and cell-matrix interactions but may not have radial proliferative
gradient. Chemical gradients begin to develop in medium tumor spheroids. Large
tumor spheroids at diameter greater than 500 µm normally consist of three layers
which include proliferating and quiescent regions and a necrotic core. Proliferating
cells provide the driving force for tumor growth. It is a target of interest for tumor
study since a lot of activities occur in this region. Quiescent cells have no growth
or active motion but still consume nutrients. The necrotic core is comprised of
dead cells which are regarded only as viscoelastic material without living activities.
When the nutrient environment changes, proliferating cells may become quiescent
cells and eventually die due to the limited distribution of oxygen and nutrients. In
addition, quiescent cells may convert to the proliferating type if sufficient nutrients
return.

The biological complexity of tumor growth calls for sophisticated mathematical
tools to model and analyze its intrinsic mechanism [50, 43, 12, 15]. In particular,
to understand how phenotypically distinct tumor cells interact with each other and
with the TM, one needs a mathematical model that incorporates appropriate scales
for the addressed question [52, 68, 77, 1, 28, 39, 49, 2]. Most models treat a tumor
either as a spatially-averaged continuum or as a collection of discrete individual
cells. In general, a continuum model is computationally inexpensive and may shed
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light on the generic properties of the system under consideration. But it suffers
from the disadvantage that the incorporation of many intro-, extra-, and inter-
cellular processes is difficult. Therefore, a continuum model is not suitable for the
description of the dynamics of heterogeneous tumor cells in many situations [45, 59].

A cell-based model allows one to account for a great variety of processes at the
subcellular and cellular levels for individual tumor cells. There are many methods
to model individual cells in the literature, such as quasi-sphere method [15, 50], sub-
cellular element method in which cell movement is described by the re-assignment
of lattices sites at the edge of a cell [61], Voronoi-Delaunay method that models
cells as deformable spheres with dynamic radii [73], immersed boundary method in
which each cell is treated as an individual body of arbitrary shapes consisting of
its own plasma membrane [71], and finite element method that is able to consid-
er arbitrary deformations of cells [89, 26]. Concerning the incorporation of intra
and intercellular mechanical effects and the resulting shape variation, the shape
of a modeled cell matters. Initially proposed by Palsson and Othmer (PO model)
[65], the 3D deformable viscoelastic ellipsoid model that uses ellipsoids as building
blocks is a good compromise between the use of simple spheres and that of other
more complicated geometries. PO model aimed at understanding how cell-cell in-
teraction, adhesion and signaling work together in a coordinated fashion to drive
observed complex cell movements in the model system of Dictyostelium discoideum
(Dd). It turned out that stiffness and deformability play a very important role in
cell sorting and collective motion. The elliptical shape is consistent with what has
been observed in 3D matrices of in vitro context [78]. Moreover, an ellipsoid has
less degrees of freedom in comparison to other more complex cellular geometries, so
it makes feasible the realistic simulation of thousands of cells. Although the shape
constraint imposes limitations on admissible deformations, ellipsoids can be used to
describe a good range of cell shapes, from a sphere to a very long ellipsoid, subject
only to volume conservation. It seems that the constraint is not so important to
many studies of cell behaviors. For instance, PO model can accurately reproduce
the dynamics of 2D slugs as well as the tissue surface tension [65, 64, 63]. The
model was adopted and improved by Dallon and Othmer in 2004 (DO model) to
plausibly predict that the motive force of slug is proportional to the surface area
of the slug instead of its volume [11]. Recently, Kim et al applied ellipsoid (2D
ellipse in actual computation) to the cell-based component of their hybrid models
in which proliferating cells are considered at the cellular level while the quiescent
area, necrotic core and external environment are treated as continua [45, 42, 43].
Cell-based models using either 2D ellipse [37, 12] or 3D ellipsoid [44, 74] are becom-
ing attractive in the in silico cancer research when morphology plays a vital role in
capturing the behavior of developmental tissues.

Recently, attentions have been drawn toward multiscale descriptions of tumor
[12, 17, 76, 70]. Some of them are discussed in [50, 12] . For a large system, one
may describe a tumor at the individual cell level in regions of interest, and describe
the remainder of a tumor and the TM as continua to retain the computational
advantage [12, 45]. That combination becomes promising for a large system con-
taining hundreds of thousands of cells. Nonetheless, complex mathematical and
computational problems arise from force transform and mass conservation during
conversion between cell-based and continuum descriptions of living tumor cells [12].
In addition, for a medium or large tumor spheroid in vitro, there is no significant
computational benefit to treat quiescent cells and the necrotic core as a continuum
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if proliferating region is described at the cellular level. Consider a medium or large
spheroid system in the lab whose diameter normally ranges from 200 µm to 800
µm [91, 35], the percentage of proliferating cells is big. Take an example of a large
tumor spheroid of 500 µm in diameter and its width of proliferating band in the
periphery region is approximately 100 µm, the portion of proliferating cells is about
80 percent in the 3D architecture.

In the present work, a 3D hybrid model is proposed to develop a novel computa-
tional tool for the growth of a heterogeneous tumor spheroid in vitro. In this model,
the entire tumor spheroid is described as an aggregate of heterogeneous ellipsoids
at the cellular level while nutrient and other environmental media are treated as
continua. That combination has not yet been proposed in the literature, and its
benefit is three-fold. Firstly, a 3D incompressible viscoelastic ellipsoid is considered
as a building block to construct the tumor part. As a result, we are able to take
into consideration intercellular mechanical effects in order to study the resulting
deformation of cells and its impact on cell behaviors. Meanwhile, the model main-
tains a minimum set of variables of freedom to describe individual cells of complex
shape variations. Secondly, a complete cell-based description of the entire tumor
spheroid avoids complex mathematical and computational problems involved in the
conversion between cell-based and continuum descriptions within a tumor. As far
as the computational cost is concerned, this model is greatly suitable for a 3D tu-
mor spheroid in vitro whose size is normally less than 800 µm in diameter [91].
Thirdly, our numerical scheme provides two computational options depending on
the tumor size. For a small or medium tumor spheroid, the 3D numerical model
can be directly applied. For a large spheroid, we suggest the use of the 3D-adapted
2D cross section configuration, which has not yet been explored in the literature,
as an alternative for the theoretical investigation to bridge the gap between the 2D
and 3D models. Our 2D numerical model is parametrically adapted by the insights
gained from a full 3D simulation. These two options together make it possible to
efficiently explore spheroids of various sizes for applications such as cell sorting and
migration.

The rest of this paper is organized in three parts. In the model section, a brief
description of the mathematical model is given. More details can be found in the
Appendix. In the next computational section of numerical implementation and
validation, our 3D numerical model and 3D-adapted 2D cross section model are
implemented and applied in three steps. In the first place, cell sorting is used as a
benchmark to validate the full 3D numerical model [65, 89]. Our model supports
that differential adhesion alone can lead to various sorting patterns in section 3.1.
In the next stage, constant viable rim of a three-layer tumor spheroid and cell
internalization are used to test the 3D-adapted 2D numerical model and to show its
capability in generating some behaviors of 3D tumor spheroids in section 3.2. Then
we take the final step in the computational section to look into the potential of the
3D-adapted 2D cross section configuration in section 3.2.4. This paper ends with a
brief summary of current model.

2. Theory of the hybrid model.

2.1. The cell-based model. In this work, the cell-based model is modified from
previous works [65, 11, 45]. Its components are briefly described in this subsection,
and more details are given in the Appendix. Cells in a cell-based region are repre-
sented as oriented ellipsoids in 3D, whose cytoplasm is dominated by actin filaments
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and microtubules. They are modeled as incompressible viscoelastic solids. Cells are
allowed to deform in a volume-preserving fashion according to external forces. To
model the viscoelasticity in nature (see Biomechanics Mechanical Properties of Liv-
ing Tissue by Y.C.Fung), each modeled cell is associated with three major axes to
represent an incompressible viscoelastic solid as the so-called Kelvin element which
is a nonlinear spring in parallel with a linear spring in series with a dashpot in
Figure 1(B) . In addition to deformation, cells grow with sufficient nutrient supply,
within a certain threshold of mechanical stress. An individual growth rate depends
on the experienced stress as well as the surrounding nutrient level. Note that stress
is only used to mean mechanical stress in our paper without specified. So, the inter-
nal rheology of each cell is characterized by a Kelvin element and growth elements
(see Figure 1 (B) ). The shape change of cells is governed by cells’ internal rheology
and external forces upon them.

Figure 1. (A): A 3D aggregate in a hanging drop culture;
(B): The representation of the Kelvin and growth elements
that characterize the internal rheology of each cell, mod-
ified from previous papers [45]. Note that in a hanging drop
spheroid systems in vitro, the surrounding environment exerts little
resistance to growth. As such, it is reasonable to assume that no
external force is imposed on in silico spheroids. Here each tumor
cell inside a spheroid is modeled as a 3D deformable ellipsoid with
three axes a, b, c each of which is represented by a Kelvin element.
In the a-axis (similar to b- and c-axis), ua is the total change of
the length, u0a and uga are the changes of the length in the a-axis
due to the change in the passive and growth elements respectively,
f2 is the nonlinear spring force from the spring in parallel, fa is
the magnitude of the force applied to each end, µa is the viscous
coefficient of the dash-pot, ka is the spring constant for the spring
in the Maxwell element.

We will describe the following modeling components in details: (i) an individual
cell’s reaction to forces in section 2.1.1, (ii) cells’ growth and division, and how
nutrient and mechanical stress affect growth in section 2.1.2, (iii) the resulting cell
motion in section 2.1.3.
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2.1.1. Force analysis on individual cells. In our model, the forces on a cell are
[65, 11, 45] (i) the active force exerted on neighboring cells or the substrate, (ii) the
reactive force due to the forces exerted by other cells, (iii) the dynamic drag force
that is generated when the adhesive bonds of a moving cell with neighboring cells
form or break, and (iv) the static frictional force that exists when cells are attached
or close to each other or the substrate. The active force on the ith cell is denoted
as Tij , and the reaction force is denoted as Mji. The static force, denoted by Sji,
is the attraction or compression force on the ith cell when it is attached or close to
the jth cell. Here we have Sji = −Sij .

The total external force on the ith cell is then given by

Fi = Mki +
∑
j∈Na

i

Tji +DRif +
∑
j∈Nd

i

DRij +DRis +
∑
j∈N s

i

Sji. (1)

where N a
i denotes the neighbor of the ith cell, including the substrate, upon which

it can exert traction. N d
i is the set of cells that interact with the ith cell via drag

forces. N s
i denotes the set of cells that are attractive or repelling to cell i. In

addition, DRif , DRij , DRis are the drag forces between cell i and fluid, cell i and
cell j, and cell i and substrate surface if present, respectively. Please note that the
detailed formulation of each force is given in the Appendix.

2.1.2. Deformation and cell growth. We define V0 as cells’ volume attained right
after division. It is assumed that stress and nutrient levels affect the growth rate.
With sufficient nutrient and without stress limitation, cells grow to the volume
2V0 and then instantly divide into two equal daughter cells. In the presence of
extracellular forces, the orientation of cell division is determined by the direction
of the net force exerted on the cell. In the context of a tumor spheroid or other
tissues, cells interact with neighboring cells and deplete nutrients. That leads to
nonuniform growth in the population. Moreover, we assume that growth stops if
stress is too big.

The governing equations of a cell’s length in the i-axis, i = a,b,c, are based on
the model developed by Kim, Stolarska and Othmer (KSO model) [45]

ui = u0i + ugi (2)

(u0i )
′ =

(
ki
µi

[fi(t) + p̄− f2(u0i )] + f ′i(t)

)(
df2(u0i )

du0i
+ ki

)−1
(3)

(ugi )
′ = f1(fi(t) + p̄)G(cO2

, cgl) (4)

where ui denotes the change of the length in the ith axis, u0i (ugi ) represents the
change of the length in the ith axis due to the passive (growth) element, f2 is the
nonlinear spring force whose specific forms are given in the Appendix, fi is used for
the magnitude of the force applied to each end, µi is the viscous coefficient of the
dash-pot, ki is the spring constant for the spring of the Maxwell element, p̄ is the
pressure force, f1 is the growth function (Equation (17)), and G(cO2 , cgl) is used for
nutrient effects.

2.1.3. The equations of motion. Since the Reynolds number of a moving cell is very
low, the effect of inertia can be ignored in the present model. As such, the total
external force on an individual cell is regarded as zero. Thus the following equation
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of motion can be derived from Newton’s law:

Aifµfvi + µcell
∑
j∈Nd

i

Aij(vi − vj) +Aisµsvi

= Mki +
∑
j∈Na

i

Tji +
∑
j∈N s

i

Sji. (5)

HereAif=Aif (t), Aij=Aij(t), Ais=Ais(t) are the lengths of contact regions at time
t between cell i and fluid, cell i and cell j, and cell i and substrate if present,
respectively. µcell is the degree of adhesiveness between two cells ( µs between
substrate and cell, µf between fluid and cell ). vi is the velocity of cell i. The
parameters that characterize cells are given in Table 2. This equation system is
solved by Adams fourth-order predictor-corrector solver.

2.2. Continuum description of nutrient and coupled equation systems.
Here oxygen and glucose are considered as nutrients. Their profiles are calculated
by classical reaction-diffusion equation, in which diffusion and consumption proper-
ties are position-dependent in our model. The reaction term accounts for nutrient
uptake. Its consumption rate is decided by local cell density as well as the concen-
tration of other chemical species. The latter effect is described by Michaelis-Menten
like kinetics. To incorporate the former, we define a weight function φ to represent
the local cell density. Its value on each grid is computed by the interpolation of
the location information of nearby cells and their volumes, here we assume a linear
correlation between cell volume and nutrient uptake [57].

Based on the above considerations, the governing equations for the evolution of
nutrients are similar to those in the KSO model [45]

∂cO2

∂t
= ∇ · (Do∇cO2

)− φO2

(
AO2

+
BO2

cgl + nO2

)(
cO2

cO2
+ kO2

)
in Ω

∂cgl
∂t

= ∇ · (Dg∇cgl)− φgl
(
Agl +

Bgl
cO2

+ ngl

)(
cgl

cgl + kgl

)
in Ω (6)

cO2
= ¯cO2

, cgl = c̄gl, on ∂Ω

where cO2 (cgl) is used for the molar concentration of oxygen (glucose). The sec-
ond term of each equation is a description function of the consumption of oxygen
(glucose) by the tumor. Do (Dg) is the position-dependent diffusion coefficient
of oxygen (glucose). AO2

, Agl, BO2
, Bgl, kO2

, kgl, nO2
, and ngl are parameters

which are empirically determined and given in Table (3). And the density function
φO2 = φgl relies on cell distribution and volume as described above. In addition,
we assume Dirichlet boundary conditions for the RD equation (i.e., the boundary
values of the solution are specified as a constant), and the initial value of nutrients
in the spheroid simulations is set as the boundary constant value. Numerically, the
RD equations (6) are solved on a regular grid domain by an alternating-direction
implicit (ADI) scheme together with a nonlinear solver named nksol . The typical
spatial grid size in our simulations is hx = hy = hz = 0.01 in the non-dimension
domain [0, 1]× [0, 1]× [0, 1].

Finally, data interpolation needs to be done forward and backward between in-
dividual cell mass centers and the corresponding neighbor grid points in solving
coupled cell-based model and reaction-diffusion equations of fixed boundary values.
This is due to the fact that nutrient concentrations by the solution of Reaction-
Diffusion (RD) equations are computed and stored in grid points via the finite
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difference approach, while individual cells are off-lattice in current model. More-
over, the concentration level or gradient, which cells sense for chemotaxis or growth,
is assumed to be at their mass center. Therefore, on the one hand, nutrients must be
interpolated from the grid to each cell for nutrient involved processes. On the other
hand, the consumption/uptake rate at each grid in the RD equation depends on the
cell density, which is calculated via the cell distribution information represented by
mass center coordinates, axis vectors and radii. The data interpolation is carried
out by the trilinear interpolation method. A brief description of our algorithm for
solving coupled cell-based and continuum modules is given as follows:
Step 0. Initialization
a) Initialize the cell-based components with spheres of diameter 10 µm and let them
approach a mechanical equilibrium to form a spheroid.
b) Set grids for the finite different method and initialize nutrient values to be equal
to boundary values
c) Allow nutrient profiles to reach an equilibrium, based on initial cell distributions
using the equation (6).
Step 1. Determine if the concentration in each cell’s proximity is above a thresh-
old. If so, calculate the direction of nutrient gradient, decide a new cell direction
according to the equation (7), and rotate the cell in that direction. Otherwise,
direction will be chosen randomly.
Step 2. Locate all cells that are within a given distance from an individual cell
and count them as neighbor cells.
Step 3. Find all forces that act on the cell from neighbor cells using the equation
(1), (9)-(11) and (12), deform three axes of the ellipsoid according to the calculated
forces from the equation (4). If growth is incorporated, allow cells grow according
to the nutrient level and stress. Finally move the cell by the motion equation (5)
Step 4. Update the nutrient concentration by the equation (6). One may update
the nutrient concentration less as frequent as cell motion.
Step 5. Go back to Step 1 then repeat the iteration.

3. Computational results. Based on our 3D mathematical model, two numerical
simulation packages were implemented: (1) 3D spheroid with 3D ellipsoids as build-
ing units; (2) 3D-adapted 2D cross section configuration. We point out that here a
2D structure is always considered as a cross section of a spheroid, so heterogeneous
nutrient concentration is present. With these two numerical tools, we attempt to
develop a platform to theoretically investigate the growth of heterogeneous tumor
spheroids of various sizes. The 3D package serves as the primary choice for small
and medium spheroids. It is also used to provide insights to adjust the 2D numerical
package so that the gap between 2D and 3D cultures can be partly filled according
to the targeted phenomena and mechanisms. Consequently, 2D numerical models
may become efficient and useful tools for extremely large tumor spheroids. We will
discuss some early results from the model and simulation validations in the follow-
ing numerical implementations. Afterwards, the potential of the 3D-adapted 2D
numerical tool will be demonstrated.

3.1. Cell sorting in a 3D heterogeneous spheroid. In this subsection, the 3D
numerical package is implemented and validated. A group of small spheroids were
constructed to study our 3D model in this preliminary work. As such, there is
no three-layer configuration (proliferating, quiescent and necrotic) formation due
to the presence of sufficient nutrients. To validate our 3D model, we take the cell
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sorting as a benchmark [65, 89]. In fact, sorting of two types of cells in an aggregate
was observed in vitro if these two types possess different cohesion properties [24].
Furthermore, cell sorting and cell movement were observed during tumor spheroid
growth [13] and in prostate cancer [22].

First of all, it is interesting to know whether differential adhesion alone is able
to reproduce a variety of sorting phenomena observed in the laboratory: cell sort-
ing, tissue spreading, sorting pathways and so on. To this end, two types of cells
G(green) and R (red), expressing different adhesive properties, are mixed in an
aggregate. In particular, αg,g, αr,r, αg,r are used to represent relative adhesive
strengths between like and unlike cell types. Note that green and red cells are set
to differ only in intercellular adhesive strength. It turns out that cells with greater
adhesive force move to the center of the aggregate and are enveloped by cells of the
other type. That is shown in Figure 2 (A2) where αg,g : αr,r : αg,r = 0.4 : 1 : 0.7.
Sorting does not take place when adhesive strengths are equal. That can be seen
in Figure 2 (A1) where αg,g : αr,r : αg,r = 1 : 1 : 1. Lastly, when the adhesive
force of unlike cells is much less than that of like cells, the aggregate evolves into
separate islands of cells of the same type. That is evident in Figure 2 (A3) where
αg,g : αr,r : αg,r = 1 : 1 : 0.2. Here parameters are set as follows: random force
fr = 40 nN , and Eb = 50 nN,Frep = 80 nN, λ = 25. Computational aggregates
in this section consist of 1021 cells. The population ratio between red and green
cells are 1:1. Once they are completely formed, sorting patterns are stabilized and
persist under slight fluctuations inside the system due to cellular random motion.
As for the above aggregate of 1021 cells with αg,g : αr,r : αg,r = 0.4 : 1 : 0.7 ,
we set time T= 7 hours to achieve the engulfment sorting. Afterward, the same
configuration is observed. It takes more time to form the same pattern for larger
spheroid systems.

Therefore, our cellular dynamic model indicates that the differential adhesion
alone can lead to various sorting patterns, which are consistent with those exper-
imental observations given in the literature [80, 16, 24]. It turns out that the
differential adhesion based sorting phenomena are quite robust in our model with
a wide range of parameters. For example, various ratios of cohesion can lead to
sorting as long as differential adhesion is present among heterogeneous cells. This
can be found in Table 1, where the ratio varies among αg,g : αr,r : αg,r and the
corresponding sorting results are listed. Actually, we also explored a greater range
of parameters for the separation result. It turned out that there is a transition value
of αg,r. When αg,r is smaller than the transition value, a complete separation of
two types of cells can be achieved very quickly. The greater value of αg,r, the longer
time for a system to achieve a complete separation.

Besides the sorting pathway, our 3D model can further generate an alternative
pathway for the engulfment pattern called tissue spreading. In the sorting pathway,
intermixed aggregate of two heterotypic cells segregate and rearrange to form an
envelopment configuration. In addition to that, tissue spreading was experimentally
observed [88]. Namely, the spreading of one tissue mass over another to form an
engulfment pattern. To study the spreading process using our model, two cell ag-
gregates are initially placed side by side to share a common contact area (see Figure
3 (A) fragment fusion pathway) where green cells have relatively small intercellular
adhesive strength with αg,g : αr,r : αg,r = 0.4 : 1 : 0.7. As the system evolves,
green cells gradually spread over the aggregate of red cells and eventually envelop
the latter. We have numerically demonstrated that two pathways, cell sorting and
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Figure 2. Differential adhesive forces among heterotypi-
cal cells lead to various aggregation patterns. Experimental
observations of the cross section of a 3D aggregate are listed in
(B1),(B2) and (B3). The corresponding numerical patterns, gen-
erated by our model after T= 7 hours for an aggregate of 1021
cells, are shown in (A1), (A2) and (A3). The same sorting pat-
tern persists afterward. In particular, the choice of parameters
αg,g : αr,r : αg,r = 0.4 : 1 : 0.7 ( DA 2) leads to cell sorting in (A2).
A cross section of the 3D configuration is shown under its 3D coun-
terpart. Cells do not sort at all when αg,g : αr,r : αg,r = 1 : 1 : 1 in
(A1). With αg,g : αr,r : αg,r = 1 : 1 : 0.2 (DA 1), cells separate in
(A3). (B1),(B2) and (B3) are the experimental observations from
Duguay et al [16] where two L-cell lines express N-cad at different
levels. Line N5A expresses about 50% more N-cad than what line
N2 does. An aggregate in figure (B1) does not sort, in which both
the red- and green-colored cells are from line N5A after 1 day of
culture. Yet a similar aggregate in figure (B2) containing a mix-
ture of N5A (red) and N2 (green) cells segregate from one another
during 1 day of culture, where higher-expressing N5A cells were
completely enveloped by lower-expressing N2 cells. In figure (B3),
Aggregates containing equal numbers of L cells lead to mounds of
R-cad-expressing cells (red) partially capping a B-cad-expressing
mass (green) after being cultured in suspension for 2 days.
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Index αg,g αr,r αg,r Sorting results

1 0.4 1 0.7 green envelops red
2 0.6 1 0.8 green envelops red
3 0.8 1 0.9 green envelops red
4 1 1 1 Not sorting
5 1 1 0.2 green and red separate

Table 1. Sorting in the presence of differential adhesion.
Various ratios of cohesion can lead to cell sorting in two types of
cells, distinguished by green and red in this work. Here αg,g, αr,r,
αg,r represent relative adhesive strengths between like and unlike
cells (green and green, red and red, or green and red respectively)

(A) 3D simulation (B) Experimental observations [24, 75]

Figure 3. (A) 3D Simulation results of the same engulf-
ment pattern by fragment fusion and sorting shown in a
cross section of a 3D aggregate; (B) in vitro observation-
s. In both cases, we set αg,g : αr,r : αg,r = 0.4 : 1 : 0.7. In an
aggregate starting with intermixed cells, cells sort by the coales-
cence of smaller islands to form larger ones (sorting); If two tissues
have initial contact, green cells gradually spread over red ones and
eventually envelop them (fragment fusion). Our in silico result-
s reproduced the in vitro observations (B) which were taken from
Foty’s review [24, 75] where zebrafish ectoderm and mescendoderm
tissues were mixed together or contacted each other. The system
reached a stable configuration after 16 h, as the ectoderm occupied
the internal position.

tissue spreading, lead to the same final spacial configuration (See Figure 3 (A) ).
Our model has also captured the phenomenon that in vitro cells sort by coalescence
of smaller islands to form larger ones in an intermixed heterotypic aggregate.
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Figure 4. Compression forces on cell sorting. In all these
simulations, we set αg,g : αr,r : αg,r = 0.4 : 1 : 0.7. Ratio S is
calculated by the ratio of the total number of lighter adhesive cells
over the total number of the cells in the outer part of the smallest
rectangle solid containing the aggregate

Furthermore, various factors on sorting can be examined in our numerical ellip-
soid model. In fact, experimental observations had revealed a variety of factors.
For instance, cadherin expression, which changes adhesive strength, is one factor
[62]. Initially lacking in cadherins, mouse fibroblasts can not sort in a stirred sus-
pension [23]. Cell mobility is another factor. It is required for the rearrangement
inside a population [81]. Besides, sorting is affected by cell deformation, caused
by the interplay between adhesion and cortical tension [47, 31]. The deformability
depends on the influences of the internal fluid and the state of the internal cy-
toskeleton. It can be regulated via adhesion molecules and ligand-receptor systems
[90]. Repelling force arises from a cell’s resistance to deformation and counteracts
the adhesive force when cells get too close. In this work, we use the effects of re-
pelling strength as an example to demonstrate the capacity of our model. Repelling
force constant Frep and viscoelastic parameters k1, k2, µ are together to determine
cellular deformability. In particular, the smaller Frep is, the easier cells deform.
Previously, it has been demonstrated that deformability is important to cell sorting
by manipulating k1, k2 [65]. Now we will look into the role of repelling parameter
Frep in cell sorting. With Eb = 25 nN and fr = 40 nN fixed, as shown in Figure 4,
Frep = 100 nN leads to cell sorting, while no sorting takes place if Frep = 200 nN .
It suggests that stiffer cells are harder to sort, and no sorting occurs when stiffness
reaches a certain level. We conclude that it is necessary to incorporate mechanical
effect and deformability into a cell-based model for tumor growth, such as tumor
cell migration and aggregation.

3.2. Validation on the 3D-adapted 2D cross section configuration. In this
section, let us validate our 2D cross section configuration. As a spheroid grows
almost symmetrically, patterns and microenvironment mainly differ in the radial
direction inside the spheroid. On that basis, it is feasible to look at a 2D cross
section of a 3D spheroid to investigate a tumor’s growth pattern at the tissue level,
such as the chemotaxis behavior of tumor cells [63]. Our 2D cross section model is to
study a dissection of a 3D spheroid instead of an aggregate inside a 2D monolayer,
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so that it may be considered as an alternative for the full 3D model. As such,
nutrient gradients are present in our 2D model, while it is not the case for a 2D
monolayer in lab. Nutrients are treated as a continuum and their gradients are
obtained by solving 2D Reaction-Diffusion equations with fixed concentration value
on the boundary under the assumption that the concentrations are uniform in the z
direction. For the 2D cross section configurations, we assume that cell motion vector
is limited in the x-y plane and the division direction is parallel to the x-y plane. In
addition, we assume that the local consumption rate of nutrients depends on local
cell density. As validation results, several in vitro phenomena in a 3D spheroid have
been numerically generated by the 2D cross section model. The implementations
include the coordination of nutrient and growth to form a three-layer architecture
in section 3.2.1, tumor cell internalization in section 3.2.2 and chemotaxis-based
cell rearrangement in section 3.2.3. However, some in vitro 3D phenomena under
experimentally-measured conditions can not be automatically reproduced in the 2D
framework due to the discrepancy between 2D and 3D structures. We will use cell
sorting as a case study to demonstrate the necessity of parametric adaption from
its corresponding 3D systems [62, 82]. We will also discuss its further applications.
Note that the 2D cross section configuration can be constructed by either 2D ellipse
cells ( 3.2.1, 3.2.3, 3.2.2) or 3D ellipsoid cells (3.2.4).

3.2.1. Stabilized viable rim of tumor spheroid: A benchmark. It was found in vitro
that the width of viable rim, calculated by the difference between the radius of a
tumor and its necrotic core, remains roughly constant in many tumor spheroids
[58]. Stabilized viable rim has been used as a benchmark to test proposed models
[45]. Here we also use it as one of our testing cases to validate the proposed model
and to implement the model in cell growth, nutrient uptake and dynamics, and the
conversion among different types of cells.

Due to the diffusion limitation and nutrient uptake, nutrient concentration de-
creases from the outer layer to the inner core inside a spheroid. In this current
model, we assume that when one or more nutrient concentrations drop below a cer-
tain threshold, proliferating cancer cells enter into a quiescent state in which cells
stop growing and moving but still consume nutrient to be alive. Cells experience
death when nutrient drops further. Moreover, there is a mutual conversion between
proliferating and quiescent cells according to the environmental change. Other than
that, tumor cells are described at the cellular level directly with distinct properties.
Eventually three layers form inside a growing spheroid; they are called proliferating
layer, quiescent layer and necrotic core.

Numerically, we couple together a cell-based model and a continuum based
reaction-diffusion model to describe the dynamics of a growing spheroid and its
nutrient profile. Due to the growth of a spheroid, interior nutrients decrease and
will be depleted. Then proliferating cells may convert into quiescent cells which
may die and become part of the necrotic core due to insufficient nutrients. In this
simulation, oxygen is chosen as the nutrient to check cell state conversion. Firstly,
we used a spheroid with a pre-existing necrotic core. The dynamic process of tumor
growth can be seen in Figure 5 for a growing three-layer spheroid, where green (or
blue), red, black cells represent proliferating, quiescent and dead cells, respectively.
It turns out that the width of the viable rim remains approximately constant about
100 µm. Meanwhile, the increase of spheroid size is only reflected in the region of
necrotic core. A constant band size of the viable rim is illustrated quantitatively
by a curve drawn in Figure 6 (a). That is quite consistent with the experimental
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observation and therefore validates our model. It is worthwhile to point out that
applying a continuum description to study the emergence of tumor formation is im-
possible. In the spirit of a continuum description, there must be pre-existing layers
for continuum regions to evolve. In contrast, a cell-based model can build up these
regions from the smallest unit in a bottom-up fashion. This method is especially
suitable for the study of emergent behaviors like drug resistance in which certain
types of resistance only emerge at some time point and then gradually dominate.

Moreover, the emergence of quiescent layer and necrotic core are simulated here.
To this end, we began with a configuration that only consists of proliferating cells
to see how three layers gradually emerge. Again, the width of the variable rim
approaches a constant from a certain time point after an initial small increase.
The evolution process can be seen in Figure 7 and the length of the viable rim is
shown as a blue curve in Figure 6 (b). Here the doubling time for individual cells
with sufficient nutrient is T=5 hours in the absence of stress limit. Active force
fa for a random motion is 8 nN. In addition, to demonstrate the capability of the
cell-based description of tumor in tracking the lineage of a specific cell type and
its development, we placed another type of proliferating cell (marked in blue) in
the proliferating region from the beginning to perform the simulations shown in
Figure 5 and Figure 7. The evolution of its growth and division can be tracked in
a straightforward way. More tracking simulations will be provided in the following
internalization tests.

3.2.2. Internalization test of homotypic cells. Three-layer multicellular spheroids
have been used to study the inward migration of externally introduced tumor cells,
such as the cell internalization behavior. In fact, cell internalization behavior is an
interesting phenomenon that triggers the study of the underlying mechanism and
coordination of tumor cell migration and the resulting tumor growth. For this pur-
pose, many experiments were conducted. Applying three-layer configurations, Dorie
et al [14, 13] in 1980s investigated the movement and internalization of H-labelled
cells and microspheres within EMT6 and RIF-1 spheroids. At the beginning, la-
belled cells or microspheres were adhered to the surface of a spheroid. After a few
days, labelled cells were found to have migrated toward the center of the spheroid,
regardless whether the spheroid is growing or not.

Theoretically, mathematical models were proposed to investigate the underlying
mechanism of internalization patterns. Supported by their simulation results from
a PDE system, McElwain and Pettet (1993) [54] argued that the pressure gradient
caused by differential cell proliferation and cell death is the major mechanism of
internalization. By another PDE model, Thompson and Byrne (1999)[87] suggested
that the internal velocity field generated by differential proliferation and the death
of labelled cells leads to internalization. Moreover, Pettet et al (2001)[66] postu-
lated that the chemotactic response of cells in different states (i.e., proliferating
and quiescent states) results in internalization. They assumed that quiescent cells
possess chemotactic behavior and move toward higher nutrient concentration, and
further assumed that cells in the quiescent state are more motile than those in the
proliferating state. It is known that PDE-based models are hard to catch individual
properties at cellular level, such as cell-cell mechanic interactions and differential
adhesion. With the use of a cell-based model, recently Stolarska et al [83] were able
to demonstrate that the difference in cell proliferation rates and adhesion among
living tumor cells and microspheres can lead to different observable internalization
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Figure 5. Growth of the tumor spheroid with a pre-
existing necrotic core based on the 2D cross section config-
uration. (a) the oxygen profile which is described in percentage;
(b) initial configuration; (c) intermediate state (T= 24 hours); (d):
final configuration (T= 48 hours) where green (or blue) is for pro-
liferating cells, red is for quiescent cells and black is for the necrotic
core. The unit of color bar in the oxygen is in percentage. One
percentage is equal to 0.013 mM. The spatial unit is per 10 µm.

patterns. Their results suggest that active movement is not essential for signifi-
cant internalization. However, some questions remain open, such as, why do 25 to
50 percent of labelled cells reach depth much greater than that can be accounted
for solely by cell growth? How can labelled cells and microspheres still penetrate
180-200 µm after 5 days even in irradiated spheroids where spheroid proliferation
has stopped? Note that the necrotic core, developed in the in vitro experiments by
Dorie et al [14], was neglected in all of the above computational models.

Based on our ellipsoid-based description of the tumor, which is capable of gen-
erating a three-layer configuration containing a necrotic core, we found that cell
random motion plays an important role in cell internalization in addition to cell
growth. To see it, we designed two numerical spheroid experiments. One is for
a growing spheroid in which cells proliferate, and the other is for a non-growing
spheroid in which cells do not grow. In addition, homotypic labeled cells are ini-
tially adhered to the surface of the spheroids. We tracked the labeled cells and
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Figure 6. Plots of the stabilized viable rim (defined by one
half of the difference between the diameter of a tumor and the di-
ameter of its necrotic core) in two cases: (a) the evolution of the
viable rim inside the tumor spheroid with a pre-existing necrotic
core. (b) the evolution of the variable rim inside the tumor spheroid
which consists only of initial proliferating cells. Radius is chosen
on right plot to enable readers to observe clearly when the necrotic
core emerges and how it evolves. Data point at t=0 is not measured
since it takes time for an initialized spheroid system to approach
a mechanical quasi-equilibrium. In addition, after the stabiliza-
tion from t=2000 minutes, the same pattern as (a) was observed.
But there are slight fluctuations in the simulation due to cellular
random walks.
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Figure 7. Growth of the tumor spheroid without a pre-
existing necrotic core based on the 2D cross section con-
figuration. (a) initial configuration, (b) configuration after T= 44
hours. The spatial unit is per 10 µm here.

recorded the number of those cells in different depths of the spheroids. The evo-
lution process of the growing spheroid can be seen in Figure 5 (b)(c)(d) in which
labeled cells are visibly blue. It turns out that the final distribution patterns of
labeled cells differ in these two cases (See Figure 8). Specifically, random motion
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(A) Growing spheroid (B) Non-growing spheroid

Figure 8. (A) Evolution of the frequency of labelled cells in a
growing spheroid at three different elapsed time points ( 2 hours, 24
hours and 48 hours); (B) Evolution of the frequency of labelled cells
in a non-growing spheroid. Homotypic labeled cells are initially
adhered to the surface of the spheroids. The number of those cells
are recorded in different depths of the spheroids.

alone causes cells to migrate inwardly to the depth about 80 µm to 90 µm after
two days in the non-growing spheroid. In contrast, in the growing spheroid, after 2
days labeled cells can be found at the depth of 160 µm which is greater than the
increase in spheroid’s radius by about 100 µm.

Our internalization results are consistent with the in vitro internalization pat-
terns in both cases of growing and non-growing spheroids, as well as the percentage
of cells at specific depths (See Fig.6 and Fig.11 in the paper [14] by Dorie’s et al ).
It is also shown that both proliferation and random motion are responsible for the
cell migration inside a tumor spheroid. This supports that a random walk can play
an important role in cell migration and pattern formation as observed both in vitro
[81] and in silico [63, 64].

3.2.3. Chemotaxis based rearrangement within a heterogeneous spheroid. As de-
scribed before, cell subpopulations may differ in adhesion, motility, growth rate,
and the response to a certain drug, etc. Experimental evidences showed that some
cell line moves towards a certain chemical [86]. In a coculture of cancer cells with
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differential properties, cells tend to relocate themselves to form a certain pattern.
For example, in order to study how drug-resistant and sensitive tumor cells settle
down in a 3D space, Starzec et al [79] cocultured adriamycin-sensitive (MCF-7S)
and -resistant (MCF-7R) human breast cancer cells in long-term nodules. They
showed that in mixed nodules, MCF-7R cells accumulated at the periphery, where-
as the MCF-7S cells grew toward the central part of the nodules bordering necrosis.
The investigation of tumor growth and spatial rearrangement can shed light on the
dynamics of cell subpopulations and their differential behaviors, so that an accurate
spatial prediction and consequently efficient treatment are made possible.

In this subsection, we investigate the role of differential motility in cell popula-
tion dynamics and self-reposition. To this end, we mixed two types of proliferating
cells (green and blue) in the proliferating region. Then different properties, includ-
ing differential motility, are assigned to these two subpopulations. We allow blue
cells’ migration to be directed by the gradient of oxygen concentration for a bet-
ter living environment, and let green cells undergo random motion. It turns out
that differential motility alone can lead to cell re-organization with one type of cells
accumulating on the periphery of the spheroid. Our results are illustrated in Fig-
ure 9(a)(b) for a non-proliferating spheroid cross section. Moreover, if a spheroid
is growing, cells with chemotactic behavior eventually dominate the proliferating
region even though they are sparsely distributed at the beginning. Figure 9 (c)(d)
display the evolution of a growing spheroid with mixed cancer cells, in which the
initial percentage of blue cells is 20 percent. Note that yellow cells correspond to
quiescent blue cells in Figure 9 (c)(d).

3.2.4. Cell sorting. We have shown that some phenomena in 3D can be reproduced
solely by our 2D cross section configuration. In fact, there are spatial limitations
for cell motion and contact in a 2D model, either a 2D monolayer model or a 2D
cross section configuration. Explained by Brodland, et al [5], the possibility of cells
in a 3D system to be connected to each other of same type is much higher than that
of cells in a 2D system. Cells are often multi-connected to cells of same type in 3D,
but that phenomenon rarely occurs in 2D. Due to structural differences, 2D models
may encounter difficulties in some cases to reproduce the corresponding 3D results.
Even if our 2D cross section is not a 2D monolayer model, our model restricts cell
motion to the cross section. In order to retain as much as possible the predictive
power of the full 3D model, we look into the adaptation of parameters for some
special cases.

Cell sorting is one such special instance for which the adaptation of the 2D cross
section model by its 3D counterpart is required. So it becomes a benchmark to
test the implementation of the adapted 2D model. We first investigate whether a
complete or partial sorting can be reproduced by our model in 2D under the previous
3D sorting condition. It turned out that the previous 3D sorting condition does not
lead to any sorting in a 2D cross section. For example, when αr,r : αg,g : αg,r =
0.4 : 1 : 0.7 and fr = 40 nN ,Eb = 25 nN,Frep = 100 nN, λ = 7, a complete sorting
is obtained in 3D. But it fails to approach either a complete or partial sorting in
2D (results are not shown). This is consistent with the finding in the literature
that conditions suitable for sorting in 3D may not apply to sorting in 2D [82]. The
discrepancy can be reasoned as follows. Calculated from adhesive forces, the net
force should be strong enough to drive a sorting process. It should be strong enough
to allow cells of greater adhesion to attract each other, and to squeeze out other
cells of lighter adhesion. Due to dimensionality differences [36], cells in 3D systems
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Figure 9. First row for a non-growing spheroid where one type of
cells experience chemotaxis: (a) initial configuration, (b) final dis-
tribution (T= 48 hours). Second row for a growing spheroid where
one type of cells experience chemotaxis: (c) initial configuration,
(d) final distribution (T= 48 hours). Active forces for both random
motion and chemotaxis are 8 nN. The spatial unit is per 10 µm
here.

have many more neighboring cells and therefore are more likely to be connected to
other cells of the same type than their 2D counterparts [4]. Therefore, differential
adhesion in 3D is able to exert a much stronger impact on sorting than that in 2D.

Therefore, it is desirable to adapt the 2D cross section model by the insight
gained from 3D simulations, in order to study cell sorting, fragment fusion process
in a cross section of a 3D tumor,etc. We predicted that in a 2D cross section
much stronger individual net adhesive force is required to compensate for much
less exposure of a cell to its neighboring cells, so as to attain sufficient driving
force to sort. To confirm that, we took the ratio of relative adhesion among cells
αr,r : αg,g : αg,r = 0.4 : 1 : 0.7 from a 3D system of a small spheroid. We adapted
them to αr,r : αg,g : αg,r = 0.4 : 1.5 : 0.7, while fixing all other parameters, and then
passed them to the 2D system. By doing so, sorting is achieved. In particular, green
cells form islands and are enveloped by red cells. In the first place, multiple internal
islands are formed. Then these small islands of green cells fuse into large ones. These
are displayed in Figure 10 where we can see that cells do sort numerically in our
adjusted 2D setting. Therefore, our 2D cross section configuration can reproduce
the experimental observations [27, 82, 55] that cells sort by coalescence of smaller
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Figure 10. The pathway of cell sorting in a 2D cross sec-
tion where αr,r : αg,g : αg,r = 0.4 : 1.5 : 0.7. It can be seen that
small islands of green cells fuse into large ones.

islands to form larger ones in an intermixed heterotypic aggregate which was also
displayed in Figure 3 for the full 3D simulations. It is worthwhile to point out
that the parametric adaption from its corresponding 3D systems can be biologically
realized via re-distribution of bonding molecules [62]. With further adjustments,
our 2D tool has the potential to become an efficient tool to study other properties
of a 3D tumor spheroid of large size, such as drug resistance.

4. Conclusion. In this work, we have introduced a hybrid modeling method, which
has not yet been proposed in the literature, for the study of heterogeneous tumor
spheroid growth. This model enables us to simulate physical movement of living
tumor cells in the multicellular context directly and efficiently based on fundamen-
tal physical and mechanical force analysis, without the assumption of free energy
minimization. The entire tumor spheroid is described by an ellipsoid-based mod-
el while nutrient and other environmental factors are treated as continua. Using
this specific combination, we have shown three main advantages of our method.
The ellipsoid based discrete component is capable of incorporating mechanical ef-
fects and deformability, while keeping a minimum set of free variables to describe
complex shape variations. Moreover, our purely cell-based description of tumor
avoids the complex mutual conversion between a cell-based model and continuum
model within a tumor, such as force and mass transformation, required in many
hybrid descriptions. This advantage makes it highly suitable for the study of a
tumor spheroid in vitro whose size is normally less than 800 µm in diameter [91].
In addition, depending on the available computational resource and tumor size of
interest, our numerical scheme makes it flexible to choose the 3D ellipsoid model
or the 3D-adapted 2D cross section configuration. Especially, as a new tool devel-
oped in this work, the 3D-adapted 2D cross section configuration has exhibited a



A MULTISCALE MODEL FOR HETEROGENEOUS TUMOR SPHEROID 381

great advantage in cell sorting, which is generally difficult to achieve in many 2D
settings without the assumption of free energy minimization [4, 38, 85]. To gain
those benefits, our model and its implementations have been validated and applied
to the studies of cell sorting in heterogeneous aggregates, stabilized viable rim of
a three-layer avascular tumor spheroid, internalization test of homotypic cells, and
the chemotaxis-based cell reorganization within a heterogeneous spheroid. We have
arrived at some main results: differential adhesion alone can lead to a variety of
sorting patterns; the increase in deformability raises the possibility of cell sorting;
both cell growth and random motion play important roles in cell internalization.
Moreover, it has been shown that an interplay between adhesion and other factors
(like motility) co-operate to generate the forces required for cell sorting, and that
the balance of various factors instead of one single effect may lead to the evolu-
tion of tumor growth and its spatial pattern. Our current preliminary work can
be extended to investigate specific issues in tumor growth such as drug resistance
and dose schedule. Furthermore, as a future improvement of our current work,
the mechanical effect from tumor environment besides cell-cell interactions can be
incorporated with a continuum description.

Appendix.

Force analysis and motion equation. (Active force and reactive forces)
Concerning active motion, normally cells send out a dominant pseudopod in their
desired direction, attache and apply a force to either a neighboring cell or a surface.
Then they pull the rest of the body towards the pseudopod. This process involves
complicated intracellular molecular reactions and motions as well as conversions of
chemical energy into mechanical energy. For the sake of simplicity, we model it only
with cell orientation and active forces.

For cell orientation, we set phenomenological rules based on biological obser-
vations. If a chemical signal strength is above a threshold, it may provide an
orientation stimulus. Otherwise, orientation direction is randomly chosen. Experi-
mentally this process is stochastic and strongly biased toward the chemical gradient
in chemotaxis or the previous orientation in random motion [63]. Mathematically,
the orientation direction is described by equation (7) with a random Gaussian dis-
tribution where the a-axis of the ellipsoid is defined as the anterior-posterior axis
of the cell for convenience.

−→a new =

{
(∇C) + σ1Z if Cmax > Cthresh
−→a 0 + σ2Z otherwise

(7)

−→a new =
−→a new

‖−→a new‖
Here ∇C,−→a 0,

−→a new are all normalized vectors and represent the chemical gra-
dient, current a-axis and chosen new a-axis, respectively. σ1, σ2 give the weight of
the stochastic part (about 95% of Z value locates in the interval of (−2, 2)) More-
over, Z = (Z0, Z1, Z2) is a vector whose components are created by Box-Muller
transformation for Gaussian distribution number as follows: Suppose U1 and U2
are independent random variables which are uniformly distributed in the interval
of (0,1]. Then
Z0 =

√
−2lnU1cos(2πU2)

and
Z1 =

√
−2lnU1sin(2πU2)
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Here Z0 and Z1 are independent random variables with a standard normal distri-
bution and Z2 is obtained in the same way as Z0 or Z1.

After orientation direction is determined, individual cells rotate. The equation
of rotation is given by:

d−→a
dt

= α(−→a new −−→a 0) (8)

Here α is used for orientation rate. Note that though in reality the realignment is
achieved by disassembling and reassembling of several proteins and by internally
rearranging structure instead of rotation, we assume that cells reorient their major
axis to coincide with the new direction due to ellipsoid shape constraint [11]. The
orientation process ( called orientation cycle) is carried out for every predetermined
tnew. Once its orientation direction is established, a cell begins to apply active
forces to the psuedopods attachment for the retraction of the rest of the cell body.
Then cells persist in exerting forces in the direction for a time period tmov. Cell
rotation is numerically implemented via multiplying the a-axis of the ellipsoid by a
rotation matrix. Then b and c axes are determined by the Gram-Schmidt process.

Active force generation is required for the extension of pseudopod and the re-
traction of the rest of the body. However, forces required for the former is negligible
compared to that required for the latter regarding the fact that the pseudopod vol-
ume is normally less than 10% of the total volume. Active forces are applied at
the site of pseudopod attachment so that they are always directed along the cell’s
anterior-posterior axis. Computationally, after cell i has been rotated to the new
direction, a-axis of the ellipsoid in our model, the pseudopod is attached to a neigh-
boring cell j if they are close enough, namely cell j has the smallest angle between
the anterior-posterior axis of cell i and the vector rij connecting the center of cell i
and j. Meanwhile an active force Tij is applied to the attachment along with the
a-axis of cell i. Thus cell j receives Tij which is added into its total force. At the
same time, a reactive force Mji is applied to the cell i, by Newton’s law Tij = −Mji.
Then cell i keeps its anterior-posterior axis for a certain time length ( for instance
70 seconds) and exerts active forces along that direction. The magnitude of active
force depends on some factors such as local chemical concentration level and its
gradient, cell type, and whether the cell is attached to another cell or the surface.
Here we set active force magnitude to be a constant. Constant active forces are
set in the range between 0 and 100 nN. That is consistent with experimental mea-
surement [84] as well as other successful theoretical models [65]. In addition, it
was observed that cells moving randomly do not migrate as much as those doing
chemotactic motion. To account for it, we set one constant fc for chemotactic force
and the other constant fr for random motion. From now on, to distinguish random
motion from directed motion, active forces in random motion are called random
forces, while active forces in directed motion are called chemotactic forces as cells
are in respond to chemical signals.
(Drag forces) As done in the DO (Dallon and Othmer) model [11], drag forces are
positively proportional to their relative velocity and common contact surface area
between two objects. Mathematically, the drag force due to the fluid is given by

DRif = −Aifµfvi (9)

Similarly, the drag force caused by cell and surface is

DRis = −Aisµsvi (10)
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Finally, the drag force that comes from viscosity between moving cells is propor-
tional to relative velocity

DRij = −Aijµcell(vi − vj) (11)

Where Aif , Ais, Aij are the estimated surface area of cell i in contact with fluid,
substrate surface, and another neighboring cell j respectively.
(Adhesive and compression forces) Adhesive forces in our model contain vari-
ous attractions including mechanical adhesion, chemical adhesion and electrostatic
adhesion, etc [40]. They are used to model membrane tension of two cells attract-
ed to each other directly or through ECM. As such, adhesive forces are positively
related to the density or adhesion strength of cell-line dependent binding molecules
[92]. Moreover, the interaction between cadherin and actin cytoskeleton has been
shown to play an important role in adhesiveness. Furthermore, it was found that
cells remain attractive to one another through long plasma membrane or tether
[51]. Cellular tether or protrusion, which can play an important role in cell sorting,
can not be directly described using our current ellipsoid geometry. Therefore, a
proximity distance is utilized to compensate the shape constraint. Within a surface
distance dad, cells can attract one another. A cell is assumed to feel no further
adhesive forces from its neighbors when it is apart further than dad. Once cells get
too close they begin to compress one another and their adhesion vanishes.

Here there are some assumptions involved in the modeling according to the bio-
logical observation. Firstly, the adhesion force model is based on some qualitative
assumption similar to those in Evans’ paper [19, 18]. It states that the magnitude of
the adhesion force between two cells is determined by their proximity, because their
proximity gives out the information of how many adhesive molecules in the common
membrane area. Secondly, the distance between two cells’ surfaces d represents an
estimate of how much contact surface area the adjacent cells have instead of pro-
viding the actual distance. Cells can reach out to nearby cells and have tendency
to contact. Thirdly , when cells get too close, repelling force arises. It implies that
the volume exclusion is considered implicitly via repelling force and consequent cell
deformation in the model. As such, there is a balance point where the passive force
changes from adhesion force to repelling (or compression) force. Fourthly, the pas-
sive force is continuous which can appear as either adhesive or compression force.
Based on these considerations, we model adhesive and compression forces in the way
similar to Palsson’s [65] as described in Eqn.(12). It is worthy to point out that
with their adhesive and compression formula, calculated magnitude of tissue surface
tension was comparable with experimental measurement [65]. In particular, let dj,i
be the vector from center of cell i to its edge in the direction of the vector from the
center of cell i to the center of cell j, hj,i. The vector sji is from the edge of cell i

to the edge of cell j in the direction of hj,i. ŝji = sji/‖sji‖ and ĥj,i = hj,i/‖hj,i‖.
Then adhesive and compression forces between cells i and j is given by [65]

Sji =

{
−Frepχ(−x)3/2ŝji if x < 0

Ebαi,jχ{(x+ x0)e−λ(x+x0)
2 − v0e−λx

2}ŝji otherwise
(12)

where χ = rcell
2 ( 1

‖dj,i‖+ 1
‖di,j‖ ), x =

‖sji‖
rcell

and x0 = −
√

1
2λ , v0 = x0e

−λx2
0 . Here Frep

is a constant parameter to describe the strength of the compression. rcell is 10 µm
for standard cell diameter used in this work. Eb is used to represent the magnitude
order of adhesion strength and αi,j is for the relative adhesion level among cell
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Figure 11. An illustration of passive force using Equation 12 Here
two standard spherical cells of 10 µm diameter are used to carry
out the calculations

types. x0 and v0 are set to make the magnitude of Sji continuous and equal to zero
at x = 0. The behavior of the above-described function can be seen in Figure 11
where the picture is plotted for two standard spherical cells of 10 µm in diameter
with λ = 7.

Cell deformation and growth. In equations (2) to (4), f1 is the growth function
(Equation (17)). The nonlinear spring f2(x) is given by

f2(x) =


k2x if (x > −0.6)

−0.3k2

(
x
0.3

)2

if (x <= −0.6)
(13)

Therefore,

df2(ui)

dui
=

{
k2 if (x > −0.6)

2k2ui if (x <= −0.6)
(14)

Notice that k2 can be adapted to the imposed forces as follows:

k2 = k20(f2i /astiff + 1) (15)

Where fi is the magnitude of the force applied to each end, i=a,b,c. And astiff
is considered as a constant parameter. Moreover, it is assumed that the passive
response is incompressible. Therefore three equations for u0a, u

0
b , and u0c are solved

with the volume constraint [45]

(u0a)′(u0b + b∗0)(u0c + c∗0) + (u0a + a∗0)(u0b)
′(u0c + c∗0) + (u0a + a∗0)(u0b + b∗0)(u0c)

′ = 0 (16)
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where a∗0, b
∗
0 and c∗0 are the lengths of the three axes a,b, c after growth (a∗0 = a0+uga,

b∗0 = b0 + ugb , c
∗
0 = c0 + ugc where a0, b0 and c0 are the initial lengths of three axes).

This means that the viscoelastic components on the three axes must satisfy the
volume constraint.

In addition, the effect of stress and nutrient on growth is described by the equa-
tion u̇gi = f1(σi) ∗G(cO2

, cgl), for i = a, b, c, where σi is the axial component of the
force applied along the ith axis. The form of f1 is based on previous experimental
observations [72]. In particular, we use a piecewise linear function to include the
effect of tensile as well as compressive stresses. This is the same as that in the KSO
model [45]

f1(σ) =


c−(σ − σ−) if (σ− ≤ σ ≤ −α)

−c+(α− σ+) if (−α ≤ σ ≤ α)

−c+(σ − σ+) if (α ≤ σ ≤ σ+)

0 if (σ > σ+, σ < σ−)

(17)

where c+, c− are positive constants, σ+ > 0, σ− < 0, [σ−, σ+] is the interval of
positive growth, c+(α− σ+) = −c−(−α− σ−).

Finally, G function values under different microenvironments can be computed
based on the experimental data which depends on the nutrient concentration. As
such, before the calculation of grow rate of each local cell, grid based concentration
solution needs to be interpolated into the cell mass center to calculate the nutrient
concentration. In this study for cell sorting, G=1 if sufficient nutrients exist for
cells to live and grow.

Parameter Description Value Dimensionless Refs.
in coding

Adhesion parameters

µcell cell-cell adhesiveness 27.0 dyn s/cm 450 [11, 45]

µs cell-substrate 27.0 dyn s/cm 450 [11, 45]
adhesiveness

µf fluid viscosity 2.7 dyn s/cm 450 [11, 45]

Rheological parameters

c+ growth function 5.16089×10−9 5.16089×10−9 [45]
mm/(min. nN)

σ+ growth function 800 nN 800 [45]

σ− growth function -4 nN -4 [45]

α growth function 0.0 nN 0.0 [45]

ka standard solid 163.8 dyn/cm 163800 [11, 45, 84]

k2 standard solid 147.5 dyn/cm, 147500 [11, 45, 84]

µa standard solid 123 dyn min/cm 123000 [11, 45, 84]

fa active force 10 nN 10 in this work

Table 2. Parameters for the cell-based component of the model.

Solving the equations of growth and deformation. For each cell, we want to
solve the following system

u′a = (
ka
µa

[fa(t) + pa − f2(u0a)] + f ′a(t))(
df2(u0a)

du0a
+ ka)−1 + f1(fa(t) + pa) (18)
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P Description Value Dimensionless Refs.
in coding

Diffusion Coefficients of oxygen in each region

Dc
o cell based region 1.82 × 10−5 cm2/s 6.552 [45]

Dq
o continuum region 2.15 × 10−6 cm2/s 7.74

Diffusion Coefficients of glucose in each region

Dp
g cell based region 3.0 × 10−6 cm2/s 1.08 this work

Dq
g continuum region 6.46 × 10−6 cm2/s 2.3256 [45]

Coefficients in Uptake Functions

AO2 oxygen uptake 1.0642 × 10−16 mol
cell·s 2.01014 [9, 45]

BO2 oxygen uptake 6.0202 × 10−17 mol·mM
cell·s 0.0497 [8, 9, 45]

Agl glucose uptake 1.0642 × 10−16 mol
cell·s 2.01014 [8, 9, 45]

Bgl glucose uptake 1.7879 × 10−17 mol·mM
cell·s 0.0107 [8, 25, 45]

kO2 critical oxygen 4.640 × 10−3 mM 1.856 × 10−4 [8, 45]
concentration

kgl critical glucose 4.0 × 10−2 mM 1.6 × 10−3 [8, 45]
concentration

nO2 oxygen uptake 0.55 mM 2.2 × 10−2 [25, 45]

ngl glucose uptake 0.04 mM 1.6 × 10−3 [25, 45]

Table 3. Parameters used in the reaction-diffusion component of
the model. We use the cell average packing density carried out
2.01 × 108 cells/cm3 in Casciari et al. [8] to convert uptake pa-
rameters AO2

, Agl, BO2
, Bgl in this table to rates per unit volume.

u′b = (
kb
µb

[fb(t) + pb − f2(u0b)] + f ′b(t))(
df2(u0b)

du0b
+ kb)

−1 + f1(fb(t) + pb)

u′c = (
kc
µc

[fc(t) + pc − f2(u0c)] + f ′c(t))(
df2(u0c)

du0c
+ kc)

−1 + f1(fc(t) + pc)

where ui = u0i + ugi , i = a, b, c, where u0i , u
g
i are the displacement of i-axis due to

the pure viscoelastic deformation and growth, respectively. (ugi )
′ = f1(fi(t) + pi).

Total volume due to pure deformation is preserved as follows

V (t) = (u0a)′(u0b + b0)(u0c + c0)+(u0a+a0)(u0b)
′(u0c + c0)+(u0a+a0)(u0b + b0)(u0c)

′ = 0
(19)

And the pressure at each direction can be described as

pa = (Area)(p) = (u0b + b0)(u0c + c0)(p), (20)

pb = (Area)(p) = (u0a + a0)(u0c + c0)(p),

pc = (Area)(p) = (u0b + b0)(u0a + a0)(p)

where p is the pressure inside a cell. First of all, to get (u0)′ = ((u0a)′, (u0b)
′, (u0c)

′),
we have to solve 4× 4 nonlinear system Ax = b as follows

H1 0 0 A14

0 H2 0 A24

0 0 H3 A34

−A14 −A24 −A34 0




(u0a)′

(u0b)
′

(u0c)
′

p

 =


RHS0(1)
RHS0(2)
RHS0(3)

0


where

RHS0(i) = [fi(t)− f2(u0i )] +
µi
ki
f ′i(t), i = a, b, c
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Hi =
µi
ki

(
df2(u0i )

du0i
+ ki), i = a, b, c

A14 = −(u0b + b0)(u0c + c0), A24 = −(u0a + a0)(u0c + c0), A34 = −(u0a + a0)(u0b + b0)

Later this type of calculation is performed again to make sure we get the right
pressure for each final configuration of cell. Once we find (u0a)′, (u0b)

′, (u0c)
′,we can

simply compute (ugi )
′ for the given piecewise linear function f1.

To solve the above system, a system in the form y′ = F (t, y) is obtained by using
the linear system solver dgesv in the LAPACK library, Then dlsode.f solver is
used to get the solution value for the next time. It is known that based on the
above viscoelastic assumption of cell, if there is no external force enforced on a cell,
a cell would relax to a sphere and preserve the volume. We have verified our solving
process of deformation by reproducing this relaxation fact.

Solving the equation of motion. Adams fourth-order predictor-corrector non-
linear solver is used in our model to solve the equation of motion. The equation (5)
reads in Matrix form as

M(x̄)v = b(x̄, t)

Solving the above linear system leads to

x̄′ = M−1(x̄)b(x̄, t) (21)

By applying Adams-Bashforth predictor scheme [32, 6] we have

x̄n+1
∗ − x̄n =

h

24
[55M−1(x̄n)b(x̄n, tn)− 59M−1(x̄n−1)b(x̄n−1, tn−1) (22)

+ 37M−1(x̄n−2)b(x̄n−2, tn−2)− 9M−1(x̄n−3)b(x̄n−3, tn−3)]

Here h is used for the computational step size. Finally we use fourth-order Adams-
Moulton corrector [32, 69] to update the location at tn+1.

x̄n+1 − x̄n =
h

24
[9M−1(x̄n+1

∗ )b(x̄n+1
∗ , tn+1) + 19M−1(x̄n)b(x̄n, tn) (23)

− 5M−1(x̄n−1)b(x̄n−1, tn−1) +M−1(x̄n−2)b(x̄n−2, tn−2)]

Note that without the corrector step, we may get wrong solutions in some extreme
situations which break down the system. Because the Adams-Bashforth predictor
scheme is an explicit scheme which requires a sufficiently small step size to guarantee
its convergence, while the corrector is an implicit scheme [6].

Some detailed description of numerical simulation. The cell-based model
was written in C and the Reaction-Diffusion (RD) solver was written in Fortran.
Then two of them were coupled for running simulations via a main.f90 code that was
written in Fortran. In our simulation, normally the time step for cell motion is 0.01
minute and the time step for the RD solver is 0.6 minute. Simulations can be run
in either personal desktop computers or clusters. Since our current code is not for
parallel computing, computer clusters only have advantage over personal desktop
computer in memory or multiple runs. So far we are able to run simulations with
ten thousands of cells with a reasonable time period. For instance, for a growth
simulation of the general 2D cross section model involving 5000 initial seeding cells,
it takes about 15 hours to simulate 40 hours of aggregate growth in a computer of
2.66 GHZ CPU speed and 16331460 KB memory. All of quantities and parameters
in the model become dimensionless in the simulation code. For the RD equation,
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the reference parameters length L,time T , concentration c0 are chosen as 1 mm,
1 hour and 25.0 mM , respectively. Then variables in the RD equation can be
nondimensionalized (with ?) as follows

D?
(O2,gl) =

D(O2,gl)T

L2
, t? =

t

T
, ∇? = L∇, c?(O2,gl)

=
c(O2,gl)

c0
,

A?(O2,gl)
=
A(O2,gl)T

c0
, B?(O2,gl)

=
B(O2,gl)T

(c0)2
,

k?(O2,gl)
=
k(O2,gl)T

c0
, n?(O2,gl)

=
n(O2,gl)T

c0
(24)

Similar nondimensionalizion process is applied to the cell-based model, where the
reference parameters length L,time T , force σ0 are given as 1 mm, 1 minute and
1 nN, respectively. All of parameter values and their corresponding dimensionless
values are listed in Table 2 and Table 3. Note that some unit conversions are
required between the cell-based code and the RD solver. For example, the time
scale in the RD solver is 1 hour, while it is 1 minute in the cell-based model.
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