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Abstract. The 2014 outbreak of Ebola virus disease (EVD) in West Africa
was multinational and of an unprecedented scale primarily affecting the coun-

tries of Guinea, Liberia, and Sierra Leone. One of the qualities that makes

EVD of high public concern is its potential for extremely high mortality rates
(up to 90%). A prophylactic vaccine for ebolavirus (rVSV-ZEBOV) has been

developed, and clinical trials show near-perfect efficacy. We have developed

an ordinary differential equations model that simulates an EVD epidemic and
takes into account (1) transmission through contact with infectious EVD indi-

viduals and deceased EVD bodies, (2) the heterogeneity of the risk of becoming

infected with EVD, and (3) the increased survival rate of infected EVD patients
due to greater access to trained healthcare providers. Using fitted parameter

values that closely simulate the dynamics of the 2014 outbreak in Sierra Leone,

we utilize our model to predict the potential impact of a prophylactic vaccine
for the ebolavirus using various vaccination strategies including ring vaccina-

tion. Our results show that an rVSV-ZEBOV vaccination coverage as low
as 40% in the general population and 95% in healthcare workers will prevent

another catastrophic outbreak like the 2014 outbreak from occurring.

1. Introduction. Since its discovery in 1976 in the country of Zaire (now the
Democratic Republic of the Congo), four primary strains of the Ebola virus disease
(EVD) have been identified: Zaire ebolavirus, Sudan ebolavirus, Reston ebolavirus,
and Côte d’Ivoire ebolavirus [19]. The Zaire ebolavirus is the strain of the 2014
West Africa outbreak and the strain that has caused the deadliest recorded EVD
outbreaks [41]. Figure 1 classifies the 19 outbreaks of EVD with more than 5
reported cases (excluding the 2014 West Africa Outbreak) by mortality rate [12].
Zaire ebolavirus is the strain responsible for all of the outbreaks in the highest
mortality rate category (80–100%) and four out of five of the outbreaks in the
second highest mortality rate category (60–79%).

Ebolavirus can only be transmitted through direct contact with the bodily flu-
ids of an infectious individual or body [22]. An individual infected with ebolavirus
will not become infectious or show symptoms for several days (range: 2–21 days,
mean ± std: 6.3± 3.31 days, median: 5.5 days) [20, 45, 40, 25]. After the incuba-
tion period the individual becomes infectious and starts to show symptoms, which
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Figure 1. Histogram of mortality rates for the 19 outbreaks of
EVD that have had more than 5 reported cases (excluding the 2014
West Africa Outbreak); outbreaks of Zaire ebolavirus are shown in
solid red while all other outbreaks are shown in cross-hatched blue.
Data taken from [12].

may include fever, vomiting, hemorrhagic bleeding, and multiple organ dysfunction
which can lead to death [20, 50, 11]. During the 2014 West Africa EVD outbreak,
it was discovered that even after a male recovers, the virus can remain in his se-
men anywhere from three to nine months after the onset of symptoms and can be
transmitted to sexual partners [18, 15]. Additionally, an individual who has died
due to EVD remains infectious for a period of up to seven days [51] and, if not
handled properly prior to burial or cremation, can provide another route of virus
transmission [33, 50, 51].

1.1. Timeline of the 2014 West Africa Outbreak. While the 2014 West Africa
EVD outbreak originated in the country of Guinea during December of 2013 [8],
Sierra Leone and Liberia were also greatly affected [20, 9, 67]. A timeline of major
outbreak response plan implementations during the 2014 West Africa EVD outbreak
is shown in Figure 2.

t = 0
4/27/2014

t = 95
7/31/2014

t = 202
11/15/2014

t = 248
1/1/2015

t = 460
7/31/2015

t = 647
2/3/2016

No Response WHO Phase 1 WHO Phase 2 WHO Phase 3

UNMEER

Figure 2. Timeline showing the implementation of different con-
trol strategies over the course of the outbreak. The date for time
t = 0 is 30 days prior to the initial date that the CDC began
recording outbreak data.

The timeline in Figure 2 divides the outbreak into five disjoint segments accord-
ing to the response plans implemented over the course of the epidemic. At the
beginning of the outbreak, there was no response plan in place because the World
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Health Organization (WHO) did not declare the outbreak severe enough to require
immediate support until mid July of 2014. The initial response plan (WHO Phase
1), implemented July 31, 2014, by the WHO, was intended to stop the transmis-
sion of EVD in the most affected countries (Sierra Leone, Liberia, and Guinea), as
well as provide neighboring countries with support to prevent further spread of the
disease [66, 65, 63]. Following this first-response plan, the United Nations (UN)
created the UN Mission for Ebola Emergency Response (UNMEER) plan on Sep-
tember 19, 2014 [58, 63]. The UNMEER plan added to the efforts of the WHO plan
already under way and was intended to isolate EVD cases, ensure safe burials for as
many EVD deaths as possible, assist in facilitating case management, and educate
individuals in identifying EVD symptoms and going to hospitals when infected [58].
By mid November 2014, the implementation of UNMEER was underway [58, 63].
In January of 2015, the WHO shifted the focus of their plan to increasing their
capacity for identifying and tracing cases and their contacts; this shift in focus has
been termed “Phase 2” of the WHO Ebola Response Plan [63]. The UNMEER
response plan continued in conjunction with Phase 2 of the WHO response plan. In
July 2015, the UNMEER response plan ended [58], and the WHO Ebola Response
Plan shifted to Phase 3. This phase focused on stopping all remaining sources of
EVD transmission by working in conjunction with international, national, and com-
munity partners to improve the speed of case identification, establish and maintain
health facilities, and improve Ebola survivor support [63].

1.2. Previous EVD models. Several mathematical and computational models
simulating the spread of EVD through a population have been proposed. These
models have been used to explore a variety of questions about EVD outbreaks and
to estimate rates of transmission and the basic reproduction number of particular
outbreaks. Previously proposed models have noted the importance of EVD outbreak
models including features like modes of transmission from deceased infectious [59,
52, 50, 21, 53], explicitly defining distinct susceptible groups for both high and low
risk of exposure to EVD [35], differentiating the infectious in hospitals from the
infectious not in hospitals [7, 52, 50, 60], and defining healthcare workers as distinct
from other susceptible individuals [50]. However, none of these previous models
have included all four of these features. Several models simulate the effects of
possible intervention strategies and control measures such as isolation, quarantine,
and social intervention to reduce transmission rates during an outbreak [52, 35, 2,
50, 40, 21, 53]. However, the 2014 EVD outbreak hastened the development of a
prophylactic vaccine [32] the impact of which has yet to be fully explored.

The clinical trials of the recently developed EVD vaccine used a ring vaccination
strategy [31]. The ring vaccination strategy identifies and vaccinates contacts of
infectious individuals, as well as contacts of contacts. Recent studies have used
a network-based transmission agent-based model [14] and spatially explicit agent-
based models [1, 46] to examine the impact of ring vaccination of EVD outbreaks
using data from the 2014 West Africa Outbreak. The explicit inclusion of space
within the model follows the modeling approach of ring vaccination models for foot
and mouth disease [47, 37].

Many of the previous EVD models are used to estimate the basic reproduction
number (R0) of the 1995 Congo and 2000 Uganda EVD outbreaks [13, 40] and the
2014 West Africa EVD outbreak [59, 2, 50, 35, 26, 53, 60]. While the basic repro-
duction number is a useful estimate of the severity of an outbreak, the estimated
value of R0 is only valid using parameter values representing the beginning of an
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outbreak. If parameter values like transmission rates change over the course of an
outbreak due to the implementation of control measures, then a time-dependent
reproduction number is more appropriate. Two possibilities are the actual repro-
duction number (RA(t)) which is calculated using incidence and prevalence data [3],
and the effective reproduction number (RE(t)) which is calculated using the size
of the susceptible population and the value of the basic reproduction number (R0)
[17]. The effective reproduction number has been calculated for the 1995 Congo
and 2000 Uganda EVD outbreaks by Chowell, et al. [13], and for the 2014 EVD
outbreak by Browne, et al. [7]. However, the lack of key EVD outbreak features in
the Chowell and Brown models, specifically transmission from deceased infectious
individuals, leaves room for improvement.

2. Model description and assumptions. We have developed an ordinary dif-
ferential equations model that simulates an Ebola epidemic within a population
and takes into account: (1) transmission through contact with infectious EVD in-
dividuals and deceased EVD bodies, (2) the heterogeneity of the risk of becoming
infected with EVD, and (3) the increased survival rate of infected EVD patients
due to greater access to trained healthcare providers via an increase in healthcare
workers within the population. We apply this model to the population of Sierra
Leone during the 2014 EVD outbreak.

The total population is divided into 12 states (see Figure 3). There are three
classes of susceptible individuals: healthcare workers who have a high risk of expo-
sure (SW ), members of the general population (i.e., not healthcare workers) with a
high risk of exposure (SH), and members of the general population with a low risk of
exposure (SL). Low risk general population members become high risk based on the
rate at which an average individual’s contacts become infected, which is determined
by the density of infected EVD patients and dead bodies. High risk members of
the general population return to low risk by the rate at which an infectious contact
ceases to be infectious either by recovery or the burial of the deceased individual’s
body.

Once an individual becomes infected, they move to the exposed class (E) where
they are asymptomatic and not infectious to others. When an exposed individual
becomes symptomatic, they become infectious to susceptible individuals and move
from the exposed class to either the infectious class (I) or infectious in hospitals class

(Î). We assume individuals in the Î class can only transmit the virus to healthcare
workers (i.e., the SW class) and not the general susceptible population (i.e., the

SL and SH classes), thus effectively quarantining the Î from a large portion of the
population. An infectious individual will either die and move to the deceased class
(D, or D̂ for those Î individuals who died in hospitals), or they will recover and
move to recovering but still infectious class (RI). The bodies of individuals who
have died remain infectious until they are buried (B). Individuals in the RI class
no longer show symptoms of EVD, and are recovering from the disease but are still
infectious (with a lower transmission probability) until they move to the recovered
non-infectious class (R) after several months [15, 18]. We assume that individuals
in the RI class will not die from the ebolavirus. Furthermore, since individuals
in the RI class no longer show EVD symptoms and “appear” to have recovered,
we assume that their close contacts are no longer considered highly susceptible.
Thus, individuals in the RI class only infect individuals in low susceptible class
(SL). Individuals in the recovered and non-infectious class (R) are assumed to have
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immunity from further ebolavirus infections. This assumption is made based on
evidence that recovery from an EVD infection provides immunity for at least 10
years [35, 10], and our model is designed to simulate the 2014 EVD outbreak, which
lasted about 2 years.

Given the availability of a prophylactic vaccine, our model allows for the vac-
cination of susceptible individuals, effectively moving them to the recovered and
non-infectious class (R). Vaccinated healthcare workers are moved into a separate
class (VW ) where they continue their role as healthcare workers in the model.

Background death due to natural causes occurs in all three susceptible classes
(SL, SH , SW ), the R and RI classes, and the vaccinated healthcare worker class
(VW ). Births into the population are assumed to only occur in the low suscepti-
ble class (SL). Susceptible healthcare workers are the only individuals allowed to
migrate into and out of the population.

The model equations are given in System (1). See Table 1 for a description of
each of the model’s parameters.

S′L(t) = Ω− βL1 I + βL2 D + β3RI
N

SL − ερLSL + σLSH − σH
I + Î +D + D̂

N
SL − µSL

(1.1)

S′H(t) = −β
H
1 I + βH2 D

N
SH − ερHSH + σH

I + Î +D + D̂

N
SL − σLSH − µSH (1.2)

S′W (t) = ψ(φ+ I + Î +D + D̂)− βW1 Î + βW2 D̂

N
SW − ερ̂SW − µSW (1.3)

E′(t) =
(βH1 I + βH2 D)SH + (βL1 I + βL2 D + β3RI)SL + (βW1 Î + βW2 D̂)SW

N
− κE (1.4)

I ′(t) = κ(1− α)E − γI (1.5)

Î ′(t) = καE − γ̂Î (1.6)

R′I(t) = γ(1− δ)I + γ̂

(
1− δν φ

φ+ SW + VW

)
Î − ηRI − µRI (1.7)

R′(t) = ε(ρHSH + ρLSL) + ηRI − µR (1.8)

D′(t) = γδI − λD (1.9)

D̂′(t) = γ̂

(
δν

φ

φ+ SW + VW

)
Î − λ̂D̂ (1.10)

B′(t) = λD + λ̂D̂ (1.11)

V ′W (t) = ερ̂SW − µVW (1.12)

In System (1), N(t) represents the sum of all 12 states at time t, that is

N(t) = SH(t) + SL(t) + SW (t) + E(t) + I(t) + Î(t) +RI(t) +R(t) +D(t) + D̂(t)

+B(t) + VW (t).

Since transmission of the Ebola virus requires direct contact with bodily fluids, we
assume transmission is frequency dependent; see Equations (1.1, 1.2, 1.3, and 1.4).
In response to the increasing severity of the epidemic in West Africa, many countries
around the world sent doctors and healthcare workers to help treat EVD patients
[48]. Additionally, during the WHO’s initial response, one of the primary objectives
was to train individuals to care for EVD patients and attend to those who had died
of EVD [63]. Thus, our model assumes that the migration rate of new healthcare
workers into the population depends on the number of currently infectious live
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Figure 3. Flow diagram of the model given in System (1). Shaded
compartments indicate high risk of exposure (red), low risk of expo-
sure (orange), and ability to transmit EVD (yellow). Green arrows
indicate movement into the population, blue arrows indicate back-
ground death, and dashed line arrows indicate vaccination.

individuals and dead bodies at time t during the outbreak (I(t)+ Î(t)+D(t)+D̂(t))
such that greater numbers of infectious correspond to higher rates of new healthcare
workers entering the population [62]; see Equation (1.3). However, our model also
assumes there would still be new healthcare workers entering the population even
in the absence of an outbreak, albeit at a low rate. We additionally assume that
a greater abundance of healthcare workers present in the population will correlate
to a greater number of hospitalized patients recovering and thus inversely scale the
death rate due to EVD; see Equations (1.7 and 1.10).

3. Initial conditions and model parameters. The initial time t = 0 corre-
sponds to April 27, 2014 (see Figure 2), which is 30 days prior to the initial date
the CDC began recording outbreak data. The initial population size, N(0), is the
total population of Sierra Leone (5,743,725 as of July 2014) [16]. This population
is then distributed among the different classes of the model. The healthcare worker
class (SW ) begins as 0.039% of the total population (an estimation based on the
physician and nurse/midwife densities in Sierra Leone) [16]. The infectious, non-
hospitalized class (I) contains 10 individuals, with five times that many individuals
placed in the high susceptible class (SH). The rest of the population begins in the
low susceptible (SL) class. All other classes contain no individuals at time t = 0.

The values for parameters µ, Ω, κ, δ, γ, λ̂, and η were taken from clinical and
demographic studies of EVD [15, 18, 45, 50], the CDC [12], and the CIA World
Factbook [16]. See Table 1 for the source of each parameter value. The burial
rate of hospitalized EVD patients (1/λ̂) removes infectious dead bodies within the
seven days in which they are still infectious [51]. The value of δ is estimated as
the average of the death rates of Zaire ebolavirus outbreaks that had more than 5
infected individuals (as reported by the CDC [12]) not including the 2014 outbreaks.



IMPACT OF A PROPHYLACTIC EBOLAVIRUS VACCINE 343

T
a
b
l
e
1
.

P
a
ra

m
et

er
s

a
n

d
va

lu
es

u
se

d
in

th
e

m
o
d

el
.

P
a
r
a
m

e
te

r
U
n
it
s

V
a
lu

e
D
e
sc

r
ip

ti
o
n

S
o
u
r
c
e

FittedParameters

β
H 1

1
/d
a
y
s

S
ee

T
a
b

le
3

tr
a
n

sm
is

si
o
n

ra
te

fr
o
m

in
fe

ct
io

u
s

in
d

iv
id

u
a
ls

to
h

ig
h

ri
sk

su
sc

ep
ti

b
le

in
d

iv
id

u
a
ls

β
L 1

1
/d
a
y
s

S
ee

T
a
b

le
3

tr
a
n

sm
is

si
o
n

ra
te

fr
o
m

in
fe

ct
io

u
s

in
d

iv
id

u
a
ls

to
lo

w
ri

sk
su

sc
ep

ti
b

le
in

d
iv

id
u

a
ls

β
W 1

1
/d
a
y
s

S
ee

T
a
b

le
3

tr
a
n

sm
is

si
o
n

ra
te

fr
o
m

in
fe

ct
io

u
s

in
d

iv
id

u
a
ls

to
su

sc
ep

ti
b

le
h

ea
lt

h
ca

re
w

o
rk

er
s

β
H 2

1
/d
a
y
s

S
ee

T
a
b

le
3

tr
a
n

sm
is

si
o
n

ra
te

fr
o
m

d
ec

ea
se

d
in

d
iv

id
u

a
ls

to
h

ig
h

ri
sk

su
sc

ep
ti

b
le

in
d

iv
id

u
a
ls

β
L 2

1
/d
a
y
s

S
ee

T
a
b

le
3

tr
a
n

sm
is

si
o
n

ra
te

fr
o
m

d
ec

ea
se

d
in

d
iv

id
u

a
ls

to
lo

w
ri

sk
su

sc
ep

ti
b

le
in

d
iv

id
u

a
ls

β
W 2

1
/d
a
y
s

S
ee

T
a
b

le
3

tr
a
n

sm
is

si
o
n

ra
te

fr
o
m

d
ec

ea
se

d
in

d
iv

id
u

a
ls

to
su

sc
ep

ti
b

le
h

ea
lt

h
ca

re
w

o
rk

er
s

β
3

1
/d
a
y
s

S
ee

T
a
b

le
3

tr
a
n

sm
is

si
o
n

ra
te

fr
o
m

re
co

v
er

in
g
,

st
il
l

in
fe

ct
io

u
s

in
d

iv
id

u
a
ls

to
lo

w
ri

sk
in

d
iv

id
u

a
ls

α
—

S
ee

T
a
b

le
3

p
ro

p
o
rt

io
n

o
f

sy
m

p
to

m
a
ti

c
in

d
iv

id
u

a
ls

w
h

o
g
o

to
h

o
sp

it
a
ls

ν
—

S
ee

T
a
b

le
3

sc
a
li
n

g
co

n
st

a
n
t

w
h

er
e

1
−
ν

re
p

re
se

n
ts

eff
ec

ti
v
en

es
s

o
f

h
ea

lt
h

ca
re

w
o
rk

er
s

in
re

d
u

ci
n

g
E

V
D

d
ea

th
ra

te

Vax

ε
—

1
p

ro
p

o
rt

io
n

o
f

in
d

iv
id

u
a
ls

in
w

h
o
m

th
e

v
a
cc

in
e

is
eff

ec
ti

v
e

[3
1
]

ρ
L

—
S

ee
S

ec
ti

o
n

5
p
ro

p
o
rt

io
n

o
f

lo
w

su
sc

ep
ti

b
le

p
o
p

u
la

ti
o
n

(S
L

)
w

h
o

g
et

v
a
cc

in
a
te

d
p

er
y
ea

r

ρ
H

—
S

ee
S

ec
ti

o
n

5
p
ro

p
o
rt

io
n

o
f

h
ig

h
su

sc
ep

ti
b

le
p

o
p

u
la

ti
o
n

(S
H

)
w

h
o

g
et

v
a
cc

in
a
te

d
p

er
y
ea

r

ρ̂
—

S
ee

S
ec

ti
o
n

5
p
ro

p
o
rt

io
n

o
f

h
ea

lt
h

ca
re

w
o
rk

er
s

(S
W

)
w

h
o

g
et

v
a
cc

in
a
te

d
p

er
y
ea

r

ψ
1
/d
a
y
s

S
ee

se
ct

io
n

3
m

ig
ra

ti
o
n

ra
te

o
f

h
ea

lt
h

ca
re

w
o
rk

er
s

in
to

th
e

p
o
p

u
la

ti
o
n

µ
1
/d
a
y
s

1
1
.0
3
/(

1
,
0
0
0
)(
3
6
5
)

n
a
tu

ra
l

d
ea

th
ra

te
p

er
d

a
y

p
er

1
,0

0
0

in
d

iv
id

u
a
ls

[1
6
]

Ω
p
e
o
p
le
/d
a
y
s

3
7
.4
/(

1
,
0
0
0
)(
3
6
5
)

n
a
tu

ra
l

b
ir

th
ra

te
p

er
d

a
y

p
er

1
,0

0
0

in
d

iv
id

u
a
ls

[1
6
]

κ
1
/d
a
y
s

1
/5
.5

ra
te

a
t

w
h

ic
h

in
d

iv
id

u
a
ls

b
ec

o
m

e
sy

m
p

to
m

a
ti

c
a
n

d
in

fe
ct

io
u

s
[4

5
]

1
/γ

d
a
y
s

9
in

fe
ct

io
u

s
p

er
io

d
o
f

in
d

iv
id

u
a
ls

w
h

o
a
re

n
o
t

in
h

o
sp

it
a
ls

[5
0
]

1
/γ̂

d
a
y
s

7
in

fe
ct

io
u

s
p

er
io

d
o
f

in
d

iv
id

u
a
ls

w
h

o
a
re

in
h

o
sp

it
a
ls

δ
—

0
.7

3
p

ro
p

o
rt

io
n

o
f

in
d

iv
id

u
a
ls

w
h

o
d

ie
fr

o
m

E
b

o
la

[1
2
]

φ
p
e
o
p
le

0
.0

0
0
3
9
N

(0
)

n
u

m
b

er
o
f

h
ea

lt
h

ca
re

w
o
rk

er
s

in
th

e
p

o
p

u
la

ti
o
n

p
ri

o
r

to
o
u

tb
re

a
k

[1
6
]

λ
1
/d
a
y
s

1
/5

b
u

ri
a
l

ra
te

o
f

d
ec

ea
se

d
in

d
iv

id
u

a
ls

w
h

o
w

er
e

n
o
t

in
h

o
sp

it
a
ls

λ̂
1
/d
a
y
s

1
/2

b
u

ri
a
l

ra
te

o
f

d
ec

ea
se

d
in

d
iv

id
u

a
ls

w
h

o
w

er
e

in
h

o
sp

it
a
ls

[5
0
]

η
1
/d
a
y
s

1
/1

5
0

ra
te

a
t

w
h

ic
h

re
co

v
er

in
g

a
n

d
st

il
l

in
fe

ct
io

u
s

in
d

iv
id

u
a
ls

b
ec

o
m

e
n

o
n

-i
n

fe
ct

io
u

s
[1

8
,

1
5
]

σ
H

1
/d
a
y
s

κ
ra

te
a
t

w
h

ic
h

in
d

iv
id

u
a
ls

m
o
v
e

fr
o
m

lo
w

ri
sk

to
h

ig
h

ri
sk

su
sc

ep
ti

b
le

p
o
p

u
la

ti
o
n

s

σ
L

1
/d
a
y
s

1
/
(1
/γ

+
1
/λ

)
ra

te
a
t

w
h

ic
h

in
d

iv
id

u
a
ls

m
o
v
e

fr
o
m

h
ig

h
ri

sk
to

lo
w

ri
sk

su
sc

ep
ti

b
le

p
o
p

u
la

ti
o
n

s



344 ERIN N. BODINE, CONNOR COOK AND MIKAYLA SHORTEN

The infectious period of individuals who go to hospitals with Ebola symptoms
(1/̂γ) was estimated to be slightly faster than the known infectious period of those
individuals who did not go to hospitals (1/γ). Additionally, the burial rate of in-
dividuals who do not go to hospitals (λ), was estimated to be slightly lower than

for hospitalized EVD patients (λ̂) because there were no regulations affecting the
burials of those who died of EVD outside of hospitals. However, we assume that the
burial rate of deceased individuals who were not hospitalized still removes infectious
dead bodies within the seven days in which they are still infectious [51].

The parameters σH and σL, the rates at which individuals move between the
low and high susceptible classes, were estimated using parameters that already had
known literature values. We assume the rate at which individuals move from low
to high exposure (σH) is the same rate at which individuals become symptomatic
and infectious (κ). We assume the rate at which individuals move from high to
low exposure (σL) is equal to the inverse of the sum of the number of days it takes
individuals who did not go to hospitals to recover or die (1/γ) and the number of
days it takes for those individuals who die from EVD not in hospitals to be buried
(1/λ); that is, σL = 1/ (1/γ + 1/λ).

The migration rate of healthcare workers into the population due to the outbreak
(ψ) varied by response plan. It is assumed that when no response plan had been
implemented, there was less influx of healthcare workers (ψ = 0.0005/7, an increase
of 0.0005 healthcare workers per infectious individual per week). However, when
response plans were put into place, the rate at which healthcare workers entered
the population increased (ψ = 0.002/7, an increase of 0.002 healthcare workers per
infectious individual per week).

The transmission rates within our model are a product of the rate at which sus-
ceptible individuals come into contact with infectious individuals and the probability
that a single infectious contact will transmit the virus to a susceptible individual.
Unique transmission rates are used for each susceptible class and for each mode of
transmission (i.e., from infectious individuals and infectious dead bodies). See Table
1 for the definition of each transmission rate and Table 3 for transmission rate val-
ues used. The implementation of the response plans resulted in behavioral changes
that altered contact rates and thus transmission rates. Using incidence data from
the CDC [9] and System (1), we have estimated the transmission rates βH1 , βH2 ,
βL1 , βL2 , βW1 , βW2 , and β3 for each response period. Additionally, the proportion
of individuals who go to hospitals once infected (α), as well as the effectiveness of
the healthcare workers in reducing deaths due to EVD (1 − ν), changed over the
different response periods. Thus we have also fitted the values of α and ν for each
response period. Note that the smaller the value of ν, the greater the reduction in
deaths due to EVD in hospitals.

3.1. Fitting β, α, and ν values. For each response period, n = 5000 possible
parameter sets were generated using Latin Hypercube sampling (LHS) over the
uniform distributions for the β, α, and ν parameters given in Table 3 (each column
represents a single response period). See [6, 5] for a detailed description and example
of LHS. For each parameter set for the first response period, t ∈ [0, 95], System (1)
is used to simulate the EVD outbreak in Sierra Leone from April 27, 2014 to July
31, 2014. For a given parameter set i, where i = 1, . . . , n, we define CIi(t) and
CDi(t) as the cumulative number of infections and deaths, respectively, up to time
t as estimated by System (1), where
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CIi(t) =

∫ t

0

κE(u) du and CDi(t) =

∫ t

0

γδI(u) + γ̂δν
φ

φ+ SW (u) + VW (u)
du.

The parameter set that best describes the outbreak over this time period minimizes
the weighted error

hi =
∑
t∈τ

√
w(t)

[
(CDi(t)− CD∗t )

2
+ (CIi(t)− CI∗t )

2
]
, (2)

where CI∗t and CD∗t are the cumulative number of infections and deaths, respec-
tively, as reported by the CDC [9] at time t, and τ is the set of times at which the
CDC provides data for the cumulative number of infections and deaths for a given
time period. The weight function w(t) in Equation (2) prioritizes the model more
closely matching the data at the end of a time period, and is given by

w(t) = 1− 0.5e−a(t−b),

where the values of a and b for each intervention period are given in Table 2.

Table 2. Weight equation parameter values for each response period.

t ∈ [0, 95] t ∈ [95, 202] t ∈ [202, 248] t ∈ [248, 460] t ∈ [460, 647]

a 0.015 0.030 0.060 0.013 0.013

b 40 20 10 50 45

Next, for each parameter set for the second response period, t ∈ [95, 202], System
(1) is used to simulate the EVD outbreak in Sierra Leone from July 31, 2014 to
November 15, 2014. Each simulation uses as its initial conditions the terminal
conditions from the first response period using the parameter set that minimized
the weighted error (Equation (2)). The cumulative number of infections and deaths
are calculated over the time period for each simulation (i.e., each parameter set).
The parameter set that best describes the outbreak over this second response period
is the one that minimizes the weighted error given the CDC cumulative infection
and death data for July 31, 2014, through November 15, 2014 [9].

The process is repeated for response periods t ∈ [202, 248], t ∈ [248, 460], and
t ∈ [460, 647], each time using as the initial conditions the terminal conditions of the
previous response period generated from the parameter set minimizing the weighted
error (Equation (2)). The β, α, and ν values found using this method are shown in
Table 3. The number of data points for each time period (21 in [0, 95]; 33 in [95, 202];
9 in [202,248]; 31 in [248, 460]; 26 in [460, 647]) is relatively low when compared to
the number of parameters being fit (9 parameters), and thus this method cannot
be guaranteed to uniquely identify the fitted parameters. However, in the absence
of more data, we accept these parameter estimations as sufficient for predicting the
cumulative infections and deaths of the 2014 EVD outbreak according to our model.

The results in Table 3 show that the proportion of infected individuals who seek
medical treatment (α) was higher in the time periods in which intervention measures
were in place compared to the time period where there was no response. Further-
more, the value of α was substantially higher (> 65%) by the time both the WHO
Phase 1 and UNMEER plans were in place (i.e., t > 202). Table 3 also reveals
that the transmission rates (β parameters) did not decrease for all subpopulation
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Table 3. Values of fitted parameters for each response period.
The range of the uniform distribution for each parameter for each
response period is shown above the fitted parameter value.

t∈ [0, 95] t∈ [95, 202] t∈ [202, 248] t∈ [248, 460] t∈ [460, 647]

βH
1

[0.45, 0.80] [0.30, 0.80] [0.30, 0.80] [0.20, 0.80] [0.20, 0.80]

0.651 0.441 0.336 0.586 0.640

βH
2

[0.45, 0.80] [0.30, 0.80] [0.30, 0.80] [0.20, 0.80] [0.20, 0.80]

0.471 0.437 0.671 0.572 0.376

βL
1

[0.10, 0.45] [0.10, 0.30] [0.10, 0.30] [0.01, 0.20] [0.01, 0.20]

0.163 0.263 0.212 0.198 0.182

βL
2

[0.10, 0.45] [0.10, 0.30] [0.10, 0.30] [0.01, 0.20] [0.01, 0.20]

0.294 0.139 0.204 0.143 0.146

βW
1

[0.10, 0.80] [0.10, 0.80] [0.10, 0.80] [0.01, 0.80] [0.01, 0.80]

0.436 0.319 0.296 0.356 0.532

βW
2

[0.10, 0.80] [0.10, 0.80] [0.10, 0.80] [0.01, 0.80] [0.01, 0.80]

0.720 0.753 0.325 0.348 0.322

β3
[1×10−7 , 0.001] [1×10−7 , 0.001] [1×10−7 , 0.001] [1×10−7 , 0.001] [0.1×10−7 , 0.001]

0.000765 0.0000861 0.000961 0.000596 0.000996

α
[0.25, 0.75] [0.25, 0.75] [0.25, 0.75] [0.25, 0.75] [0.25, 0.75]

0.407 0.572 0.744 0.659 0.723

ν
[0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0]

0.691 0.019 0.022 0.483 0.156

as the response strategies were implemented. In fact, some β values decreased dur-
ing initial response periods and then increased for later response periods. Lastly,
Table 3 shows that, during the response periods with intervention measures, heath-
care workers were more effective at reducing deaths due to EVD than during the
no-reponse period (t ∈ [0, 95]). In fact, the parameter fitting suggests that the
healthcare workers were most effective in reducing deaths due to EVD during the
WHO Phase 1 intervention period (t ∈ [95, 248]).

Figure 4 shows the cumulative number of infections and deaths over time as
reported by the CDC (points) and as predicted by the model (solid curve) simulated
over t ∈ [0, 647] using the parameter sets for each response period that minimizes
the weighted error (Equation (2)).

4. Reproduction numbers. Epidemic reproduction numbers provide a measure
of the severity of an outbreak of an infectious disease. The most commonly calcu-
lated reproduction number is the basic reproduction number, R0, which measures
the number of secondary infections that a single infected individual causes in a
completely susceptible population [29]. Additionally, the derivation of R0 using the
next-generation method (see [23]) provides a threshold condition determining the
stability of the disease-free equilibrium. Specifically, the introduction of an initial
infection with conditions under which R0 > 1 leads to an epidemic, while outbreaks
with R0 < 1 will die out. In Section 4.1, we derive and evaluate R0. However, since
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(a) Cumulative infections (b) Cumulative deaths

Figure 4. Model (solid curve) fit to CDC data (points) [9] of
cumulative infections (A) and deaths (B) over the five distinct in-
tervention periods given in Figure 2.

the estimated value of R0 is only valid using parameter values representing the be-
ginning of an outbreak, and the β, α, and ν parameters change with each response
period, we calculate the time-dependent actual reproduction number, RA(t) (see
Section 4.2). In Section 4.3 we define the effective reproduction number and discuss
why it is an inappropriate measure for this model of the 2014 EVD outbreak.

4.1. Basic reproduction number, R0. An expression for R0 in terms of model
parameters is derived using the next-generation method [23], which determines the
stability of the disease-free equilibrium. For the model described in System (1), the
disease-free equilibrium is

S∗H = E∗ = I∗ = Î∗ = R∗I = D∗ = D̂∗ = B∗ = 0

S∗L =
Ω

ερL + µ
, S∗W =

ψφ

ερ̂+ µ
, R∗ =

ΩερL
µ(ερL + µ)

, V ∗W =
ερ̂ψφ

µ(ερ̂+ µ)
,

and the expression for R0 is

R0 = [µ(γ̂λ̂(βL2 γδ(η + µ) + λ(−β3γ(δ − 1) + βL1 (η + µ)))(µ+ ερW )(µ+ ψ)Ω +

α(γλ(η + µ)(µ+ ερL)φψ(βW2 γ̂δµν + βW1 λ̂(µ+ ψ))− γ̂λ̂(µ+ ερW )

(βL2 γδ(η + µ)(µ+ ψ) + λ(β3γδ(µ(ν − 1)− ψ) + βL1 (η + µ)(µ+ ψ)))Ω))]/

[γγ̂λλ̂(η + µ)(µ+ ερL)(µ+ ερW )(µ+ ψ)(φψ + Ω)].

Evaluating R0 using the parameter values found in Table 1 and the first column
of Table 3, we find R0 = 1.33. This is consistent with estimates of R0 for the 2014
EVD outbreak in Sierra Leone using other models that estimated 1.26 < R0 < 2.53
[2, 35, 59]. Since R0 > 1, the disease-free equilibrium is unstable and the initial
outbreak will start to spread through the population, which is what occurred in
Sierra Leone.
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4.2. Actual reproduction number, RA(t). The actual reproduction number for
an outbreak, RA(t), is defined as the average number of secondary cases caused by
an individual who is infectious at time t [3]. It is calculated using the prevalence
and incidence of infections, and measures the extent of the disease in a population
at any time during the outbreak [3]. The prevalence at time t, denoted p(t), is
the total number of infected individuals in the population at time t. For the EVD
model described by System (1),

p(t) = I(t) + Î(t) +RI(t) +D(t) + D̂(t).

The incidence at time t ≥ 1, denoted j(t) with t measured in days, is the number
of new infections generated over the course of one day, [t− 1, t]. For System (1),

j(t) =

∫ t

t−1

κE(s) ds.

Give the incidence and prevalence, the actual reproduction number is defined as

RA(t) = ξ
j(t)

p(t)
,

where ξ is the average duration of infectiousness [3]. Since System (1) contains
multiple infectious classes and each class has a different length of infectiousness, ξ
is calculated as a weighted average of the infection length of each infectious class;
ξ is weighted by the proportion of individuals who enter each infectious class (i.e.,
the proportion who go to hospitals (α) and the proportion who die (δ)). Thus

ξ = (1− α)
1

γ
+ α

1

γ̂
+ δ

(
(1− α)

1

γ
+ α

1

γ̂

)
+ (1− δ) 1

η
.

Figure 5 shows RA(t) over the entire time horizon, where the fitted value of α
for each time period (see Table 3) is used. Within the first response period we
see a spike in the actual reproduction number. This is due to the fact that at
the beginning of an epidemic the prevalence level will be low, but the incidence
level can be relatively large, as was the case in the first several weeks of the 2014
EVD outbreak. It is not until the third response period that RA(t) drops below
1. Thus it is not until the combination of the WHO Phase I response and the
implementation of UNMEER that the average infectious individual is infecting less
than one susceptible individual. The value of RA(t) falling below 1 indicates that
the epidemic would begin to die out, and, indeed, the points of inflection in the
cumulative infection and death curves (see Figure 4) also occur within the third
time period.

The average actual reproduction number for the ith time period [ti, ti+1] is

R̄iA =
1

ti+1 − ti

∫ ti+1

t=ti

RA(s) ds,

where t0 = 0, t1 = 95, t2 = 202, t3 = 248, t4 = 460, and t5 = 647. The average
actual reproduction number for each time period is shown in Table 4.

4.3. Effective reproduction number, RE(t). The effective reproduction num-
ber, RE(t), measures the number of secondary cases caused by an infectious in-
dividual in a population that is not completely näıve to the disease. Specifically,
RE(t) accounts for a population’s reduced susceptibility due to previous exposure
or vaccination [17]. In general, the effective reproduction number is defined as the
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Figure 5. RA(t) for response periods [0, 95] (red), [95, 202] (blue),
[202, 248] (orange), [248, 460] (green), and [460, 647] (purple).

Table 4. R̄A(t) for each response period.

Response period R̄A(t)

t ∈ [0, 95] 3.31

t ∈ [95, 202] 1.88

t ∈ [202, 248] 0.90

t ∈ [248, 460] 0.27

t ∈ [460, 647] 0.16

product of the basic reproduction number and the proportion of the population
that is susceptible [17, 13, 54]. For the model described by System (1),

RE(t) = R0

(
SH(t) + SL(t) + SW (t)

N(t)

)
. (3)

It should be noted that RE(t) is not constructed to define a threshold describing
when an epidemic will occur, as is the case with R0. Instead, RE(t) scales the
value of R0. Furthermore, since the effective reproduction number is defined in
terms of R0 and since R0 is only valid using parameter values representing the
beginning of an outbreak, RE(t) would only be a valid reproduction number over
the first response period, t ∈ [0, 95]. Thus, we do not use the effective reproduction
number in our analysis of the effectiveness of the implemented responses to the 2014
outbreak or our analysis of the potential impact of an Ebola vaccine.

5. Use of a prophylactic vaccine. The magnitude of the 2014 EVD outbreak in
West Africa hastened the development of a vaccine against Ebola. In July 2015, it
was reported that the rVSV-ZEBOV vaccine showed 100% (95% CI 74.7–100.0; p =
0.0036) efficacy in those vaccinated immediately after confirmation of an infected
contact [32, 31]. The vaccine was less effective for individuals for whom vaccination
was delayed to 21 days after confirmation of an infected contact [32, 31]. To examine
the potential impact of the rVSV-ZEBOV vaccine, we (1) evaluated the impact of
administering the vaccine during each phase of the outbreak (see Section 5.1), and
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(2) determined the proportion of the population that would need to be vaccinated
prior to an initial infection in order to prevent an epidemic (see Section 5.2).

5.1. Distribution of a prophylactic vaccine during the outbreak. Though a
prophylactic vaccine is designed to be administered to individuals prior to exposure
in order to prevent an outbreak, if a prophylactic vaccine against ebolavirus had
existed during the beginning of the 2014 EVD outbreak in West Africa, it likely
would have been administered to individuals not yet exposed to the virus (the
susceptible population). To determine what impact this would have had on the
outbreak, using System (1), we calculated the cumulative number of infections and
deaths that would have occurred in Sierra Leone if a vaccination campaign had
started at t = 95 with the beginning of the WHO Phase I response, at t = 202 with
the beginning of the UNMEER intervention strategy, at t = 248 with the beginning
of the WHO Phase 2 response, or at t = 460 with the beginning of the WHO
Phase 3 response. These calculations were compared with the cumulative infections
and deaths predicted by System (1) in the absence of a vaccination campaign, thus
yielding the number of infections and deaths that would have been prevented by a
vaccination campaign.

We consider four different vaccination strategies. In each case, we assume that
the vaccine has 100% efficacy (ε = 1) [32, 31]. The first two strategies vaccinate
90% of healthcare workers (SW ) over one year (ρ̂ = 0.9/365) and either 30% of
the general susceptible population (SH + SL) over one year (ρH = ρL = 0.3/365,
a moderate vaccination campaign) or 90% of the general susceptible population
(ρH = ρL = 0.9/365, an ambitious vaccination campaign). We also consider two ring
vaccination strategies. Ring vaccination is an ambitious vaccination strategy which
requires a list of contacts, as well as contacts of contacts, of an infectious individual
to be traced and vaccinated as quickly as possible after their possible exposure
to the virus [31]. In each ring vaccination strategy we assume 99% of healthcare
workers (SW ) are vaccinated each week (ρ̂ = 0.99/7), 95% of the highly susceptible
individuals are vaccinated every three weeks (ρH = 0.95/21), and either 1% of low
susceptible individuals are vaccinated over one year (ρL = 0.01/365) or 30% of low
susceptible individuals are vaccinated over one year (ρL = 0.3/365).

Table 5 shows the cumulative number of infections and deaths prevented if the
vaccination campaign had been introduced at the beginning of each of the inter-
vention periods. If the moderate vaccination campaign (the first strategy discussed
above and in Table 5) had begun with the first intervention response (WHO Phase
1 starting at t = 95), then our model predicts 5,573 infections and 1,678 deaths
would have been prevented in Sierra Leone. Though this is a significant improve-
ment over the baseline of the no-vaccination campaign, it still fails to prevent over
60% of the predicted cumulative infections and over 60% of the predicted cumulative
deaths. Furthermore, the later the beginning of the vaccination campaign occurs
(as t increases), the fewer infections and deaths there are prevented. Given that the
primary efficacy results of the rVSV-ZEBOV vaccine were published in July 2015,
if the vaccination campaign had started shortly thereafter with the implementation
of the WHO Phase 3 response plan (t = 460; July 31, 2015), only 111 infections
and 24 deaths would have been prevented. The case of the more ambitious vac-
cination campaign (the second strategy discussed above and in Table 5) results in
the prevention of greater numbers of infections and deaths. However, even if the
more ambitious vaccination campaign had started with the beginning of the WHO
Phase 1 response (t = 95), there still would have been over 5,100 infections and
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Table 5. Impact of prophylactic vaccine distributed during the
outbreak on cumulative infections and deaths

Cumulative Infections Cumulative Deaths

at tf Prevented at tf Prevented

Baseline∗ 14 436 0 4416 0

ρ̂ = 0.9/365

S
ta

rt
v
a
x

a
t t = 95 8863 5573 2738 1678

ρL = 0.3/365 t = 202 12 583 1853 3837 579

ρH = 0.3/365 t = 248 13 225 1211 4050 366

t = 460 14 325 111 4392 24

ρ̂ = 0.9/365

S
ta

rt
v
a
x

a
t t = 95 5138 9298 1656 2760

ρL = 0.9/365 t = 202 11 075 3361 3343 1073

ρH = 0.9/365 t = 248 12 168 2268 3708 708

t = 460 14 173 263 4357 59

ρ̂ = 0.99/7

S
ta

rt
v
a
x

a
t t = 95 13 999 437 4283 133

ρL = 0.01/365 t = 202 14 285 151 4369 47

ρH = 0.95/21 t = 248 14 351 85 4391 25

t = 460 14 429 7 4415 1

ρ̂ = 0.99/7

S
ta

rt
v
a
x

a
t t = 95 8821 5615 2726 1690

ρL = 0.3/365 t = 202 12 553 1883 3827 589

ρH = 0.95/21 t = 248 13 211 1225 4046 370

t = 460 14 323 113 4391 25

∗Cumulative number of infections or deaths at t = 647, as predicted by System (1) with parameters
from Tables 1 & 3, when no prophylactic vaccine is administered.

over 1,600 deaths, which is considerably larger than any previous EVD outbreak
(the largest previous outbreak having occurred in Uganda in 2000-2001 with 425
infections and 224 deaths [12]). The two ring vaccination campaigns show very
little to no improvement over the moderate vaccination campaign. This means that
it would be a waste of time and resources to utilize a ring vaccination campaign
during an outbreak with similar transmission rates to those that were present in
the 2014 West Africa outbreak.

5.2. Calculating the vaccination threshold. A prophylactic vaccine is designed
to be administered prior to exposure in order to prevent an outbreak. Thus we
determined the proportion of the population that would have needed to have been
vaccinated prior to the 2014 EVD outbreak in Sierra Leone in order to prevent that
outbreak from occurring; we refer to this proportion as the vaccination threshold.

The vaccination threshold is determined by simulating System (1) assuming no
intervention and with the same initial conditions as described in Section 3 (but with
only one initially infected individual). Additionally, at time t = 0 a proportion x of
the general population (SH+SL) and a proportion y of the healthcare workers (SW )
have been vaccinated and are thus moved to the R and VW classes, respectively.
Specifically, SH(0) = 5(1−x)I(0), I(0) = 1, SW (0) = 0.00039(1−y)N(0), VW (0) =
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0.00039yN(0), R(0) = xN(0), SL(0) = N(0)−SH(0)−I(0)−SW (0)−VW (0)−R(0),

and E(0) = Î(0) = RI(0) = D(0) = D̂(0) = B(0) = 0, where N(0) is the population
size of Sierra Leone. We refer to x as the vaccination coverage.

Given that healthcare workers are at a greater risk of exposure during an out-
break, we assume that any efforts to vaccinate a population against ebolavirus
prior to an outbreak would preferentially vaccinate healthcare workers. Thus, if
x > 0, then we assume 95% of the healthcare workers will have been vaccinated
as well (i.e., y = 0.95). The day of the outbreak’s peak is defined as t∗ such that

I(t∗) + Î(t∗) = max
t

[
I(t) + Î(t)

]
. We determine the minimum x for which t∗ = 0,

i.e., the outbreak never “takes off”.

Table 6. Effect of vaccination prior to an initial outbreak (1 in-
fected). Vaccination coverage of healthcare workers is 0% when
x = 0 and 95% otherwise.

Vaccination strategy for t > 0
ρL = 0 ρL = 0.3/365 ρL = 0.01/365 ρL = 0.3/365

ρH = 0 ρH = 0.3/365 ρH = 0.95/21 ρH = 0.95/21

ρ̂ = 0 ρ̂ = 0.9/365 ρ̂ = 0.99/7 ρ̂ = 0.99/7

CI t∗ CI t∗ CI t∗ CI t∗

0 4,156,370 495 3,743,965 516 650,846 492 2,643,460 492

0.10 3,064,971 648 2,506,362 694 1,853,742 644 1,845,334 644

0.20 1,866,043 974 1,026,659 1138 1,040,091 987 1,030,788 988

0.29 764,174 1990 37 103 188,898 2267 188,898 2267

0.30 646,329 2270 33 0 82,717 2546 82,717 2546

0.31 529,673 2657 29 0 19,911 2502 19,911 2502

0.32 414,210 3213 25 0 3866 2091 3866 2091

0.33 300,060 4090 23 0 954 1570 954 1570

0.34 171,811 5697 20 0 325 1023 325 1023

0.35 13,195 7300 18 0 147 0 147 0

0.36 431 0 16 0 81 0 81 0

0.40 26 0 20 0 23 0 23 0

0.50 7 0 7 0 7 0 7 0

0.60 4 0 4 0 4 0 4 0

0.70 2 0 2 0 2 0 2 0

0.80 2 0 2 0 2 0 2 0

0.90 1 0 1 0 1 0 1 0

t∗ is the day at which the peak number of cases occurs; CI represents cumulative infections calcu-

lated once I(t) + Î(t) < 1

Table 6 shows the effect of vaccination prior to an initial outbreak given various
levels of vaccination coverage (x). For each proportion x, System (1) is simulated
using parameters representing four vaccination scenarios. All four scenarios as-
sume no intervention other than vaccination, and thus the model is simulated with
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parameters from Table 1 and the first column of Table 3. The first scenario as-
sumes vaccination only occurs prior to t = 0 (i.e., ρL = ρH = ρ̂ = 0); the second
scenario assumes there is a continuing vaccination campaign using the parameters
of the moderate vaccination campaign from Section 5.1 (i.e., ρL = ρH = 0.3/365,
ρ̂ = 0.9/365); the third scenario assumes a ring vaccination strategy with ambitious
vaccination levels for healthcare workers (SW ) and the highly susceptible popu-
lation (SH) (i.e., ρL = 0.01/365, ρH = 0.95/21, ρ̂ = 0.99/7), and lastly the fourth
scenario assumes an even more ambitious ring vaccination strategy with ambitious
levels of vaccination for healthcare workers (SW ), the highly susceptible population
(SH), and also the low susceptible population (SL) (i.e., ρL = 0.3/365, ρH = 0.95/21,

ρ̂ = 0.99/7). Each simulation is run until I(t) + Î(t) < 1; i.e., no new cases. In
addition to calculating the day of the outbreak’s peak (t∗), the cumulative number
of cases is calculated for each simulation.

In the first scenario, where vaccination only occurs prior to t = 0, if as little as
36% of the general susceptible population is vaccinated prior to an initial infection
(1 initial case), then the outbreak is unable to spread through the population (i.e.,
t∗ = 0). If there is a continuing vaccination campaign beyond t = 0, then as little
as 30% of the general susceptible population needs to be vaccinated prior to an
initial infection. With both of the ring vaccination strategies, as little as 35% of the
general susceptible population needs to be vaccinated prior to an initial infection.

In all four scenarios in Table 6, the proportion of the individuals in the E class
entering the hospital is 40.7% (α = 0.407) and the effectiveness of hospital workers
in preventing deaths due to EVD is 30.9% (1 − ν = 0.309). Since the parameters
α and ν both represent critical elements in controlling and EVD outbreak, using
System (1) we calculated the cumulative number of cases for varying values of α
and ν, along with varying values in vaccination coverage (x) and the proportion of
the low susceptible population which is vaccinated per year (ρL × 365). All other
parameter values were taken from Table 1 and the first column of Table 3 (the same
used in generating Table 6) except that we assumed ρH = 0.95/21 and ρ̂ = 0.99/7.
The matrix plots in Figure 6 show the relationships between α, ν, x, and ρL. Taken
together, the graphs in Figure 6 show that the cumulative number of infections (CI)
is most sensitive to changes in α and x, and least sensitive to changes in ν.

6. Discussion. We have proposed a model that simulates the temporal dynam-
ics of an EVD outbreak. We used this model, along with cumulative infections
and death data from the CDC, to determine subpopulation-specific transmission
rates (β’s), the proportion of symptomatic individuals who sought medical treat-
ment (α), and the effectiveness of healthcare workers to reduce deaths due to EVD
(ν) for each response period over the course of the outbreak. The parameter fit-
ting showed that the proportion of symptomatic individuals who sought medical
treatment was substantially higher in the time periods where the WHO and UN
were providing intervention measures as compared to the time period where there
was no response. One of the means by which the WHO and UN planned to slow
transmission was to get more symptomatic individuals to hospitals and clinics. Our
model indicates that the WHO and UN were successful in their efforts. Addition-
ally, the parameter fitting revealed that healthcare workers were most effective in
reducing deaths due to EVD during the WHO Phase 1 response period. Lastly, the
parameter fitting also revealed that the transmission rates (β parameters) did not
decrease for all subpopulations as the WHO and UN response strategies were imple-
mented, demonstrating that the effects of controls strategies on the transmission to
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(a) ν = 0.691, ρL = 0.01/365 (b) x = 0, ρL = 0.01/365

(c) x = 0, ν = 0.691

Figure 6. Matrix plots displaying the sensitivity of the parame-
ters α, x, ν, and ρL to the cumulative number of infected individu-
als (CI) during a ring vaccination scenario with ε = 1, ρH = 0.95/21,
and ρ̂ = 0.99/7.

specific subpopulations can be non-intuitive and are thus aided by the examination
of mathematical models.

We also used our model to show that, even if there had been an ambitious rVSV-
ZEBOV vaccination campaign during the 2014 EVD outbreak, it would not have
been enough to halt the epidemic. This is due to the fact that rVSV-ZEBOV is a
prophylactic vaccine designed to prevent infection and does not treat those already
infected. To determine the effectiveness of the rVSV-ZEBOV vaccine in preventing
an outbreak we calculated the vaccination threshold. Based on our findings
we recommend that the Sierra Leone government aim to vaccinate at
least 95% of their healthcare workers and 40% of the general population.
Compared to vaccination thresholds needed to achieve herd immunity [30] in other
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diseases (≥ 70% for diseases like polio [42], smallpox [4, 24], and measles [28]), this is
a relatively low vaccination threshold. Of course, higher vaccination coverage with
rVSV-ZEBOV of general population will provide greater protection. By the end
of the 2014 EVD outbreak in Sierra Leone roughly 17,000 individuals had survived
the disease and would thus have immunity. Though this is a sizable number, it is
still less than 1% of the total population of Sierra Leone and is thus not sufficient
for preventing another outbreak. Additionally, if another outbreak does occur,
our findings show that efforts spent on increasing the proportion of infected who
seek treatment from healthcare professionals will provide the greatest reduction
in cumulative infections if it can be assume that individuals, once in a hospital
or healthcare facility, are no longer able to transmit the disease to the general
population, thus acting as a type of quarantine.

Since the waning of the 2014 EVD outbreak, there have been flare-ups. For
example, in late February and early March 2016, there were eight EVD cases in
Guinea after the outbreak had been declared over on December 29, 2015 [61]. These
flare-ups are due to the virus remaining present in individuals who are recovering
and show the importance of the inclusion of the RI class in the model. Though
our model cannot predict flare-ups due to its lack of stochasticity, the inclusion of
the RI class does allow for an outbreak to persist longer in a population before
self-extinguishing. In response to the March 2016 flare-up in Guinea, hundreds of
individuals who were in contact with the eight infected were identified and vacci-
nated using a ring-vaccination strategy [61]. Though the model we propose is not
a network model and thus cannot explicitly simulate ring vaccination, the division
of the general susceptible population into high and low risk of exposure provides a
means for examining the effects of a ring vaccination strategy through differential
vaccination rates of the high and low risk susceptible individuals. Our results show
that given an outbreak, a greater reduction in cumulative infections will be achieved
through a moderate vaccination campaign that does not distinguish between high
and low susceptible individuals than with a ring vaccination campaign. This is due
to the fact that the RI class remains infectious with a lower transmission probability
for a prolonged period and can infect individuals in the low susceptible class.

In light of the 2014 EVD outbreak in West Africa, ebolavirus has become a disease
of much greater concern than it historically has been. To aid in understanding the
dynamics of the disease, many mathematical models have been proposed. The
novel model we propose adds another tool for understanding EVD dynamics, and
our analysis of this novel model shows the impact of the implemented response
strategies on transmission rates and other parameters in Sierra Leone. Lastly, and
most importantly, our analysis provides a vaccination threshold for the new rVSV-
ZEBOV vaccine in Sierra Leone. Furthermore, the ability of our model in predicting
the outcome of an array of vaccination coverages makes our model a useful tool for
determining future vaccination policy.
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