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Abstract. In this article we describe the transmission dynamics of hantavirus

in rodents using a spatio-temporal susceptible-exposed-infective-recovered

(SEIR) compartmental model that distinguishes between male and female sub-
populations [L.J.S. Allen, R.K. McCormack and C.B. Jonsson, Bull. Math.

Biol. 68 (2006), 511–524]. Both subpopulations are assumed to differ in their

movement with respect to local variations in the densities of their own and the
opposite gender group. Three alternative models for the movement of the male
individuals are examined. In some cases the movement is not only directed by

the gradient of a density (as in the standard diffusive case), but also by a non-
local convolution of density values as proposed, in another context, in [R.M.

Colombo and E. Rossi, Commun. Math. Sci., 13 (2015), 369–400]. An effi-
cient numerical method for the resulting convection-diffusion-reaction system

of partial differential equations is proposed. This method involves techniques of
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weighted essentially non-oscillatory (WENO) reconstructions in combina-
tion with implicit-explicit Runge-Kutta (IMEX-RK) methods for time step-

ping. The numerical results demonstrate significant differences in the spatio-

temporal behavior predicted by the different models, which suggest future re-
search directions.

1. Introduction.

1.1. Scope. Hantavirus (family Bunyaviridae) is a rodent-borne infectious disease
of significant concern as it can generate high case fatality rates in the human pop-
ulation [55]. Transmission of hantavirus from infected rodents, the main known
reservoir of the virus, to humans, typically occurs via inhalation of aerosols con-
taminated by virus shed in excreta, saliva, and urine [36]. Risk of infection with
hantavirus in the human population is facilitated by crowding conditions and close
proximity to rodent populations. Not surprisingly, the total population at risk for
hantavirus infection has increased with urbanization rates. In the Americas, han-
tavirus represents a public health issue particularly in South American countries
including Chile [48]. The great majority of hantavirus cases have been reported
in China, however [64, 65]. A better understanding of the transmission dynam-
ics of hantavirus in rodent populations has the potential to improve interventions
strategies aimed at minimizing the number of infections in the human population.

It is the purpose of this contribution to advance a spatio-temporal compartmental
model of hantavirus infection in rodents with a focus on its efficient numerical solu-
tion. The total population of rodents is subdivided into males and females (indices m
and f), and for each of both subpopulations a variant of the well-known susceptible-
exposed-infective-recovered (SEIR) compartmental model [33] is formulated. The
compartments of male and female individuals are Cm := {Sm, Em, Im, Rm} and
Cf := {Sf , Ef , If , Rf}, respectively, and the final model for

u = (u1, . . . , u8)T = (Sm, Em, Im, Rm, Sf , Ef , If , Rf)
T

as a function of position x ∈ Ω and time t ∈ T := [0, T ] on a bounded domain
Ω ⊂ R2 is given by a convection-diffusion-reaction system of the type

∂u

∂t
+∇ · F c(u) = D∆u+ s(u), (1.1)

supplied with initial and boundary conditions, where the convective fluxes F c(u),
the diffusion matrix D and the vector of reaction terms s(u) are specified in later
parts of the paper. It is proposed to describe the movement of the male individuals
in a particular way that depends non-locally on the density Nf = Sf +Ef + If +Rf

of female individuals, in combination with several alternative local or non-local
dependences on the density Nm = Sm + Em + Im +Rm of male individuals. These
alternatives give rise to three models that will be discussed in parallel, and that
are expressed by the respective choice of F c(u). In any case the movement of the
male individuals is assumed to depend non-locally on Nf . All variants of (1.1)
call for numerical methods that on one hand avoid the severe time step restriction
incurred by explicit time discretizations of the diffusion term D∆u, and on the
other hand allow the efficient computation of numerical fluxes based on the non-
local evaluation of data. As we outline in this paper, the first goal can be achieved
by an implicit-explicit (IMEX) discretization in combination with a technique based
on Fast Fourier Transform (FFT) to handle the second. The simulator constructed
in this way is applied to provide numerical results of several scenarios that allow
comparing the model variants.
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1.2. Related work. First of all, it worth mentioning that general references to the
spatial spread of infectious diseases include [5,22,38,41,52,60]. The basic assumption
of our treatment, namely that all epidemiological compartments are distributed over
the whole spatial domain, is opposed to the alternative metapopulation approach
that describes spatial structure through the relations between a number of well-
identified sub-populations or “patches” (cf., e.g., [3, 6, 7, 18,35,57,58]).

In fact, the description of spatial structure by explicitly specifying the mobilities
between “patches” is typical for characterizing the behavior of humans, who usually
do not “disperse” in response to environmental stimuli (at least not in the relatively
short time scales involved in epidemiological modelling) but undertake directed trav-
els, while a description through a convection-diffusion-reaction mechanism is more
suitable for non-human infectious agents such as spores, insects, and bacteria that
would disperse. The diffusion mechanism is mostly associated with non-human be-
ings is also supported by the fact that classical treatments of diffusion in ecology
only include non-human populations (cf. [41, Ch. 13], [43]). This viewpoint is also
assumed, for instance, in [22, Ch. 10]. Other references to the movement of animals
and spread of diseases by reaction-diffusion equations include [38, 44, 51]. Fur-
thermore, the distinction between metapopulation models and continuous in space
models is also made in the alternative treatments in Sections 4.3 and 4.4 of Sat-
tenspiel [52] and those by van den Driessche [58] and Wu [61] in the same volume.
In the latter, a decisive advantage of the spatially continuous approach, namely
its amenability to mathematical analysis is emphasized. Furthermore, a reaction-
diffusion system based on the well-known non-spatial SIR model [33] is proposed
as a prototype spatio-temporal epidemic model, and the underlying assumptions of
variants of reaction-diffusion models are broadly discussed, with particular reference
to a seminal case study [29,30,42].

A less common ingredient in mathematical epidemiology is the convective term
∇ · F c(u). Related advection terms, for which the essential functional dependence
for one compartment is F c = F c(x, u) = b(x)u with a given velocity b(x), arise if
the population under study is transported (as is the case with wind-borne infectious
agents, plankton, etc.). A slightly different motivation of convective terms was
advanced in [41, Ch. 14] in the context of a wolf territoriality model that describes
directed movement of individuals towards a “den”. Surprisingly, however, nonlinear
convective models are less common in epidemiological applications (although they
are widespread used to describe human behavior of, say, traffic and pedestrian
flows [26,28,56]). Let us emphasize here that the main role of the convective term in
our model is similar to that of [41, Ch. 14] in that it imposes a preferred direction of
movement of (the male) individuals, where the global dependence of the direction is
determined by convolution with population data within a certain horizon of current
position. This idea of non-local dependence of biological fluxes goes back to a non-
local predator-prey model introduced and analyzed by Colombo and Rossi [20], and
for which a numerical scheme is analyzed in [50]. The scheme proposed in that paper
is based on the Lax-Friedrichs scheme for the (hyperbolic) equation (2.11a) for the
ease of demonstrating convergence properties; we here employ higher-order weighted
essentially non-oscillatory (WENO) reconstructions (initially proposed in [27, 37])
to achieve high-order spatial accuracy. (We will further relate our model to that
of [20] in Section 2.3.)

Still within the framework of reaction-diffusion systems (but in simpler versions
than considered here), a number of qualitative analyses of hantavirus models are
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available. For instance, Abramson and Kenkre [1] advance a two-equation reaction-
diffusion model that is a spatial equation of the well-known susceptible-infectious-
susceptible (SIS) model (the assumed population of mice is not structured in any
other way), and demonstrate that one single lumped parameter, the carrying capac-
ity, essentially controls the dynamics of the system; moreover a spatial distribution
of its value explains the formation and disappearance of “refugia”, that is of habi-
tat regions with favorable conditions that influence the spatio-temporal patterns
of hantavirus [2, 34]. Furthermore, based on the Abramson and Kenkre model [1],
Buceta et al. [17] study the the impact of seasonality on hantavirus, with the re-
markable result that the alternation of seasons, each of which associated with a
constant set of epidemiological parameters, may induce the outbreak of Hantavirus
infection even if neither season by itself satisfies the environmental requirements
for propagation of the disease [17]. The same group also investigated the effects of
intrinsic noise on hantavirus spread [24]. Finally, we mention that more recently
the Abramson and Kenkre model was refined to give a stage-dependent model with
delay [46], where a new compartment corresponds to virus-free young mice, and
the new model consists of three ordinary differential equations with delay, or in its
recent spatial version presented in [47], in a reaction-diffusion system with delay
(where the diffusion operator is expressed in radial variables).

From a computational point of view, and coming back to our own model (1.1),
we mention that IMEX Runge-Kutta (IMEX-RK) schemes play an important role.
We therefore briefly provide some background on these methods. Roughly speaking,
an IMEX-RK method for a convection-diffusion-reaction equation of the type (1.1)
consists of a Runge-Kutta scheme with an implicit discretization of the diffusive
term combined with an explicit one for the convective and reactive terms. To
introduce the main idea, we consider the problem

dv

dt
= Φ∗(v) + Φ(v), (1.2)

which is assumed to represent a method-of-lines semi-discretization of (1.1), where
Φ∗(v) and Φ(v) are spatial discretizations of the convective and reactive terms and
of the diffusive term, respectively. Assume, for simplicity, that the spatial mesh
width is h > 0 in both the x- and y-direction. Then the stability restriction on
the time step ∆t that explicit schemes impose when applied to (1.2) is very se-
vere (∆t must be proportional to the square h2 of the grid spacing), due to the
presence of Φ(v). The implicit treatment of both Φ∗(v) and Φ(v) would remove
any stability restriction on ∆t. However, the upwind nonlinear discretization of the
convective terms contained in Φ∗(v) that is needed for stability, makes its implicit
treatment extremely involved. This situation becomes even more complicated due
to the WENO reconstructions. In fact, after the pioneering work of Crouzeix [21],
numerical integrators that deal implicitly with Φ(v) and explicitly with Φ∗(v) can
be used with a time step restriction dictated by the convective-reactive term alone.
These schemes, apart from having been profusely used in convection-diffusion prob-
lems and convection problems with stiff reaction terms [8, 23], have been recently
used to deal with stiff terms in hyperbolic systems with relaxation (see [11–14,45]).
Finally, we mention that many authors have proposed IMEX-RK schemes for the
solution of semi-discretized PDEs [8, 32,45,66].
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1.3. Outline of the paper. The remainder of this work is organized as follows.
The mathematical model is introduced in Section 2, starting from the spatio-
temporal balance equations of a gender-structured SEIR model (in Section 2.1).
The three variants of convective fluxes F c(u) and the diffusion matrix D arising
in (1.1) are specified in Section 2.2, and it is shown in Section 2.3 that the model
arising from ours for Nm and Nf by summing over all compartments in Cm and
Cf , respectively, can be compared with the non-local predator-prey model studied
in [20]. In Section 3 we introduce the numerical scheme. We will use the method of
lines to obtain a spatial semi-discretization of the initial-boundary value problem
of (1.1) in the form of a system of ordinary differential equations (ODEs), to which
a time-stepping procedure will be applied to obtain the final numerical scheme. To
this end we introduce in Section 3.1 the Cartesian grid and discrete unknowns, and
describe in Section 3.2 the discretization of non-local terms as in (2.6) that appear
in the male convective fluxes. Then, in Section 3.3, we introduce the discretization
of the the complete convective flux for the male species. This is essentially done
by WENO reconstruction. The corresponding discretization for the female species
is similar, and is omitted. Next, in Section 3.4 we describe the IMEX-RK time
integrators used to solve the system of ODEs that represents the spatial discretiza-
tion. Section 4 is devoted to the presentation of numerical results. Preliminaries
are introduced in Section 4.1, including a definition of the constants arising in the
model and of the initial scenarios. To make our results comparable with those of [4]
(based on ordinary and stochastic differential equations), we adopt the parameters
corresponding to the epizoology of the rice rat and the Bayou virus utilized in that
paper. On the other hand, Scenario 1 is based on the hypothesis that the initial
population occupies a well-identified subdomain of Ω and therefore the numerical
results also address the phenomenon of biological invasion (besides that of the pro-
gression of epidemic states), while Scenario 2 aims at studying the effect of a random
perturbation of a constant initial state. The corresponding numerical examples are
presented in Sections 4.2 and 4.3, respectively. Furthermore, we provide in Sec-
tion 4.4 an example that shows that the numerical scheme exhibits experimental
second-order convergence when the solution is smooth, and in Section 4.5 present
a test case that addresses the effect of seasonal variability of some of the model
parameters. Conclusions are collected in Section 5.

2. Mathematical model.

2.1. Gender-structured spatio-temporal SEIR model. The model for the
eight unknowns in C := Cm ∪ Cf , as functions of x and t, is given as follows:

∂Sm

∂t
+∇ · FSm

(Sm, Nf , Nm) =
B(Nm, Nf)

2
− Smd(N)− Sm(βfIf + βmIm), (2.1a)

∂Em

∂t
+∇ · FEm

(Em, Nf , Nm) = −Emd(N) + Sm(βfIf + βmIm)− δEm, (2.1b)

∂Im
∂t

+∇ · FIm(Im, Nf , Nm) = δEm − Imd(N)− γmIm, (2.1c)

∂Rm

∂t
+∇ · FRm

(Rm, Nf , Nm) = γmIm −Rmd(N), (2.1d)

∂Sf

∂t
−∇ ·

(
µSf
∇Sf

)
=
B(Nm, Nf)

2
− Sfd(N)− Sf(βfIf + βm,fIm), (2.1e)

∂Ef

∂t
−∇ ·

(
µEf
∇Ef

)
= −Efd(N) + Sf(βfIf + βm,fIm)− δEf , (2.1f)
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∂If
∂t
−∇ ·

(
µIf∇If

)
= δEf − Ifd(N)− γfIf , (2.1g)

∂Rf

∂t
−∇ ·

(
µRf
∇Rf

)
= γfIf −Rfd(N), (2.1h)

where ∇· denotes the (spatial) divergence operator. The right-hand sides of (2.1)
are identical to that of the non-spatial model proposed in [4], i.e., this model, to
which we refer as Model 0 for ease of reference, is recovered if all divergence terms
on the left-hand sides are set to zero and variables are considered to depend on t
only, and the unknowns represent suitably scaled densities. In particular d(N) is
the density-dependent death rate, βf is the contact rate of an infective female with
either a susceptible female or a susceptible male, βm,f is the contact rate of an
infective male with a susceptible female, βm is the contact rate of an infective male
with a susceptible male, δ is the inverse of the average length of the incubation
period (assumed to be the same for males and females), and γm and γf are the
inverse of average length of the infectious periods for males and females, respectively.
Following [4], we assume a harmonic birth function,

B(Nm, Nf) =
2bNmNf

Nm +Nf
,

where b is the average litter size, and regarding the contact rates and infectious
periods, we assume βm ≥ βm,f ≥ βf and γf > γm. The incubation period is the
same for males and females (namely 1/δ), as is the density-dependent death rate

d(N) = a+ cN,

where 0 < a < b/2 and c > 0.

2.2. Convective fluxes and diffusion matrix. The fluxes appearing in the left-
hand sides of the full spatio-temporal model (2.1) have two components for the male
compartments, and one for the female compartments. Several alternative choices
of FX for the males in compartment X ∈ Cm will be considered in parallel and
compared. Model 1 is given by (2.1) along with

FX(X,Nf , Nm) = X
(
κXV (Nf)− µXV (Nm)

)
, (2.2)

where κX ≥ 0 and µX ≥ 0 are constants and V is a non-local velocity function that
will be specified below. Model 2 is given by (2.1) in combination with

FX(X,Nf , Nm) = Xϕ(Nm +Nf)
(
κXV (Nf)− µXV (Nm)

)
, (2.3)

where the function ϕ is given by

ϕ(u) =

{
1− u/K for 0 ≤ u ≤ K,

0 for u < 0 or u > K,
(2.4)

where K is a maximum value (carrying capacity) of the total density. Finally, we
consider Model 3 that is given by

FX(X,Nf , Nm) = XκXV (Nf)− µX∇X, (2.5)

where ∇X is the spatial gradient of X.
The non-local unscaled velocity V is defined as

V (w) =
∇(w ∗ η)√

1 + ‖∇(w ∗ η)‖2
, (2.6)
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where η denotes a radial convolution kernel with radius ε, i.e., η is a piecewise
smooth function such that η(x) = η(‖x‖2), η(x) ≥ 0, η(x) = 0 for ‖x‖ > ε, and∫
R2 η(x) dx = 1, i.e., for any function w defined on Ω × T and x ∈ Ω such that

Bε(x) := {y ∈ R2 : ‖y − x‖ < ε} ⊂ Ω, we have

(w(·, t) ∗ η)(x) =

∫
Bε(x)

w(y, t)η(x− y) dy =

∫
R2

w(y, t)η(x− y) dy.

(This definition will be modified slightly for points x with dist(x, ∂Ω) < ε.) It is
worth recalling that

∇(w ∗ η) = w ∗ ∇η, (2.7)

so that V (w) indeed depends (non-locally) on w and not on its gradient.
The non-local velocity function (2.6) was introduced recently in a two-species

predator-prey model by Colombo and Rossi [20], for which convergence of a numer-
ical scheme was proved by Rossi and Schleper [50]. The evaluation of this velocity
function at w = Nf in the equations for male individuals describes that males are
attracted by females since the corresponding biological fluxes κCV (Nf), C ∈ Cm,
are directed toward increasing densities of females. The movement of male indi-
viduals to females is balanced by a term that describes that males avoid groups of
their own gender. This is achieved in Models 1 and 2 by another evaluation of the
nonlocal function but this time at w = Nm, and with a coefficient, namely −µX ,
of opposite sign (see (2.2) and (2.3)), while in Model 3 the movement of males
away from regions of large densities of their group is described by diffusive move-
ment through the term −µX∇X (see (2.5)). The biological movement of females is
standard diffusion.

Summarizing, we obtain that the convective fluxes F c(u) and the diffusion matrix
D arising in (1.1) are given by the respective expressions

F c(u) =
(
FSm(Sm, Nf , Nm), FEm(Em, Nf , Nm), FIm(Im, Nf , Nm),

FRm
(Rm, Nf , Nm), 0, 0, 0, 0

)T
,

D = diag(0, 0, 0, 0, µSf
, µEf

, µIf , µRf
),

when the definition of the fluxes is (2.2) (Model 1) or (2.3) , (2.4) (Model 2), and

F c(u) =
(
SmκSmV (Nf), EmκEmV (Nf), ImκImV (Nf),

RmκRm
V (Nf), 0, 0, 0, 0

)T
,

D = diag(µSm
, µEm

, µIm , µRm
, µSf

, µEf
, µIf , µRf

),

(2.8)

for the definition of the fluxes (2.5) (Model 3). In all cases, the vector of reaction
terms s(u) = (s1(u), . . . , s8(u))T is given by the right-hand sides of (2.1), i.e.,

s1(u) =
B(Nm, Nf)

2
− Smd(N)− Sm(βfIf + βmIm), . . . , s8(u) = γfIf −Rfd(N).

The system (2.1) is considered on Ω× T together with the initial condition

u(x, 0) = u0(x), x ∈ Ω, (2.9)

where u0 is a given function, and zero-flux boundary conditions(
F c(u)−D∇u

)
· n = 0, x ∈ ∂Ω, t ∈ (0, T ], (2.10)

where n is the unit exterior normal vector to the boundary ∂Ω of Ω.
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2.3. Comparison with the model by Colombo and Rossi [20]. Assume that
the convective fluxes F c(u) and the diffusion matrix D are given by (2.8) according
to Model 3, and that κC = κm and µC = µm for all C ∈ Cm and µC = µf for all
C ∈ Cf . Then, summing (2.1a)–(2.1d) and (2.1e)–(2.1h), respectively, we get the
two equations

∂Nm

∂t
+∇ ·

(
κmNmV (Nf)− µm∇Nm

)
=
B(Nm, Nf)

2
−Nmd(Nm +Nf), (2.11a)

∂Nf

∂t
− µf∆Nf =

B(Nm, Nf)

2
−Nfd(Nm +Nf). (2.11b)

This model is similar to the non-local predator-prey model recently analyzed by
Colombo and Rossi [20]. In fact, their model is precisely recovered if we identify Nm

as the density of “predators”, Nf as that of “prey”, set κm = 1 and µm = 0, and
replace the right-hand sides of (2.11a) and (2.11b) by the respective expressions
(αNf−β)Nm and (γ−δNm)Nf , with positive constants α, β, γ, δ, of the well-known
Lotka-Volterra predator-prey kinetics [15].

3. Numerical scheme.

3.1. Discretization of local convection and diffusion terms. We take Ω =
[0, L] × [0, L] and use a Cartesian grid with nodes (xi, yj), i, j = 1, . . . ,M , with
xi = yi = (i− 1/2)h, h = L/M .

We discretize ∇ · F c(u) on this grid by weighted essentially non-oscillatory
(WENO) finite differences and ∆u by the standard second-order scheme with a
five-point stencil to get a spatial semi-discretization of (1.1) for an 8 ×M ×M -
matrix v(t) of unknown approximations

v`,i,j(t) ≈ u`(xi, yj , t), i, j = 1, . . . ,M, ` = 1, . . . , 8

given by

v′ = −∇h · F̃
c
(v) + Bv + S(v), (3.1)

to which suitable implicit-explicit Runge-Kutta (IMEX-RK) schemes will be applied
for obtaining the final fully-discrete scheme (see Section 3.4). In this equation
∇h · F̃

c
(v) is the discretization of ∇ · F c(u), to be defined in Section 3.3, and

(Bv)`,i,j = µ`(∆hv`)i,j , i, j = 1, . . . ,M, ` = 1, . . . , 8 (3.2)

is the discretization of the diffusion terms. Notice that we take µ` = 0 for ` ∈
{1, 2, 3, 4} and models (2.2) or (2.3), for these models do not have diffusion for male
species. Here we have used the notation v` for the M ×M submatrix given by
(v`)i,j = v`,i,j and ∆h for the standard two-dimensional Laplacian operator with
Neumann boundary conditions. Furthermore, S(v) is the 8×M ×M -matrix with
components

S(v)`,i,j = s`(v`,i,j), i, j = 1, . . . ,M, ` = 1, . . . , 8,

with corresponding submatrices S`(v), given by

S`(v)i,j = s`(v`,i,j). (3.3)

We explain the discretization of the convective term appearing in (3.1) in the
next two subsections.
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3.2. Discretization of the convolutions. We will use the following identity for
the implementation that arises from (2.6) if we take into account (2.7):

V (w) =
w ∗ ν√

1 + ‖w ∗ ν‖2
, ν =

(
∂η

∂x
,
∂η

∂y

)
. (3.4)

The convolutions w ∗ χ, χ = ∂η/∂x or χ = ∂η/∂y, namely

(w ∗ χ)(x) =

∫
Bε(0)

w(x− y)χ(y) dy,

are calculated approximately on the discrete grid via a composite Newton-Cotes
quadrature formula, such as the composite Simpson rule.

Since Bε(0) ⊆ [−rh, rh]2, r = dε/he < M , and considering that, according to
boundary conditions, w is extended to the exterior of Ω by reflection, e.g. by setting
w(−x, y) = w(x, y), (x, y) ∈ Ω, we obtain

(w ∗ χ)(xi, yj) =

∫ rh

−rh

∫ rh

−rh
w(xi − x, yj − y)χ(x, y) dxdy

≈ h2
r∑

p=−r

r∑
q=−r

αpαqw(xi − xp, yj − yq)χ(xp, yq),

where αp and αq are the coefficients in the quadrature rule (e.g., for the composite
Simpson rule, α = (1, 4, 2, 4, . . . , 2, 4, 1)). This can be written as

(w ∗ χ)(xi, yj) ≈
r∑

p=−r

r∑
q=−r

βp,qw(xi−p, yj−q), βp,q = h2αpαqχ(xp, yq). (3.5)

The accuracy order of this approximation is given by that of the quadrature rule,
e.g., it is fourth-order accurate for the composite Simpson rule. Consequently, the
approximation (3.5) for W = (wi,j) ∈ RM×M , wi,j ≈ w(xi, yj), is given by

(w ∗ χ)(xi, yj) ≈ (W ∗h β)i,j :=

r∑
p=−r

r∑
q=−r

βp,qw[i−p]M ,[j−q]M , (3.6)

where we define

[i]M :=


−i+ 1 for −r + 1 ≤ i ≤ 0,

i for 1 ≤ i ≤M ,

2M + 1− i for M + 1 ≤ i ≤M + r.

The discrete approximation of V (w) in (3.4) obtained from the approximationW ≈
w is given by

V h(W ) =
W ∗h ν√

1 + ‖W ∗h ν‖2
, ν =

(
∂η

∂x
,
∂η

∂y

)
.

Since r ≈ ε/h = εM/L, the computational cost of this discrete convolution is
M2(2r + 1)2 ≈ 4ε2M4/L2, which can be very high for large M . This cost can be
substantially reduced to O(M2 logM) by performing a convolution with periodic
data by Fast Fourier Transforms (FFTs) (see [31, 54]). To achieve this goal, we
define from W = (wi,j) ∈ RM×M a matrix W̃ = (w̃i,j) ∈ R2M×2M such that

w̃i,j = w[i]M ,[j]M , i, j = 1, . . . , 2M
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and use the notation [i]′2M = mod (i − 1, 2M) + 1, i.e., [i]′2M = i + 2kM , with
k being the integer such that 1 ≤ [i]′2M ≤ 2M . With this notation it is readily
checked that

w[i]M ,[j]M = w̃[i]′2M ,[j]′2M
, i, j = −r + 1, . . . ,M + r.

Therefore (3.6) for i, j = 1, . . . ,M can be rewritten as

(W ∗h β)i,j =

r∑
p=−r

r∑
q=−r

βp,qw̃[i−p]′2M ,[j−q]′2M
. (3.7)

The convolution on the right-hand side of (3.7) can be performed by FFTs applied
to the (2M) × (2M) matrix W̃ . To save further computational costs, the FFT
of the kernel βp,q is performed only once, son each convolution entails two two-
dimensional FFT of (2M) × (2M) matrices and a product of 4M2 numbers, with
an overall computational cost of O(M2 logM).

3.3. Discretization of the convective term. The convective flux for the ` (fe-
male) species, ` ∈ {5, 6, 7, 8}, is zero and the convective flux for the ` (male) species,
` ∈ {1, 2, 3, 4}, in e.g., model (2.2) is given by

F c
`(u) = u`

(
κ`V (u5 + u6 + u7 + u8)− µ`V (u1 + u2 + u3 + u4)

)
.

To discretize its divergence ∇·F c
`(u), for the approximation v, we first approximate

the convolution terms as expounded in Section 3.2 to obtain

F̃
c

`(v)i,j = v`,i,j
(
κ`V h (v5 + v6 + v7 + v8)i,j − µ`V h (v1 + v2 + v3 + v4)i,j

)
∈ R2.

Similar arguments are carried out for the other models (2.3) and (2.5).
We introduce the following notation:(

fxi,j , f
y
i,j

)
:= F̃

c

`(v)i,j ,

where we have dropped the ` index for obtaining clearer expressions.
Our purpose is to use a fifth-order WENO finite difference discretization [27,37,

53] of ∇ · F c
`(u) for which

∇ · F c
`(u)(xi, yj)

≈ ∇h · F̃
c
(v)`,i,j :=

f̂xi+1/2,j − f̂xi−1/2,j

h
+
f̂yi,j+1/2 − f̂

y
i,j−1/2

h
,

(3.8)

for suitable numerical fluxes f̂xi+1/2,j , f̂
y
i,j+1/2 obtained by WENO reconstructions

of split fluxes. For the numerical flux in the x-direction, the Lax-Friedrichs-type
flux splitting fx,± is given by

fx,±i,j =
1

2

(
fxi,j ± αxv`,i,j

)
, αx = max

i,j
|V x

h(v)i,j |.

Likewise, the numerical flux f̂yi,j+1/2 is obtained by WENO reconstructions of split
fluxes given by

fy,±i,j =
1

2

(
fyi,j ± αyv`,i,j

)
, αy = max

i,j
|V y

h(v)i,j |.

If R± denotes fifth-order WENO upwind biased reconstructions, then

f̂xi+1/2,j = R+
(
fx,+i−2:i+2,j

)
+R−

(
fx,−i−1:i+3,j

)
,

f̂yi,j+1/2 = R+
(
fy,+i,j−2:j+2

)
+R−

(
fy,−i,j−1:j+3

)
,

where we have used matlab-type notation for submatrices.
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3.4. Implicit-explicit Runge-Kutta schemes. We will use IMEX-RK integra-
tors for ODEs, for which only the diffusion term will be treated implicitly, so we
rewrite (3.1) as (1.2), where

Φ∗(v) := −∇h · F̃
c
(v) + S(v), Φ(v) := Bv. (3.9)

For the diffusive part Φ(v) we utilize an implicit s-stage diagonally implicit
(DIRK) scheme with coefficients A ∈ Rs×s, b, c ∈ Rs, in the common Butcher
notation, where A = (aij) with aij = 0 for j > i. For the term Φ∗(v) containing
the convective and reactive parts we employ an s-stage explicit scheme with coef-

ficients Â ∈ Rs×s, b̂, ĉ ∈ Rs and Â = (âij) with âij = 0 for j ≥ i. We will denote
the corresponding Butcher arrays by

D :=
c A

bT , D̂ :=
ĉ Â

b̂
T .

In our simulations, we limit ourselves to the second-order IMEX-RK scheme H-
DIRK2(2,2,2) that corresponds to

D =

1/2 1/2 0

1/2 0 1/2

1/2 1/2

, D̂ =

0 0 0
1 1 0

1/2 1/2

.

Alternative choices are provided and discussed in [10, 11, 45]. If applied to the
equation (1.2), the IMEX-RK scheme gives rise to the following algorithm (see [45]).

Algorithm 3.1.

Input: approximate solution vector vn of (1.2) for t = tn

for p = 1, . . . , s
if p = 1 then

v̂(1) ← vn, v̄(1) ← vn

else compute v̂(p) and v̄(p) from the known values K1, . . . ,Kp−1:

v̂(p) ← vn + ∆t

p−1∑
j=1

âpjKj , v̄(p) ← vn + ∆t

p−1∑
j=1

apjKj

endif
solve for Kp the linear system

Kp = Φ∗
(
v̂(p))+ Φ

(
v̄(p) + ∆tappKp

)
(3.10)

endfor

vn+1 ← vn + ∆t

s∑
j=1

bjKj

Output: approximate solution vector vn+1 of (1.2) for t = tn+1 = tn + ∆t.

To solve the linear equation (3.10) that arises in Algorithm 3.1 for Kp, in view
of (3.9), we rewrite it as(

I −∆tappB
)
Kp = b(p), b(p) := Φ∗

(
v̂(p))+ Bv̄(p), (3.11)

where I denotes the identity operator for 8×M ×M matrices. From the definition
of the matrix B in (3.2) and from the definition of Φ∗ in (3.9), if we equate the `
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Figure 1. Numerical solution of the ODE version of (2.1),
Model 0, for the initial data (4.1).

submatrices along the first dimension of both sides of (3.11) we get(
IM×M −∆tappµ`∆h

)
(Kp)`

= −∇h · F̃
c

`(v̂
(p)) + S`(v̂

(p)) + µ`∆hv̄
(p)
` , ` = 1, . . . , 8,

(3.12)

where IM×M is the identity operator on M ×M matrices and, e.g., (Kp)` is the
` submatrix of Kp along the first dimension, i.e., ((Kp)`)i,j = (Kp)`,i,j . Some
remarks are due here to detail the final implementation: for ` = 1, . . . , 8, the right-
hand side of (3.12) is computed from (3.3), (3.2) and (3.8), taking into account
that

∇h · F̃
c

`(v̂
(p)) = 0 for ` ∈ {5, 6, 7, 8}

(i.e., there is no convection in the models for females); if µ` = 0 (for ` ∈ {1, 2, 3, 4}
and models (2.2) and (2.3) there is no diffusion term for males), then

(Kp)` = −
(
∇h · F̃

c
(v̂(p))

)
`

+ S`(v),

otherwise the solution of (3.12) is performed by Fast Cosine Transforms (due
to boundary conditions), which entails a nearly optimal computational cost of
O(M2 logM).

4. Numerical examples.

4.1. Preliminaries. According to [4], we assume that two months (60 days) is
the basic time unit, δ = 4 (1/δ = 15 days), b = 4 (average litter size), βm = 5βf ,
and βm,f = βf . Moreover, the infectious period for males is assumed to be twice
that of females (1/γm = 2/γf), and the carrying capacity is K = 1000 animals.
Furthermore, we set βm = 0.01, γm = 0.5, a = 0.01 and c = 1.99 × 10−3. For
these values, the next-generation-matrix method [59] employed in [4] yields a basic
reproductive ratio R0 = 1.38.

We wish to present numerical solutions of the different versions of the spatio-
temporal model, Models 1 to 3, that can be compared with the example simulated
in [4] (that is, by Model 0), and that corresponds to

(Sm, Em, Im, Rm, Sf , Ef , If , Rf)(0) = (450, 10, 10, 10, 450, 5, 5, 5) =: UT
0 . (4.1)

(Figure 1 shows the solution of Model 0 for this case.) To this end, we assume
that the spatial domain is Ω = [0, 1]2 (i.e., L = 1 in a scale not specified) and that
K = 1000 is the maximum density feasible on a unit square. For the simulation,
we consider Scenario 1, which corresponds to identifying a subdomain Ω0 ⊆ Ω with
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Ω0 = {(x, y) ∈ Ω : |x − 0.5| + |y − 0.5| ≤ 0.2} in which the initial population is
uniformly distributed and setting

u(x, 0) = χΩ0
(x)U0, where χΩ0

(x) =

{
1 if x ∈ Ω0,

0 otherwise,

and alternatively Scenario 2, in which we stipulate a “random” distribution by
setting

u(x, 0) =
1

|Ω|
(
1 + r(x)

)
U0, where

∫
Ω

r(x) dx = 0 (4.2)

and r is a given oscillatory function assuming values in (−1, 1). (The idea is not to
impose any initial “pattern” in Scenario 2.)

A total number of six cases is considered by combining Scenarios 1 and 2 with
Models 1, 2 and 3. We always choose µX = 0.05 for all species X, κX = 0.1
and h = 1/200. Furthermore, we wish to compare the numerical results with the
predictions made by the non-spatial ODE model, Model 0 (Figure 1). To this end
we determine for each compartment X ∈ C and time instants tn = n∆t the following
quantity:

I(X) = I(X, tn) := h2
N∑

i,j=1

Xn
i,j ≈

∫
Ω

X(x, tn) dx, (4.3)

which represents the approximate total number in Ω of individuals of compart-
ment X at time tn. We recall that in the PDE model (2.1), the unknowns X ∈ C
are densities, and so an integration over Ω is necessary to make results comparable
to those of a model that predicts the total number of individuals in each compart-
ment (as does Model 0). Similar “integrals” of the numerical solution are utilized
by Colombo and Rossi [20, Fig. 3.2] to study the global behaviour of their predator-
prey model.

4.2. Cases 1 to 3: simulations with a structured initial datum. In Figures 2
to 4 we show the numerical solution for Nm, Nf , Im and If , in each case at three
different times, for Cases 1 to 3 that arise for Scenario 1 with Model 1, Model 2 with
K = 1000, and Model 3. First of all, we observe that according to the results for
Nm and Im, within Models 1 and 2 the male individuals keep confined to a growing
but sharply limited region, with zero values outside that region. Model 3, with its
linear diffusive term −µX∇X for X ∈ Cm (instead of the expressions −µXXV (Nm)
or −µXXϕ(Nm + Nf)V (Nm) in Models 1 or 2), produces a solution that fills the
entire domain. Numerical results obtained for larger times than those shown in
Figure 4 indicate that the solutions of all variables become constant on the entire
computational domain, and the integral quantities assume a stationary state similar
(but not identical) to that of Model 0 (see Figure 1). Furthermore, comparing the
results between Models 1 and Models 2 (Figures 2 and 3), we observe that Model 1
gives rise to a distinct spatial structure, including regions that are nearly void of
males combined with “peaks” of the solution where Nm ≈ 1500. Clearly, this feature
is expected since Model 1 has no mechanism that would limit the value of the total
density of males Nm. (We recall that although the total numbers of male or female
individuals, I(Nm) and I(Nf), are bounded by the terms with the death rates in all
models, it may well happen that the densities Nm or Nf become locally unbounded.)

The results obtained for Case 1 are in marked contrast to those for Case 2,
especially those for Nm, produced by Model 2 shown in Figure 3, where we observe
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Figure 2. Case 1 (Model 1, Scenario 1): numerical solution for
Nm, Nf , Im and If at the indicated times.

that Nm does not exceed a value of about 500, and stays close to that value within
a region of approximately the same shape as for Model 1. A similar observation
is true for the compartment Im: Model 1 (Figure 2) predicts a structure with
“peaks” that roughly mirrors that of Nm, while Model 2 (Figure 3¿) predicts a
more uniform distribution (with Im assuming values between 70 and 90) in the
interior of the domain. Furthermore, we recall that for all models the flux for
the female compartments is always given by −µX∇X for X ∈ Cf , so differences in
solution behavior of the female individuals are exclusively due to those in describing
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Figure 3. Case 2 (Model 2 with K = 1000, Scenario 1): numerical
solution for Nm, Nf , Im and If at the indicated times.

the male behavior. In general, this diffusive behavior tends to produce less sharp,
smooth spatial structures.

Finally, Figure 5 indicates that Models 1, 2 and 3 lead to quite different numerical
results in terms of the integrated quantities (4.3). As mentioned above, the results
of Model 3 are similar to those of Model 0. On the other hand, while Models 1 and 2
produce integral results whose order of magnitude for each compartment is similar
to that of Model 3, it can be noted that no stationary state is attained at t = 30; as
the discussion of Cases 4 to 6, and in particular comparing Figures 5 and 9 show,
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Figure 4. Case 3 (Model 3, Scenario 1): numerical solution for
Nm, Nf , Im and If at the indicated times.

this is a consequence of the respective model structure in combination with the
choice of initial data. In any case, it is calling to attention that while Models 2
and 3 predict a smooth variation of the integrated quantity in time, the curves
generated by Model 1 are somewhat oscillatory. This behavior is consistent with
our observation that Model 1 does not only generate a spatial solution structure with
strong variations, “peaks” and sharp gradients, but also produces rapid transitions
within time. This unsteady and unstable behavior is due to the strong competence
of advective and repulsive mechanisms inherent in the definition (2.2).
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Figure 5. Cases 1–3: integral quantities I(X) defined by (4.3) for
each compartment obtained by evaluating numerical solutions.

4.3. Cases 4 to 6: simulations with a randomly fluctuating initial datum.
Figures 6 to 9 provide numerical solutions for Scenario 2. The “random” initial
datum (4.2) has been chosen to test whether small perturbations would give rise to
large-scale regular structures akin to the well-known mechanism of pattern forma-
tion (cf., e.g., [38, 41]), or rather, the small fluctuations in the initial datum would
simply be smoothed out. Figure 6, corresponding to Model 1, illustrates that male
individuals aggregate in a kind of filamentous structure, including some marked
peaks with Nm reaching values close to 3000. On the other hand, we observe the
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Figure 6. Case 4 (Model 1, Scenario 2): numerical solution for
Nm, Nf , Im and If at the indicated times.

formation of areas of roughly the same shape and size that are nearly void of male
individuals. This behavior is similar to that observed by Colombo and Rossi for the
predator density in their predator-prey model (cf., e.g., [20, Figs. 3.3–3.5]). In our
cases, the densities of the female populations Nf and If do not vary much over the
computational domain, and do so smoothly. For the same scenario with Model 2
and K = 1000, Figure 7 indicates that while for small times we observe the forma-
tion of spatial structures similar those of Figure 6, eventually all variables become
nearly constant on the whole domain. Figure 8 for Model 3 illustrates that marked
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Figure 7. Case 5 (Model 2 with K = 1000, Scenario 2): numerical
solution for Nm, Nf , Im and If at the indicated times.

circular spatial structures persist over long times. Similar results (not shown here)
were obtained in other numerical experiments for times up to t = 87. We also com-
ment that Figure 9 illustrates that Model 2 leads to a nearly stationary behavior
of the integral quantities within shorter time than for Scenario 1, and results for
Models 2 and 3 are quite similar. The curves observed in Figure 9 for Model 1 are,
again, oscillatory, which lends further support to the conjecture that this model (at
least with the parameters chosen) exhibits spatial-temporal oscillatory behavior.



114 R. BÜRGER, G. CHOWELL, E. GAVILÁN, P. MULET AND L. M. VILLADA

t = 0.5 t = 2 t = 5

 

 

360

380

400

420

440

460

480

500

520

540

560

 

 

 

 

480

482

484

486

488

490

492

494

496

498

500

 

 

 

 

10

20

30

40

50

60

70

80

 

 

 

 

4

6

8

10

12

14

16

If

Im

Nf

Nm

0

0.2

0.4

0.6

0.8

y
1
0

0.2

0.4

0.6

0.8

y
1
0

0.2

0.4

0.6

0.8

y
1
0

0.2

0.4

0.6

0.8

y
1

0 0.2 0.4 0.6 0.8 x 1 0 0.2 0.4 0.6 0.8 x 1 0 0.2 0.4 0.6 0.8 x 1

Figure 8. Case 6 (Model 3, Scenario 2): numerical solution for
Nm, Nf , Im and If at the indicated times.

For Cases 4 to 6, we calculate the evolution of Moran’s index [25,40,49], denoted
here I, for each species at each time step, and which is here computed by

I = I(X) :=

M∑
i,j=1

1

4
Yi,j(Yi−1,j + Yi+1,j + Yi,j−1 + Yi,j+1)

/ M∑
i,j=1

Y 2
i,j , (4.4)
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Figure 9. Cases 4–6: integral quantities I(X) defined by (4.3) for
each compartment obtained by evaluating numerical solutions.

where X is the numerical data obtained for some species at a certain time step and

Yi,j = Xi,j −
1

M2

M∑
p,q=1

Xp,q. (4.5)

Overall, the results shown in Figure 10 indicate that a strong spatial autocorrelation
(I ≈ 1) is developed through the simulation from initial random data (I ≈ 0). It
is, however, interesting to note for that for Cases 4 and 5 the values of I for the
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Figure 10. Cases 4–6: Moran’s index I defined by (4.4), (4.5) for
each compartment obtained by evaluating numerical solutions.

female compartments remain consistently below those of the male compartments,
while for Case 6 the limit value I = 1 is closely approximated by all species. This
confirms the trend evident already from the results of Figure 8 compared with those
of Figures 6 and 7, namely that the presence of diffusive movement in the male
species significantly contributes to generating smoothly varying solution patterns,
that is, to creating a high degree of spatial autocorrelation.

4.4. Case 7: order test with smooth solution. The purpose of this test is to
show that the numerical scheme exhibits experimental second order convergence



SPATIO-TEMPORAL MODEL FOR HANTAVIRUS INFECTION IN RODENTS 117

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

10

15

20

25

30

35

40

If

Im

Nf

Nm

0

0.2

0.4

0.6

0.8

y
1
0

0.2

0.4

0.6

0.8

y
1
0

0.2

0.4

0.6

0.8

y
1
0

0.2

0.4

0.6

0.8

y
1

0 0.2 0.4 0.6 0.8 x 1 0 0.2 0.4 0.6 0.8 x 1 0 0.2 0.4 0.6 0.8 x 1

400

450

500

550

600

650

700

750

800

10

20

30

40

50

60

70

80

450

455

460

465

470

475

480

485

490

495

500

t = 0.5 t = 2 t = 5

Figure 11. Case 8 (Model 3, Scenario 2, periodic variation of
parameters): numerical solution for Nm, Nf , Im and If at the indi-
cated times.

when the solution is smooth. For this purpose, we choose a smooth initial configu-
ration given by

Xm(x, y, t = 0) = cX exp

(
−1

2

(
(x− 3)6 + (y − 3)6

))
,

Xf(x, y, t = 0) = cX exp

(
−1

2

(
(x− 7)6 + (y − 7)6

))
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Figure 12. Case 8: (Model 3, Scenario 2, periodic variation of
parameters): solutions of Model 0 (left column) and integral quan-
tities I(X) of Model 3 (right column) defined by (4.3) for each
compartment obtained by evaluating numerical solutions.

for X ∈ {S,E, I,R}, constants cS = 1000, cE = 1, cI = 10 and cR = 1, and
a sufficiently small final time T = 0.1 to ensure that no singularities are formed
during the simulation. We choose µX = 10−4 for X ∈ Cm and µX = 10−3 and
κX = 10−2 for X ∈ Cf .
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M 8 16 32 64 128 256
etotM × 103 368.90 383.19 379.01 153.73 34.70 9.14

θM -0.05 0.02 1.30 2.15 1.92 —

Table 1. Case 7 (Model 1, order test with smooth solution): ap-
proximate total L1 errors etotM and observed convergence rates θM .

We compute approximate L1 errors for approximate solutions obtained with
M ×M meshes, M = 2s, s = 3, . . . , 8, using a reference solution with a resolu-
tion of Mref ×Mref cells, for Mref = 2048, as follows. We denote by (vM`,j,k)Mj,k=1

and (vref
`,j,k)Mref

j,k=1 the numerical solution for the `-th component (` = 1, . . . , 8, see
Section 3.3) at time T calculated with M and Mref , respectively. We project the
reference solution to the coarser grids by bicubic interpolation, since the numerical
scheme is designed to compute second-order approximations to the exact solutions
at the nodes (xi, yj), with xi = yi = (i−1/2)L/M , for the coarse mesh, and (x̄i, ȳj),
with x̄i = ȳi = (i− 1/2)L/Mref for the fine mesh and these points do not coincide.
Specifically, this projection ṽM`,j,k for j, k = 1, . . . ,M is computed by

ṽM`,j,k =

1∑
j1,k1=−2

ξj1ξk1
vref
`,j̄−j1,k̄−k1

, j̄ =

(
j − 1

2

)
Mref

M
, k̄ =

(
k − 1

2

)
Mref

M
,

where ξ−2 = ξ1 = −1/16 and ξ0 = ξ−1 = 9/16. Notice that Mref/M = 211−s ≥ 8 in
this test and the previous formula is therefore computable.

The total approximate L1 error of the numerical solution (vM`,j,k)Mj=1 at time T is
then given by

etot
M :=

1

M2

8∑
`=1

M∑
j,k=1

∣∣ṽM`,j,k − vM`,j,k∣∣. (4.6)

Based on the approximate errors defined by (4.6), we may calculate a numerical
order of convergence from pairs of total approximate L1 errors etot

M and etot
2M by

θM := log2

(
etot
M /etot

2M

)
.

These data are displayed in Table 1. It can be deduced that the errors start dimin-
ishing for M = 64 and do so roughly at a second-order rate.

4.5. Case 8: seasonal alternation for Models 0 and 3. Climatic changes, e.g.,
due to large periods of rain or of drought, can lead to variation in some parameters,
for example those that influence death and birth rates of the rodent population. To
study the effect of seasonal variability, in this example we identify two different sets
of parameters that can represent two different seasons, {ai, bi, ci} for i = 1, 2. We
wish to explore the transmission dynamics of hantavirus due to an alternation in
time of the parameters between these two seasons. We implement square-periodic
season alternation where the duration of each season is T/2, where T units is a
year. Any given quantity u(t) alternating in this way can be expressed as u(t) =
u+ + u−µ(t), where u± = 1

2 (u1 ± u2) and µ(t) is a periodic square wave µ(t) = 1 if
t ∈ (0, T/2) and µ(t) = −1 if t ∈ (T/2, T ).

We consider a1 = 0.01, b1 = 4, c1 = 1.99 × 10−3 and a2 = 0.05, b2 = 3,
c2 = 0.0015 in order for the carrying capacity to be K1 = K2 = 1000 for both
choices, so R0,1 = 1.38 and R0,2 = 2.26 are obtained. The remaining parameters
and initial conditions are the same as in Cases 4 to 6 (Scenario 2).
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In Figure 11 we display the numerical solution for Model 3. Roughly speaking we
observe that the seasonal alternation in the parameters produces a solution similar
to that provided by Model 3 also with a randomly fluctuating initial datum. In
Figure 12 we display the solutions for (the ODE) Model 0 and for Model 3. We
observe that the seasonal alternation in the parameters generates an oscillatory and
bounded solution for each case, and Model 3 displays a smaller amplitude.

5. Conclusions. We have shown that a relatively simple gender-structured spatial-
temporal model (2.1) of Hantavirus transmission among rodents with a non-local
velocity term (2.6), which arises in each of the Models 1, 2 and 3 defined by (2.2),
(2.3) and (2.5), respectively, can yield complex spatial-temporal profiles of disease
prevalence (Figures 2 to 8). However, in reality, a number of additional factors can
affect the transmission dynamics of Hantavirus infections among rodents. Specif-
ically, the transmission of hantavirus has been associated with land use patterns,
elevation, vegetation types [9], as well as variations in temperature, humidity, and
rainfall [64]. Moreover, rodent habitat and rodent behavior can be influenced by
temperature, precipitation and land use [16]. The growth of rodent populations
may also be associated with local temperature, as temperature may affect the preg-
nancy rate, litter size, birth rate and the survival rate of rodent populations [62].
Further, rodents tend to inhabit highly covered and less disturbed habitats, which
are commonly found in agricultural habitats and pastureland habitats [39, 63] in
order to enhance their reproduction and survival capacity [39].

We plan to conduct further research on the qualitative analysis of the proposed
models, or suitable simplifications of them, using analogous techniques to those uti-
lized in [20]. The accuracy of the numerical method proposed in this work is worth
to be studied in subsequent works, specially to establish that its order of convergence
corresponds to its design order. Although in this work we use a second-order spatial
discretization of the Laplacian and a second-order time-stepping, which limit the
high-order accuracy of the fifth-order WENO spatial semidiscretization, we plan to
perform comparisons with higher-order discretizations of the diffusion operator and
time-stepping scheme. More scenarios (initial configuration, parameter calibration)
should be explored with these numerical tools in order to obtain and study further
spatio-temporal patterns in the simulations. In this sense, among our proposed
models, we consider that Model 1 is the most promising one giving rise to interest-
ing spatio-temporal patterns and is worth to be analyzed as in [19,38]. Finally, we
wish to expand on the conclusions that can be inferred from I applied to numerical
solutions of a local or non-local PDEs, which to our knowledge still needs to be
addressed. We leave an in-depth analysis of the behaviour of I and related quanti-
ties, such as the bivariate Moran index [25, 49] that could, for example, elucidate
the mutual spatial correlation of the male and female patterns, as a topic of future
research for the present class of models.
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