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Abstract. A new deterministic model for the population biology of immature
and mature mosquitoes is designed and used to assess the impact of tempera-

ture and rainfall on the abundance of mosquitoes in a community. The trivial

equilibrium of the model is globally-asymptotically stable when the associ-
ated vectorial reproduction number (R0) is less than unity. In the absence of

density-dependence mortality in the larval stage, the autonomous version of

the model has a unique and globally-asymptotically stable non-trivial equilib-
rium whenever 1 < R0 < RC

0 (this equilibrium bifurcates into a limit cycle, via

a Hopf bifurcation at R0 = RC
0 ). Numerical simulations of the weather-driven

model, using temperature and rainfall data from three cities in Sub-Saharan
Africa (Kwazulu Natal, South Africa; Lagos, Nigeria; and Nairobi, Kenya),

show peak mosquito abundance occurring in the cities when the mean monthly

temperature and rainfall values lie in the ranges [22 − 25]0C, [98 − 121] mm;
[24 − 27]0C, [113 − 255] mm and [20.5 − 21.5]0C, [70 − 120] mm, respectively

(thus, mosquito control efforts should be intensified in these cities during the

periods when the respective suitable weather ranges are recorded).

1. Introduction. Mosquitoes are small biting insects comprising of the family
Culicidae. There are about 3,500 mosquito species in the world (grouped into 41
genera) [4, 30, 43]. Mosquito species, such as Anopheles, Aedes aegypti, Aedes
albopictus and Culex, play significant roles as vectors of some major infectious dis-
eases of humans, such as malaria, yellow fever, Chikungunya, west Nile virus, dengue
fever, Zika virus and other arboviruses [4, 48]. These diseases are transmitted from
human-to-human via an effective bite from an infected female adult mosquito [4, 51].
While adult male mosquitoes feed on plant liquids such as nectar, honeydew, fruit
juices and other sources of sugar for energy, female mosquitoes, in addition to feed-
ing on sugar sources (for energy), feed on the blood of human and other animals
solely to acquire the proteins needed for eggs development [4, 30, 49, 51].
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Mosquitoes are the best known disease vector for vector-borne diseases (VBDs)
of humans (VBDs account for 17% of the estimated global burden of all infectious
diseases) [76, 78]. Mosquito is the world’s deadliest animal (accounting for more
human deaths annually than any other animal), spreading human diseases such as
malaria, dengue and yellow fever, which together are responsible for several million
deaths and hundreds of millions of cases annually [13, 49]. For example, malaria,
transmitted by female Anopheles mosquitoes, is endemic in 91 countries, with about
40% of the world’s population at risk, causing up to 500 million cases and over 1
million deaths annually [48, 49, 77]. Similarly, dengue, transmitted by female Aedes
mosquitoes, causes over 20 million cases a year in more than 100 countries [48, 77].

The life-cycle of the mosquito is completed via four distinct stages, namely: eggs,
larva, pupa and adult stages, with the first three largely aquatic [48]. A female
mosquito can lay about 100-300 eggs per oviposition [4, 48], and this process is
temperature dependent [4]. The eggs are laid at a convenient breeding site, usually
a swamp or humid area in the aquatic environment (the Anopheles species typically
lays their eggs on the surface of the water) and after about 2-3 days, they hatch into
larva. Larvae develop through four instar stages [48, 4]. At the end of each larval
stage, the larvae molt, shedding their skins to allow for further growth (the larvae
feed on microorganisms and organic matter in the water) [4]. During the fourth
molt, the larvae mature into pupae (the whole process of maturation from larvae
to pupae takes 4-10 days [51]). The pupae then develop into adult mosquitoes in
about 2-4 days [4, 51].

The duration of the entire life-cycle of the mosquito, from egg laying to the
emergence of an adult mosquito, varies between 7 and 20 days [51], depending on
the ambient temperature of the breeding site (typically a swamp or humid area) and
the mosquito species involved [28] (for instance, Culex tarsalis, a common mosquito
in California (USA), might go through its life cycle in 14 days at 700F and take
only 10 days at 800F [48]). Adult mosquitoes usually mate within a few days after
emerging from the pupal stage, after which they go questing for blood meal (required
to produce eggs) [4]. Once a blood meal is taken, the female mosquito moves to
a convenient breeding site where it lays its eggs [52]. The chances of survival of
the female adult mosquitoes depend on temperature and humidity, as well as their
ability to successfully obtain a blood meal while avoiding host defenses [4].

The introduction, abundance and distribution of mosquitoes worldwide have been
affected by various environmental (climatic) factors such as temperature, humidity,
rainfall and wind [2, 15, 47, 54, 55, 57, 58, 60, 67, 79]. These factors have direct effect
on different ecological aspects of the mosquito species which includes the oviposition
process, development during aquatic stages and the biting rate of mosquitoes [2, 47,
60]. Furthermore, the oviposition process, development at aquatic stages, emergence
of the adult and other developmental processes in the larval habitats of mosquitoes,
play a key role in the determination of abundance and distribution of mosquitoes
[3, 56].

Understanding mosquito population dynamics is crucial for gaining insight into
the abundance and dispersal of mosquitoes, and for the design of effective vector
control strategies (that is, understanding mosquito population dynamics has im-
portant implications for the prediction and assessment of the effects of many vector
control strategies [51, 52]). The purpose of the current study is to qualitatively
assess the impact of temperature and rainfall on the population dynamics of fe-
male mosquitoes in a certain region, and taking into consideration the dynamics
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of the human-vector interaction. This study extends earlier mosquito population
biology in literature such as the model in [1], by designing a new temperature-and
rainfall-dependent mechanistic mosquito population model that incorporates some
more notable features of mosquitoes population ecology such as four stages for larval
development and three different dispersal (questing for blood meal, fertilized and
resting at breeding site) states of female adult mosquitoes. The non-autonomous
model is formulated in Section 2 and its autonomous version is analyzed in Sec-
tion 3. The full non-autonomous model is analyzed and simulated in Section 4.
Since malaria is the world’s most important parasitic infectious disease [34], numer-
ical simulations of the model will be carried out using parameters relevant to the
population biology of adult female Anopheles mosquitoes in Section 5 (it is worth
stating that there are approximately 430 species of the Anopheles mosquitoes, of
which 30− 40 transmit malaria in humans (i.e., they are vectors) [4, 43]).

2. Model formulation. This study is based on the formulation and rigorous anal-
ysis of a mechanistic model for the dynamics of female Anopheles mosquitoes
in a population. The model splits the total immature mosquito population at
time t (denoted by IM (t)) into compartments for eggs (E(t)), four larval stages

(Li(t); i = 1, 2, 3, 4) and pupae (P (t)), so that IM (t) = E(t) +
4∑
i=1

Li(t) + P (t).

Similarly, to account for the mosquito gonotrophic cycle, the population of adult
female Anopheles mosquitoes at time t (AM (t)) is sub-divided into compartments
for the class of unfertilized female vectors not questing for blood meal and fertilized
female mosquitoes that have laid eggs at the mosquitoes breeding site (V (t)), the
class of fertilized, but not producing, female mosquitoes questing for blood meal
(W (t)), and the class of fertilized, well-nourished with blood, and reproducing fe-
male mosquitoes (U(t)), so that AM (t) = U(t) +V (t) +W (t). Let N represents the
amount of nutrients for the larvae (assumed to be constant or uniformly available
at the breeding sites). The model is given by the following deterministic system of
nonlinear differential equations.

dE

dt
= ψU (T )

(
1− U

KU

)
U −

[
σE(R, T̂ ) + µE(T̂ )

]
E,

dL1

dt
= σE(R, T̂ )E −

[
ξ1(N,R, T̂ ) + µL(T̂ ) + δLL

]
L1,

dLi
dt

= ξ(i−1)(N,R, T̂ )L(i−1) −
[
ξi(N,R, T̂ ) + µL(T̂ ) + δLL

]
Li ; i = 2, 3, 4,

dP

dt
= ξ4(N,R, T̂ )L4 −

[
σP (R, T̂ ) + µP (T̂ )

]
P,

dV

dt
= σP (R, T̂ )P + γUU −

ηVH

H + F
V − µA(T )V,

dW

dt
=

ηVH

H + F
V − [τWH + µA(T )]W,

dU

dt
= ατWHW − [γU + µA(T )]U,

L =

4∑
i=1

Li.

(1)

In (1), R = R(t), T = T (t), and T̂ = T̂ (t) denote rainfall, air temperature and
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water temperature at time t, respectively. Typically, a sinusoidal function, such as

T (t) = T0

[
1 + T1 cos

(
2π

365
(ωt+ θ)

)]
,

(where T0 is the mean annual temperature, T1 captures variation about the mean,
and ω and θ represent, respectively, the periodicity and phase shift of the func-
tion) is used to model local temperature fluctuations [2, 24] (and similar appro-
priate time-dependent functions are used to account for rainfall and water tem-
perature variability [1, 55]). Thus, the functions T (t), T̂ and R(t) are assumed
to be continuous, bounded, positive and ω-periodic. Furthermore, the parameters
ψU (T ), σE(R, T̂ ), σP (R, T̂ ), ξi(N,R, T̂ ) (for i = 1, 2, 3, 4), µE(T̂ ), µL(T̂ ), µP (T̂ )
and µA(T ) are non-negative, ω-periodic, continuous and bounded functions defined

on [0,∞). The term ψU (T )

(
1− U

KU

)
represents the density-dependent eggs ovipo-

sition rate (where KU > U(t) for all t ≥ 0 is the environmental carrying capacity
of female adult mosquitoes and ψU (T ) is the temperature-dependent egg deposi-
tion rate). Eggs hatch into the first larval stage at a rainfall- and temperature-
dependent rate σE(R, T ). Larvae in Stage i mature into Stage i + 1 at a rate
ξi(N,R, T ) (i = 1, 2, 3), which is assumed to depend on temperature, rainfall and
amount of nutrients. Larvae in Stage 4 (L4 class) mature into pupae at a nutrient-,
rainfall- and temperature-dependent rate ξ4(N,R, T ). It should be emphasized that
the maturation rates for the larval stages (ξi; i = 1, 2, 3, 4) are dependent on nu-
trient, temperature and rainfall because, while nutrients are needed for the growth
and development of the larvae, rainfall is required for availability of breeding sites
and habitats and favorable temperature values improve development of the larvae
[12, 33, 55, 57, 58, 74]. However, extreme climate conditions such as excessive rain-
fall washes out the larval breeding sites, such as small stagnant water on yards or
lawn, and also too hot or too cold are not favorable for the survival and maturation
of the larvae [2, 33, 55, 57, 58].

Pupae mature into the female adult mosquitoes of type V at a rainfall- and
temperature-dependent rate σP (R, T̂ ). These female adult mosquitoes quest for
blood meal at the human habitat at a rate ηV (and become female adult mosquitoes

of type W ) [51]. The term
H

H + F
accounts for the preference of human blood, as

opposed to that of other animals [28, 32, 52] (where H is the population density
of humans that are accessible to the mosquitoes (local to the breeding sites of the
mosquitoes) and F is a positive constant representing a constant alternative food
source for the female adult mosquitoes) [51]. At the human habitat, female adult
mosquitoes of type W interact with humans according to standard mass action law,
at a constant rate τW [51, 52]. This interaction can be successful with probability
α ∈ [0, 1], so that questing mosquitoes successfully obtain blood meals and become
vectors of type U (at the rate ατW ) which, in turn, return to become female adult
mosquitoes of type V at a rate γU after laying eggs (see [51, 52] for further details
on the derivation of the U − V −W component of the model). Furthermore, the

parameters µE(T̂ ), µL(T̂ ), µP (T̂ ), µA(T ) represent, respectively, the temperature-
dependent natural death rate for female eggs, female larvae, female pupae and
female adult mosquitoes, and δLL is the density-dependent mortality rate for larvae,
accounting for intra and inter-species larval competition for resources (nutrients)
and space (Abdelrazec and Gumel [1] and Lutambi et. al. [41] also incorporated
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density-dependent larval mortality in their models). A flow diagram of the model
(1) is depicted in Figure 1, and the model variables and parameters are described
in Table 1.

Variables Description

E Population of female eggs
Li Population of female larvae at Stage i (with i = 1, 2, 3, 4)
P Population of female pupae
V Population of fertilized female mosquitoes that have laid eggs at the breeding site

(including unfertilized female mosquitoes not questing for blood meal)
W Population of fertilized, but non-reproducing, female mosquitoes questing for blood meal
U Population of fertilized, well-nourished with blood, and reproducing female mosquitoes

Parameters Description

ψU Deposition rate of female eggs
σE Maturation rate of female eggs
ξi Maturation rate of female larvae from larval stage i to stage i+ 1 (with i = 1, 2, 3)
σP Maturation rate of female pupae
µE Natural mortality rate of female eggs
µL Natural mortality rate of female larvae
µP Natural mortality rate of female pupae
µA Natural mortality rate of female adult mosquitoes
δL Density-dependent mortality rate of female larvae
τW Constant mass action contact rate between female adult mosquitoes of type W and humans
α Probability of successfully taking a blood meal
γU Rate of return of female adult mosquitoes of type U to the mosquitoes breeding site
ηV Rate at which female adult mosquitoes of type V visit human habitat sites
H Constant population density of humans at human habitat sites
F Constant alternative source of blood meal for female adult mosquitoes
KU Environmental carrying capacity of female adult mosquitoes
pi The daily survival probability of Stage i (with i = E, 1, 2, 3, 4, P )
di The average duration spent in Stage i (with i = E, 1, 2, 3, 4, P )
ei Rate of nutrients intake for female larvae in Stage j (with j = 1, 2, 3, 4)
N Total available nutrient for female larvae
R Cumulative daily rainfall
T Daily mean ambient temperature

T̂ Daily mean water temperature in the breeding site
pMi Maximum daily survival probability of aquatic Stage i (with i = E, 1, 2, 3, 4, P )
RIM Rainfall threshold

Table 1. Description of state variables and parameters of the
model (1).

2.1. Time-dependent parameters. The functional forms of the nutrient-,
rainfall- and temperature-dependent parameters of the model (1) are formulated
as follows. This functional forms derived from [2, 47, 59, 60], characterizes the fe-
male Anopheles mosquitoes (which transmits malaria in humans). The per-capita
rate of deposition of female eggs (ψU (T )) defined using the quadratic function used
in [47], is given by

ψU (T ) = −0.153T 2 + 8.61T − 97.7.

Similarly, following [47], the per-capita death rate of the female adult mosquitoes
(µA(T )) is defined as

µA(T ) = − ln
(
−0.000828T 2 + 0.0367T + 0.522

)
.
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Figure 1. Flow diagram of the non-autonomous model (1).

Furthermore, following [60], the per-capita death rate of female eggs (µE(T̂ )), female

larvae (µL(T̂ )) and female pupae (µP (T̂ )) are defined, respectively, as

µE(T̂ ) =
1

1.011 + 20.212[1 + ( T̂
12.096 )4.839]−1

,

µL(T̂ ) =
1

8.130 + 13.794[1 + ( T̂
12.096 )4.839]−1

,

µP (T̂ ) =
1

8.560 + 20.654[1 + ( T̂
19.759 )6.827]−1

.

Similarly, following [60], the per-capita maturation rate of eggs (into larvae) and
pupae (into female adult mosquitoes) are given by

σi(R, T̂ ) =
(1− pi)pdii

1− pdii
; i = {E,P},

where di = di(T̂ ) > 1 (i = {E,P}) is the average duration spent in Stage i, given
by

di(T̂ ) =
1

µi(T̂ )
,

and pi = pi(R, T̂ ), (where 0 ≤ pi(R, T̂ ) < 1) is the daily survival probability of
immature mosquitoes in Stage i (assumed to be determined by the mean daily

water temperature (T̂ (◦C)) and cumulative daily rainfall (R (mm))), so that

pi(R, T̂ ) = pi(R)pi(T̂ ), (2)

with pi(T̂ ) = exp (−µi(T̂ )) (it should be stated that, in line with [60], the definition

of pi(R, T̂ ) = pi(R)pi(T̂ ) emphasizes the assumed independence of temperature
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Temperature (0C) ψU (T ) µE(T̂ ) µL(T̂ ) µP (T̂ ) µA(T )
16− 40 0.892− 23.431 0.194− 0.932 0.091− 0.122 0.040− 0.115 0.074− 0.408

Table 2. Range of values of temperature-dependent parameters
in the temperature range [16, 40]0C.

and rainfall with each other). Following [59] (Supplemental Material), the rainfall-
dependent daily probability of survival of immature mosquitoes, pi(R) (with i =
{E,L1, L2, L3, L4, P}) is given by

pi(R) = R(RIM −R)(4pMi/R
2
IM ), i = {E,L1, L2, L3, L4, P}, (3)

where pMi is the peak daily survival probability of immature mosquito stage i
(i = E = eggs; i = Lj = larvae in Stage j; j = {1, 2, 3, 4}; i = P = pupae) and
RIM > R(t) > 0, for all t, is the maximum rainfall threshold in the community.
The per capita maturation rate of larvae (ξj ; j = 1, 2, 3, 4), assumed to depend on

amount of available nutrients (N), rainfall (R) and water temperature (T̂ ), is given
by

ξj(N,R, T̂ ) = ξj(N)ξj(R, T̂ ); j = 1, 2, 3, 4,

where ξj(N) = ejN , with ej representing the rate of nutrients intake for female

larvae in stage j. Furthermore, ξj(R, T̂ ) is given by

ξj(R, T̂ ) =
(1− pj)p

dj
j

1− pdjj
; j = 1, 2, 3, 4,

with pj having similar definition as above, dj = dL(T̂ ) = 1/µL(T̂ ), for j = 1, 2, 3, 4.
It is assumed that water and air temperature obey the linear relation (see, for

instance, [2, 35, 57, 62, 64]), given by T̂ = T + θT , where θT > 0 is a small
increment in temperature.

Furthermore, since almost all communities within tropical and sub-tropical re-
gions of the world record temperatures in the range [16, 40]0C [11], it is plausible

to assume that 160C ≤ T (t), T̂ (t) ≤ 400C for this study. Using this assumption,
the minimum and maximum values of the temperature-dependent parameters of
the model (i.e., the per capita rate of deposition of eggs (ψU (T )), per capita death
rate of female eggs (µE(T )), per capita death rate of female larvae (µL(T )), per
capita death rate of female pupae (µP (T )) and per capita death rate of female
adult mosquitoes (µA(T ))) are tabulated in Table 2.

The non-autonomous model (1) is an extension of the autonomous model for the
population biology of the mosquito developed in [51, 52], by including:

(i) aquatic stages of the mosquito (i.e., adding the E,L1, L2, L3, L4 and P classes);
(ii) the effect of climate variables (i.e., adding the dependency on temperature

and rainfall).

It also extends the model by Lutambi et. al. [41] by, inter alia:

(i) incorporating the effect of climate variable (temperature and rainfall);
(ii) using logistic growth rate for egg oviposition rate (a constant rate was used

in [41]);
(iii) incorporating four larval stages (only one larval class was used in [41]).
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Furthermore, the model (1) extends the non-autonomous climate-driven mosquito
population biology model developed by Abdelrazec and Gumel [1] by

(i) including the dynamics of adult female mosquitoes (i.e., including compart-
ments U , V and W );

(ii) including four larval classes (a single larval class is considered in [1]);
(iii) including dependence on (constant and uniform availability of) nutrients for

the four larval stages.

2.2. Basic properties. Since, as stated in Section 2, R = R(t), T = T (t) and

T̂ = T̂ (t), the temperature- and rainfall-dependent parameters of the model will,
from now on, be expressed as functions of t only. The basic properties of the
non-autonomous model (1) will now be explored. Let, from now on, µM (t) =
min {µE(t), µL(t), µA(t)}. It is convenient to define M(t) = IM (t) + AM (t), the
total number of immature and matured mosquitoes at time t. It then follows from
(1) that the rate of change of M(t) is given by (where a dot represents differentiation
with respect to time t)

Ṁ ≤ ψU (t)

(
1− U

KU

)
U − δLL2 − µM (t)M − (1− α)τWHW,

≤ ψU (t)

(
1− U

KU

)
U − µM (t)M, t > 0.

(4)

In order to study the asymptotic dynamics of the mosquito population, subject to
fluctuations in temperature and rainfall, we assume that the mosquito population
stabilizes at a periodic steady-state. Furthermore, following [40, 55], it is assumed
that for the time ω-periodic function, ψU (t) ∈ C1(0,R+), there exists a positive
number, h0, such that

ψU (t)

(
1− U

KU

)
U − µM (t)A < 0 for all A ≥ h0.

Lemma 2.1. For any φ ∈ Ω = C([0,R9
+]), the model (1) has a unique non-negative

solution through φ, and all solutions are uniformly-bounded.

Proof. Let φ : [0,∞] → R9
+ be the vector-valued functions such that φ(0) =

(E(0), L1(0), L2(0), L3(0), L4(0), P (0), V (0),W (0), U(0)). The system (1) can then
be re-written as:

dφ

dt
= f(t, φ(t)), t ≥ 0 φ(0) = φ0,

where,

f(t, φ(t)) =



ψU (t)

[
1− φ9(0)

KU

]
φ9(0)−

[
σE(t) + µE(t)

]
φ1(0)

σE(t)φ1(0)−
[
ξ1(t) + µL(t) + δLφL(0)

]
φ2(0)

ξ(i−2)(t)φ(i−1)(0)−
[
ξ(i−1)(t) + µL(t) + δLφL(0)

]
φi(0); i = 3, 4, 5

ξ4(t)φ5(0)−
[
σP (t) + µP (t)

]
φ6(0)

σP (t)φ6(0) + γUφ9(0)− ηVH

H + F
φ7(0)− µA(t)φ7(0)

ηVH

H + F
φ7(0)−

[
τWH + µA(t)

]
φ8(0)

ατWHφ8(0)−
[
γU + µA(t)

]
φ9(0)



,
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φL(0) =
5∑
i=2

φi(0), with φ9(0) < KU . Thus, for all φ ∈ Ω, the function f(t, φ(t))

is continuous and Lipschitzian (with respect to φ in each compact set in R × Ω)
[40]. Hence, there is a unique solution of system (1) through (0, φ). It should be
noted that fi(t, π) ≥ 0 whenever π ≥ 0 and πi(0) = 0 [40]. Hence, it follows (from
Remark 5.2.1 in [69]) that Ω is positively-invariant with respect to the model (1).

For the total mosquito population M(t), the rate of change of M(t) satisfies
Equation (5). Thus, it follows from the comparison principle [37], that the solution
exists for all t ≥ 0. Moreover,

lim sup
t→∞

(E(t) + L(t) + P (t) + V (t) +W (t) +W (t)) ≤M∗(t),

where M∗(t) is the unique periodic solution of

Ṁ∗ = ψU (t)

(
1− U

KU

)
U − µM (t)M∗, t > 0, (5)

given by,

M∗(t) = e−
∫ t
0
µM (s) ds×

{∫ t

0

[
ψU (s)

(
1− U(s)

KU

)
U(s)e

∫ s
0
µM (τ) dτ

]
ds

+

∫ ω
0
ψU (s)

(
1− U(s)

KU

)
U(s) exp

[∫ s
0
µM (ζ) dζ

]
exp

[∫ ω
0
µM (s) ds

]
− 1

}
.

Thus, all solutions of the model (1) are ultimately-bounded [40]. Moreover, it follows

from (5) that Ṁ∗ < 0 whenever M∗ > h0. Hence, all solutions of the model (1) are
uniformly-bounded [40, 55].

3. Analysis of autonomous model. It is instructive to, first of all, analyze the
dynamics of the autonomous equivalent of the non-autonomous model (1) to de-
termine whether or not it has some qualitative features that do not exist in the
model (1). Consider, now, the non-autonomous model (1) with all rainfall- and
temperature-dependent parameters set to a constant (i.e., σE(t) = σE , σP (t) =
σP , ξi(t) = ξi, µE(t) = µE , µL(t) = µL, µA(t) = µA), given by:

dE

dt
= ψU

(
1− U

KU

)
U − (σE + µE)E,

dL1

dt
= σEE − [ξ1 + µL + δLL]L1,

dLi
dt

= ξ(i−1)L(i−1) − [ξi + µL + δLL]Li ; i = 2, 3, 4,

dP

dt
= ξ4L4 − (σP + µP )P,

dV

dt
= σPP + γUU −

ηVH

H + F
V − µAV,

dW

dt
=

ηVH

H + F
V − (τWH + µA)W,
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dU

dt
= ατWHW − (γU + µA)U,

L =

4∑
i=1

Li,
(6)

where, now, ξi = ξi(N) = eiN .

3.1. Asymptotic stability of trivial equilibrium point. In this section, some
results for the existence and linear asymptotic stability of the trivial equilibrium
point of the autonomous model (6) will be provided. It is convenient to introduce
the following parameter groupings (noting that α < 1):

τ∗W = τWH, η∗V =
ηVH

H + F
, CE = σE + µE , CP = σP + µP ,

Ci = ξi + µL (for i = 1, 2, 3, 4), C5 = η∗V + µA, C6 = τ∗W + µA, C7 = γU + µA,
B = σEσP ξ1ξ2ξ3ξ4, C = C1C2C3C4CECP , D = C5C6C7 − ατ∗W η∗V γU > 0.

(7)

The autonomous model (6) has a trivial equilibrium solution, denoted by T0, given
by

T0 = (E∗, L∗1, L
∗
2, L
∗
3, L
∗
4, P

∗, V ∗,W ∗, U∗) =
(
0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

The linear stability of T0 (in Ω) is obtained by using the next generation matrix
[23, 73] for the system (1). Using the notation in [73], the non-negative matrix F
and the non-singular matrix V, for the new egg deposition terms and the remaining
transfer terms, are, respectively, given (at the trivial equilibrium, T0) by

F =

 0 0 F1

0 0 0

0 0 0

 and V =

 V1 0 0

V2 V3 0

0 V4 V5

 ,
where 0 denotes a zero matrix of order 3, and

F1 =

 0 0 ψU

0 0 0

0 0 0

 ,V1 =

 CE 0 0

−σE C1 0

0 −ξ1 C2

 ,V2 =

 0 0 −ξ2
0 0 0

0 0 0

 ,

V3 =

 C3 0 0

−ξ3 C4 0

0 −ξ4 CP

 ,V4 =

 0 0 −σP
0 0 0

0 0 0

 ,V5 =

 C5 0 −γU
−η∗V C6 0

0 −ατ∗W C7

 .
It follows from [73] that the associated vectorial reproduction number of the au-
tonomous model (6) [63], denoted by R0 = ρ(FV−1), is given by (where ρ is the
spectral radius of the next generation matrix FV−1)

R0 =
ατ∗W η

∗
V ψUB

CD
, (8)

where τ∗W , η
∗
V , B, C, Ci (i = E,P, 1, . . . , 7) and D are as defined in (7). The thresh-

old quantity, R0, measures the average number of new adult mosquitoes (offspring)
produced by one reproductive mosquito during its entire reproductive period [52].
The result below follows from Theorem 2 in [73].

Theorem 3.1. The trivial equilibrium (T0) is locally-asymptotically stable (LAS)
whenever R0 < 1, and unstable whenever R0 > 1.
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Theorem 3.2. The trivial equilibrium point (T0) of the autonomous model (6) is
GAS whenever R0 ≤ 1.

Proof. Consider the Lyapunov function

K1 = ατ∗W η
∗
V ξ4σP

[
σEξ1ξ2ξ3E + CEξ1ξ2ξ3L1 + C1CEξ2ξ3L2 + C1C2CEξ3L3

+ C1C2C3CEL4

]
+ C1C2C3C4CE

[
σP η

∗
V ατ

∗
WP + CP η

∗
V ατ

∗
WV + CPC5ατ

∗
WW

+ CPC5C6U
]
.

It is convenient to define

S = ατ∗W η
∗
V ξ4σP

[
CEξ1ξ2ξ3L1 + C1CEξ2ξ3L2 + C1C2CEξ3L3 + C1C2C3CEL4

]
.

Thus, the Lyapunov derivative is given by

K̇1 = ατ∗W η
∗
V ξ4σP

[
σEξ1ξ2ξ3Ė + CEξ1ξ2ξ3L̇1 + C1CEξ2ξ3L̇2 + C1C2CEξ3L̇3

+ C1C2C3CEL̇4

]
+ C1C2C3C4CE

[
σP η

∗
V ατ

∗
W Ṗ + CP η

∗
V ατ

∗
W V̇ + CPC5ατ

∗
W Ẇ

+ CPC5C6U̇
]
,

= ατ∗W η
∗
VB

[
ψU

(
1− U

KU

)
U

]
+ C1C2C3C4CE

(
CP η

∗
V ατ

∗
W γUU − CPC5C6C7U

)
− δLLS,

= ατ∗W η
∗
VBψUU − CDU − ατ∗W η∗VBψU

U

KU
U − δLLS,

=

[
CD

(
R0 − 1

)
− ατ∗W η∗VBψU

U

KU

]
U − δLLS,

where τ∗W , η
∗
V , B, C, Ci (i = E,P, 1, . . . , 7) and D are as defined in (7). Thus, it

follows that, for R0 ≤ 1 in Ω, the Lyapunov derivative K̇1 < 0. Furthermore, it fol-
lows from the LaSalle’s Invariance Principle (Theorem 6.4 of [39]) that the maximal
invariant set contained in

{(
E(t), L1(t), L2(t), L3(t), L4(t), P (t), V (t),W (t), U(t)

)
∈

Ω : K̇1 = 0
}

is the singleton {T0}. Hence, T0 is GAS in Ω whenever R0 ≤ 1.

Theorem 3.2 shows that the mosquito population (both immature and mature)
will be effectively controlled (or eliminated) if the associated vectorial reproduction
threshold, R0, can be brought to (and maintained at) a value less than or equal to
unity.

3.2. Existence of non-trivial equilibrium point. The existence of a non-trivial
equilibrium of the model (6) will now be explored. Let T ∗∗1 =

(
E∗∗, L∗∗1 , L

∗∗
2 ,

L∗∗3 , L
∗∗
4 , P

∗∗, V ∗∗,W ∗∗, U∗∗
)

represents an arbitrary non-trivial equilibrium of the
model (6). Solving for the state variables of the model (6) at T ∗∗1 gives

E∗∗ =
ψU
CE

(
1− U∗∗

KU

)
U∗∗, E∗∗ =

1

σE

(
C1 + δLL

∗∗)L∗∗1 , L∗∗1 =
1

ξ1

(
C2 + δLL

∗∗)L∗∗2 ,
L∗∗2 =

1

ξ2

(
C3 + δLL

∗∗)L∗∗3 , L∗∗3 =
1

ξ3

(
C4 + δLL

∗∗)L∗∗4 , L∗∗4 =
CPDU

∗∗

ατ∗W η
∗
V σP ξ4

,

P ∗∗ =
DU∗∗

ατ∗W η
∗
V σP

, V ∗∗(U∗∗) =
C6C7U

∗∗

ατ∗W η
∗
V

, W ∗∗ =
C7U

∗∗

ατ∗W
, U∗∗ =

ατ∗W η
∗
V σP ξ4L

∗∗
4

CPD
.

(9)
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It follows from (9) that

L∗∗i =

(
Ci+1 + δLL

∗∗)L∗∗i+1

ξi
; i = 1, 2, 3. (10)

Multiplying the second, third, fourth and fifth equations of (9), and substituting
the expressions for E∗∗ and L∗∗4 into the resulting equation (and simplifying), gives

Bατ∗W η
∗
V ψU

(
1− U∗∗

KU

)
= CECPD

4∏
i=1

(
Ci + L̄∗∗

)
. (11)

Substituting the expression for U∗∗ in (9) into (11), and simplifying, gives (it can
be shown that L∗∗4 > 0)

L∗∗4 =
KUCPD

ατ∗W η
∗
V σP ξ4

1−
CECPD

4∏
i=1

(
Ci + δLL

∗∗)
Bατ∗W η

∗
V ψU

 . (12)

Furthermore, substituting the expressions for Li (i = 1, 2, 3), given in (10), into

L∗∗ =
4∑
i=1

L∗∗i gives,

L∗∗ =
1

ξ1ξ2ξ3

[
ξ1ξ2ξ3+ξ1ξ2

(
C4+δLL

∗∗)+ξ1 4∏
i=3

(
Ci+δLL

∗∗)+ 4∏
i=2

(
Ci+δLL

∗∗)]L∗∗4 .
(13)

Finally, substituting (12) into (13), and simplifying, shows that the non-trivial
equilibria of the model (6) satisfy the following polynomial:

b7(L∗∗)7 + b6(L∗∗)6 + b5(L∗∗)5 + b4(L∗∗)4 + b3(L∗∗)3 + b2(L∗∗)2

+ b1(L∗∗) + b0 = 0,
(14)

where the coefficients bi (i = 0, . . . , 7) are constants, and are given in Appendix A1.
It follows from the expressions of bi (i = 0, . . . , 7) in Appendix A1 that:

(i) the coefficients bi (i = 0, . . . , 7) > 0 whenever R0 < 1. Thus, no positive
solution exists whenever R0 < 1. Furthermore, when R0 = 1, the coefficients
bi (i = 1, . . . , 7) > 0 and b0 = 0 (thus, the polynomial has no positive roots
for the case when R0 = 1).

(ii) the polynomial (14) has at least one positive root whenever R0 > 1 (using the
Descartes’ Rule of Signs).

These results are summarized below.

Theorem 3.3. The model (6) has at least one non-trivial equilibrium whenever
R0 > 1, and no non-trivial equilibrium whenever R0 ≤ 1.

Furthermore, it is worth stating that, for the special case of the autonomous
model (6) with no density-dependent larval mortality (i.e., δL = 0), the coefficients
bi (i = 2, . . . , 7) = 0 and b1 = 1. Thus, in this case, the polynomial (14) reduces to
L∗∗ + b0 = 0, so that (where Q1 and X6 are defined in Appendix A)

L∗∗ =

(
1− 1

R0

)
Q1X6. (15)

Thus, in the absence of density-dependent larval mortality (i.e., δL = 0), the model
(6) has a unique non-trivial equilibrium (denoted by T1 = (E∗∗, L∗∗1 , L

∗∗
2 , L

∗∗
3 , L

∗∗
4 ,
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P ∗∗, V ∗∗,W ∗∗, U∗∗)) when R0 > 1 (the components of this equilibrium can be
obtained by substituting (15) into (9)).

Theorem 3.4. The model (6) with δL = 0 has a unique non-trivial equilibrium
whenever R0 > 1, and no non-trivial equilibrium otherwise.

3.2.1. Asymptotic Stability of Non-Trivial Equilibrium Point: Special Case. Con-
sider the special case of the autonomous model (6) in the absence of density-
dependent mortality rate for larvae (i.e., δL = 0) so that the autonomous model (6)
has a unique non-trivial equilibrium (T1) when R0 > 1. Linearizing the autonomous
model (6), with δL = 0, at T1 gives:

J (T1) =



−CE 0 0 0 0 0 0 0 ψU

(
2

R0
− 1

)
σE −C1 0 0 0 0 0 0 0

0 ξ1 −C2 0 0 0 0 0 0

0 0 ξ2 −C3 0 0 0 0 0

0 0 0 ξ3 −C4 0 0 0 0

0 0 0 0 ξ4 −CP 0 0 0

0 0 0 0 0 σP −C5 0 γU

0 0 0 0 0 0 η∗V −C6 0

0 0 0 0 0 0 0 ατ∗W −C7


.

The eigenvalues of the matrix J (T1) satisfy the following polynomial:

P9(λ) = λ9 +A8λ
8 +A7λ

7 +A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ

+ CD(R0 − 1),
(16)

where τ∗W , η
∗
V and Ci (i = E,P, 1, . . . , 7) are as defined in (7) and Ai (i = 1, . . . , 8)

are positive constants given in Appendix A2. It is convenient to re-write the poly-
nomial (16) as

P9(λ) = F (λ)G(λ) + CD
(
R0 − 2

)
, (17)

where,

F (λ) = (λ+ CE)(λ+ CP )(λ+ C1)(λ+ C2)(λ+ C3)(λ+ C4), (18)

and,

G(λ) = λ3 + (C5 + C6 + C7)λ2 + (C5C6 + C5C7 + C6C7)λ+D, (19)

so that,

F (λ)G(λ) = λ9 +A8λ
8 +A7λ

7 +A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2

+A1λ+ CD.
(20)

The asymptotic stability of T1 will be explored using the properties of Bézout ma-
trices [31]. Consequently, it is convenient to recall the following four results:

Theorem 3.5. (Routh-Hurwitz)[31]. Let A be an n × n complex matrix, and let
Ek be the sum of all principal minors of A of order k, k ∈< n >. Let Ω(A) be the
n × n Hurwitz matrix of A and assume that Ω(A) is real. Then A is stable if and
only if all leading principal minors of Ω(A) are positive.
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Definition 3.6. (Bézout Matrix)[31]. Let a(x) and b(x) be two polynomials with
real coefficients of degree n and m respectively, n ≥ m. The Bézoutiant defined by
a(x) and b(x) is the bilinear form

a(x)b(y)− a(y)b(x)

x− y
=

n−1∑
i,k=0

bikx
iyk.

The symmetric matrix (bik)n−10 associated with this bilinear form is called the
Bézout matrix and is denoted by Ba,b. Each entry bi,j of Ba,b can be computed
separately by the entry formula

bi,j =

min(i,n−1−j)∑
k=max(0,i−j)

(
bi−kaj+1+k − ai−kbj+1+k

)
for all i, j ≤ n.

Theorem 3.7. (Liénard-Chipart)[31] Let f(x) = xn − anx
n−1 − . . . − a1 be a

polynomial with real coefficients, and let an−1 = −1. Define the polynomials

h(u) = −a1 − a3u− · · · ,
g(u) = −a2 − a4u− · · · .

The polynomial f(x) is negative stable if and only if the Bézout matrix Bh,g is
positive definite and ai < 0 for all i ∈< n >.

Theorem 3.8. (Sylvester’s Criterion)[27] A real, symmetric matrix is positive def-
inite if and only if all its principal minors are positive.

We claim the following result.

Lemma 3.9. The polynomial F (λ)G(λ), defined by Equations (18), (19) and (20),
is Hurwitz stable (i.e., all its roots have negative real part).

Proof. It follows from the equation for F (λ) in (18) that all roots of F (λ) are
negative. Furthermore, consider G(λ) = 0 from (19). That is,

G(λ) = λ3 + (C5 + C6 + C7)λ2 + (C5C6 + C5C7 + C6C7)λ+D = 0.

Using the Routh-Hurwitz Criterion (Theorem 3.5), the principal minors, ∆k (k =
1, 2, 3), of the associated Hurwitz matrix for G(λ) are

∆1 = C5 + C6 + C7 > 0,

∆2 = (C5 + C6 + C7)(C5C6 + C5C7) + C6C7(C6 + C7) + ατ∗W η
∗
V γU > 0,

∆3 = D∆2 > 0.

Thus, all the roots ofG(λ) have negative real part. Hence, all nine roots of F (λ)G(λ)
have negative real part.

Remark 1. It follows from Lemma 3.9 and Theorem 3.7 that the corresponding
Bézout matrix of F (λ)G(λ) is positive-definite [31].

Remark 2. Consider P9(λ) = F (λ)G(λ) +CD(R0 − 2). Then, P9(λ) ≤ F (λ)G(λ)
whenever 1 < R0 ≤ 2. Thus, it follows from Lemma 3.9 that all nine roots of
P9(λ) have negative real part whenever 1 < R0 ≤ 2 (hence, T1 is LAS whenever
1 < R0 ≤ 2).
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Furthermore, consider the characteristic polynomial P9(λ) given in (16). Let
A0 = CD(R0 − 1), with C and D as defined in (7), so that

P9(λ) = λ9 +A8λ
8 +A7λ

7 +A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ+A0.

To apply Theorem 3.7, let

h(u) = A0 +A2u+A4u
2 +A6u

3 +A8u
4,

and,

g(u) = A1 +A3u+A5u
2 +A7u

3 + u4.

Thus, it follows from Definition 3.6 that the corresponding Bézout matrix of P9(λ),
denoted by Bh,g(P9), is given by

Bh,g(P9) =



A1A2−A0A3 A1A4−A0A5 A1A6−A0A7 A1A8−A0

A1A4−A0A5 A3A4−A2A5+A1A6−A0A7 A3A6−A2A7+A1A8−A0 A3A8−A2

A1A6−A0A7 A3A6−A2A7+A1A8−A0 A5A6−A4A7+A1A8−A2 A5A8−A4

A1A8−A0 A3A8−A2 A5A8−A4 A7A8−A6


.

Sylvester’s Criterion (Theorem 3.8) can be used to obtain the necessary and suf-
ficient conditions for Bh,g(P9) to be positive-definite. First of all, it is evident
that Bh,g(P9) is symmetric. It then suffices to show that the kth leading principal
minor of Bh,g(P9) is positive (i.e., to show that the determinant of the upper-left
k×k sub-matrix of Bh,g(P9) is positive). It is convenient to introduce the following
notations:

(i) b
(J)
i,j : 0 ≤ i, j ≤ 3, J ∈ {FG, P9} are the entries of the corresponding Bézout

matrix of the polynomial F (λ)G(λ) (denoted by Bh,g(FG)) and P9(λ) (clearly,
Bh,g(FG) = Bh,g(P9) when A0 = CD).

(ii) ∆
(P9)
k is the kth leading principal minor of Bézout matrix Bh,g(P9).

Therefore, Bh,g(P9) can be re-written (in terms of the entries of the positive-definite

Bézout matrix, Bh,g(FG). That is, in terms of b
(FG)
i,j ) as

Bh,g(P9) =


b
(FG)
0,0 −CDKA3 b

(FG)
0,1 −CDKA5 b

(FG)
0,2 −CDKA7 b

(FG)
0,3 −CDK

b
(FG)
1,0 −CDKA5 b

(FG)
1,1 −CDKA7 b

(FG)
1,2 −CDK b

(FG)
1,3

b
(FG)
2,0 −CDKA7 b

(FG)
2,1 −CDK b

(FG)
2,2 b

(FG)
2,3

b
(FG)
3,0 −CDK b

(FG)
3,1 b

(FG)
3,2 b

(FG)
3,3

 .
where C and D are as defined in (7) and K = (R0 − 2). It follows from Remark
2 that the Bézout matrix, Bh,g(P9), is a positive definite matrix for 1 < R0 ≤ 2.
Furthermore, the Bézout matrix, Bh,g(P9), can be re-written as (after row-column
operations)

Bh,g(P9) =



∆
(P9)
1 b

(P9)
0,1 b

(P9)
0,2 b

(P9)
0,3

0
∆

(P9)
2

∆
(P9)
1

b
(P9)
1,2 −

b
(P9)
0,1 b

(P9)
0,3

b
(P9)
0,0

b
(P9)
1,3 −

b
(P9)
0,1 b

(P9)
0,4

b
(P9)
0,0

0 0
∆

(P9)
3

∆
(P9)
2

B1

0 0 0
∆

(P9)
4

∆
(P9)
3



, (21)

where B1 = B1

(
b
(P9)
i,j

)
0 ≤ i, j ≤ 3. However, since the kth leading principal minor

of a triangular matrix is the product of its diagonal elements up to row k, Sylvester’s
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Criterion is equivalent to finding conditions for which all the diagonal elements of
Bézout matrix, Bh,g(P9), in (21) are all positive (i.e., finding the conditions for

which ∆
(P9)
k are positive for all k = 1, 2, 3, 4) [63]. For example, it can be verified

that the first leading principal minor of the matrix Bh,g(P9), given by

∆
(P9)
1 = A1A2 − CD(R0 − 1)A3 = A1A2 − CDA3 − CD(R0 − 2)A3

= b
(FG)
0,0 − CD(R0 − 2)A3,

is positive whenever the following inequality holds:

R0 < 2 +
b
(FG)
0,0

CDA3
= 2 + Z1,

where, b
(FG)
0,0 = A1A2 − CDA3 > 0 is the first leading principal minor of Bh,g(FG)

and Z1 is the positive constant such that ∆
(P9)
1 is positive whenever R0 < 2 + Z1.

Similarly, we obtain constants Zk = Zk
(
b
(FG)
i,j (0 ≤ i, j ≤ 3), Ai (1 ≤ i ≤ 9), C,D

)
such that the kth principal minor ∆

(P9)
k is positive whenever R0 < 2 +Zk, for each

k = 2, 3, 4 (i.e., Zi (i = 1, 2, 3, 4), is the constant such that R0 < 2 + Zi makes
the determinant of the associated matrix of minors of matrix (21) to be positive).
Therefore, the result below follows (from the above derivations and Remark 2).

Theorem 3.10. Consider the model (6) with δL = 0. The unique non-trivial
equilibrium (T1) is LAS in Ω \ {T0} whenever

1 < R0 < RC0 = 2 + min
{
Zk : ∆

(P9)
k > 0 for all k = 1, 2, 3, 4

}
,

and unstable whenever R0 > RC0 .

The results above (Theorem 3.4 and Theorem 3.10) show that the condition
R0 > 1 defines the existence of a unique non-trivial equilibrium

(
T1
)

of the model

(6) with δL = 0 (which is LAS if 1 < R0 < RC0 ). Thus, it can be deduced that, to
maintain a non-trivial mosquito population, each reproducing female mosquito (of
type U) must produce at least one egg during its entire reproductive life period (see
also [51]). In other words, an increase in female mosquitoes of type U(t) leads to a
corresponding increase in the number of female eggs laid in the population (E(t).
We claim the following result.

Theorem 3.11. Consider a special case of the model (6) with sgn(E∗∗ − E(t)) =
sgn(U∗∗ −U(t)) for all t ≥ 0 and δL = 0. Then, the non-trivial equilibrium (T1) of
the model (6) with δL = 0 is GAS in Ω \ {T0} whenever 1 < R0 < RC0 .

Proof. The proof of Theorem 3.11, based on using a non-linear Lyapunov function
of Goh-Voltera type, is given in Appendix B.

The ecological implication of Theorem 3.11 is that mosquitoes will persist in the
community whenever the associated conditions for the global asymptotic stability
of the non-trivial equilibrium (T1) are satisfied. The results of Theorem 3.11 are
illustrated numerically, by simulating the compartment of adult mosquitoes of type
U in autonomous model (6) with δL = 0 using appropriate parameter values (Figure
2). These simulation results show convergence of the solution of U(t) to U∗∗ (in
line with Theorem 3.11). It is worth mentioning that, for the fixed values of the
parameters used in Figure 2, the associated bifurcation point of the model (6) with
δL = 0 is ψU = ψ∗U = 107.889493160695073 (so that, ∆4 = 0). This is equivalent
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Figure 2. Simulations of the autonomous model (6), showing:
(a) total number of female adult mosquitoes of type U(t) as a
function of time. (b) phase portrait of U(t) − P (t) showing sta-
ble non-trivial equilibrium T1. The parameter values used are:
ψU = 100.91, KU = 105, σE = 0.84, µE = 0.05, ξ1 = 0.15, ξ2 =
0.11, ξ3 = 0.24, ξ4 = 0.5, µL = 0.34, δL = 0, σP = 0.8, µP =
0.17, γU = 0.3, η∗V = 0.4, τ∗W = 16, α = 0.86 and µA = 0.12 (so
that, R0 = 4.2625 < RC0 = 4.5573).

to R0 = RC0 = 4.5573. Therefore, for this particular set of parameter values, the
non-trivial equilibrium (T1) is LAS for 1 < R0 < 4.5573, and unstable whenever
R0 > 4.5573.

Figure 3. Simulations of the autonomous model (6), showing: (a)
total number of female adult mosquitoes of type U(t) as a function
of time. (b) phase portrait of U(t) − P (t) showing a stable limit
cycle. The parameter values used are as given in the simulations for
Figure 2 with ψU = 110.91 and µA = 0.12 (so that, R0 = 4.6849 >
RC0 = 4.5573).

3.3. Hopf Bifurcation analysis: Special case. Consider the model (6) with
δL = 0 and R0 > 1 (so that T1 exists, by Theorem 3.4). Hopf bifurcation can
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occur (at a fixed value of a chosen bifurcation parameter) when the Jacobian of the
system (6) with δL = 0, evaluated at T1, has a pair of purely imaginary eigenvalues.
That is, when P9(λ) given in (16), has a pair of purely imaginary roots.

The rank and signature of the Bézout matrix, Bh,g(P9), can be used to evaluate
the number of roots with negative real parts [61]. The direct effect of the character-
istic polynomial P9 having a pair of purely imaginary eigenvalues is that the rank
of the Bézout matrix, Bh,g(P9), is reduced by exactly one [61]. From the stability
point of view, this possibility represent the existence of a boundary (Hopf bifurca-
tion) [61]. To prove the existence of Hopf bifurcation, it also suffices to verify the
transversality condition [20].

Theorem 3.12. Consider the autonomous model (6) with δL = 0. A Hopf bifur-
cation occurs whenever R0 = RC0 = 2 + Z4 or, equivalently, whenever

ψU = ψ∗U =
CD(2 + Z4)

ατ∗W η
∗
VB

=
CDRC0
ατ∗W η

∗
VB

,

where Z4 is as defined in Theorem 3.10.

Proof. To prove Theorem 3.12, it is sufficient to establish the transversality condi-
tion [20]. Let ψU = ψ∗U be a bifurcation parameter (and all other parameters of
the model (6) are fixed). Then R0 = RC0 = 2 + Z4. Since Z4 < Zi ( i = 1, 2, 3), it

follows from Theorem 3.10 that ∆
(P9)
i > 0 for all i = 1, 2, 3. Furthermore, ∆

(P9)
4

can be re-written as

∆
(P9)
4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(FG)
0,0 −(ατ∗W η∗V ψUB−2CD)A3 b

(FG)
0,1 −(ατ∗W η∗V ψUB−2CD)A5 b

(P9)
0,2 b

(P9)
0,3

b
(FG)
1,0 −(ατ∗W η∗V ψUB−2CD)A5 b

(FG)
1,1 −(ατ∗W η∗V ψUB−2CD)A7 b

(P9)
1,2 b

(P9)
1,3

b
(FG)
2,0 −(ατ∗W η∗V ψUB−2CD)A7 b

(FG)
2,1 −(ατ∗W η∗V ψUB−2CD) b

(P9)
2,2 b

(P9)
2,3

b
(FG)
3,0 −(ατ∗W η∗V ψUB−2CD) b

(P9)
3,1 b

(P9)
3,2 b

(P9)
3,3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Hence, ∆
(P9)
4 (ψU ) = 0 if and only if ψU = ψ∗U . Furthermore, it can be verified that

d∆
(P9)
4 (ψU )

dψU

∣∣∣∣
ψU=ψ∗

U

= Tr

(
Adj(Bh,g(P9)(ψU ))

∣∣∣∣
ψU=ψ∗

U

dBh,g(P9)(ψU )

dψ

∣∣∣∣
ψU=ψ∗

U

)
6= 0,

where ‘Tr’ and ‘Adj’ denote, respectively, the trace and adjoint of a matrix. Simi-
larly, let µA be a bifurcation parameter (and all other parameters of the model (6)
are fixed). Thus,

d∆
(P9)
4 (µA)

dψ

∣∣∣∣
µA=µ∗

A

= Tr

(
Adj(Bh,g(P9)(µA))

∣∣∣∣
µA=µ∗

A

dBh,g(P9)(µA)

dµA

∣∣∣∣
µA=µ∗

A

)
,

for all ∆
(P9)
4 (µ∗A) = 0. It can be verified that

d∆
(P9)
4 (µA)

dψ

∣∣∣∣
µA=µ∗

A

6= 0.

Theorem 3.12 shows that sustained oscillations are possible, with respect to the
autonomous model (6) with δL = 0, whenever R0 = RC0 . This result, which is
numerically illustrated in Figure 3(a), is in line with that reported in [1] (where
both logistic and Maynard-Smith-Slatkin eggs-laying functions are used). It is worth
mentioning that, in the proof of Theorem 3.12, two bifurcation parameters (ψU and
µA) were considered. The reason is, as noted in [1], that the transversality condition
may fail at some points if only one parameter is used (see also [20]). The nature
of the Hopf bifurcation property of the model (6) is investigated numerically. The
results obtained, depicted in Figure 3(b), show convergence of the solutions to a
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stable limit cycle. It should be mentioned that the presence of bifurcation was not
shown in the dynamics of mosquito population biology model developed in [41].

3.3.1. Numerical illustrations. In this section, a bifurcation diagram for the au-
tonomous model (6) with δL = 0, which summarizes the main results obtain in
Section 3, will be generated in the µA − ψU plane as follows:

(i) Solving for ψU from R0 = 1 gives the following equation for ψlU (depicted in
Figure 4):

l : ψU = ψlU =
CD(µA)

ατ∗W η
∗
VB

.

(ii) Solving for ψU from ∆
(P9)
4 = 0 (and fixing all parameters of the models (using

their values as in Figure 4), except the parameters, µA and ψU ) give the

following curve ∆
(P9)
4 = 0:

H : ψU = ψ∗U =
CD(µA)

[
2 + Z4(µA)

]
ατ∗W η

∗
VB

,

where B,C and D are as defined in (7) and Z. The curves l and H (depicted in
Figure 4) divide the µA − ψU plane into three distinct regions, namely D1, D2 and
D3, given by:

D1 =
{

(µA, ψU ) : 0 < ψU ≤ ψlU ; µA > 0
}
,

D2 =
{

(µA, ψU ) : ψlU < ψU < ψ∗U ; µA > 0
}
,

D3 =
{

(µA, ψU ) : ψU > ψ∗U ; µA > 0
}
.

The regions can be described as follows (see also Table 3):

(i) Region D1: In this region, R0 ≤ 1. Hence, in this region (note that δL =
0), the trivial equilibrium (T0) is globally-asymptotically stable (in line with
Theorem 3.2).

(ii) Region D2: Here, 1 < R0 < RC0 . Thus, the model has two equilibria, namely
the unstable trivial equilibrium (T0) and the locally-asymptotically stable non-
trivial equilibrium (T1). The model undergoes a Hopf bifurcation whenever
R0 = RC0 .

(iii) Region D3: In this region, R0 > RC0 . Thus, the model has the unstable trivial
equilibrium (T1), unstable non-trivial equilibrium and a stable limit cycle.

Threshold Condition T0 T1 Existence of Stable Limit Cycle

R0 ≤ 1 GAS No No

1 < R0 < RC0 Unstable LAS No

R0 > RC0 Unstable Unstable Yes

Table 3. Stability properties of the solutions of the autonomous
model (6).
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Figure 4. Bifurcation curves in the µA−ψU plane for the au-
tonomous model (6). The parameter values used are as given in
the simulations for Figure 2 with ψU ∈ [0, 60000] and µA ∈ [0, 0.5].

3.4. Uncertainty and sensitivity analysis for autonomous model. Sensitiv-
ity analysis determines the effects of parameters on the model outcomes [16]. The
effect of these uncertainties, as well as the determination of the parameters that
have the greatest influence on the mosquitoes dispersal dynamics (with respect to
a given response function), are carried out using an uncertainty and sensitivity
analysis [2, 14, 44, 45, 46, 55]. In particular, following [14], the Latin Hypercube
Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC) will be used
for the autonomous model (6). The range and baseline values of the parameters,
tabulated in Table 4, will be used. Appropriate response functions are chosen for
these analyses.

Using the population of female adult mosquitoes of type U as the response func-
tion, it is shown in Table 5 that the top three PRCC-ranked parameters of the
autonomous version of the model are the probability of female adult mosquito of
type W successfully taking a blood meal (α), the natural mortality rate of female
adult mosquitoes (µA) and the natural mortality rate of female larvae (µL). Sim-
ilarly, using the population of female adult mosquitoes of type V as the response
function, the top three PRCC-ranked parameters are the natural mortality rate of
female larvae (µL), the deposition rate of female eggs (ψU ) and the maturation rate
of female larvae from Stage 1 to Stage 2 (ξ1). Furthermore, using the population of
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Parameters Baseline Value Range Reference

ψU 50/day (10− 100)/day [2, 22, 38, 40, 65]
KU 40000 (50− 3× 106) [2, 38, 65]
σE 0.84/day (0.7− 0.99)/day [22]
µE 0.05/day (0.01− 0.07)/day [22]
ξ1 0.095/day (0.05− 0.15)/day
ξ2 0.11/day (0.06− 0.17)/day
ξ3 0.13/day (0.08− 0.19)/day
ξ4 0.16/day (0.08− 0.23)/day
µL 0.34/day (0.15− 0.48)/day [22]
δL 0.04/ml (0.02− 0.06)/ml [29]
σP 0.8/day (0.5− 0.89)/day [22]
µP 0.17/day (0.12− 0.21)/day
γU 0.89/day (0.30− 1)/day [51, 52]
η∗V 0.8/day (0.46− 0.92)/day [51, 52]
τ∗W 16 (12− 20) [51]
α 0.86 (0.75− 0.95) [51]
µA 0.05/day (0.041− 0.203)/day [2, 19, 38, 53, 65]
pME 0.9 [60]
pML1

0.15
pML2

0.20
pML3

0.25
pML4 0.35
pMP 0.75 [60]

Table 4. Values and ranges of the parameters of the autonomous
model (6).

female larvae in stage 4 (L4) and population of female pupae (P ) as the response
functions, it is shown that the same top three PRCC-ranked parameters appeared
as in the case when the population of female adult mosquitoes of type V is chosen
as the response function for both cases. However, using the vectorial reproduction
number of the autonomous version of the model (R0) as the response function, the
top three PRCC-ranked parameters are the natural mortality rate of female larvae
(µL), the deposition rate of female eggs (ψU ) and the natural mortality rate of
female adult mosquitoes (µA).

In summary, this study identifies five parameters that dominate the population
dynamics and dispersal of the mosquito, namely the probability of female adult
mosquito of type W successfully taking a blood meal (α), the natural mortality rate
of female adult mosquitoes (µA), the natural mortality rate of female larvae (µL),
the deposition rate of female eggs (ψU ) and the maturation rate of female larvae
(ξi). The effect of the aforementioned most dominant parameters (α,ψU , ξi, µL and
µA) on the population dynamics of the mosquito and the reproduction threshold
(R0) is tabulated in Table 6.
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Parameters U Class V Class L4 Class P Class R0

ψU +0.6863 +0.8509 +0.9083 +0.8958 +0.88
KU +0.1174 +0.1783 +0.1952 +0.2218 −
σE +0.0066 +0.1099 −0.0959 +0.0046 +0.031
µE −0.1118 +0.0045 −0.0326 −0.0291 −0.082
ξ1 +0.4598 +0.6525 +0.6896 +0.7019 +0.63
ξ2 +0.4366 +0.6337 +0.6817 +0.6543 +0.60
ξ3 +0.3224 +0.5714 +0.2781 +0.5779 +0.49
ξ4 +0.4213 +0.6473 +0.0914 +0.2447 +0.55
µL -0.7842 -0.9103 -0.9193 -0.9427 -0.96
δL −0.1121 −0.0679 −0.0807 −0.0699 −
σP +0.0621 −0.3878 +0.1045 +0.0088 +0.093
µP −0.1031 −0.1578 −0.0648 +0.0171 −0.051
γU −0.0948 −0.2255 −0.2908 −0.2934 −0.25
η∗V +0.2278 +0.1773 +0.2047 +0.2521 +0.16
τ∗W -0.6390 +0.0956 −0.0123 +0.0523 −0.026
α +0.9284 +0.5431 +0.6106 +0.6224 +0.55
µA -0.8597 −0.2584 −0.5379 −0.3373 -0.69

Table 5. PRCC values for the parameters of the autonomous
model (6) using total number of adult mosquitoes of type U , adult
mosquitoes of type V , fourth instar larvae (L4), pupae (P ), and
R0 as output. The top (most dominant) parameters that affect
the dynamics of the model with respect to each of the six response
function are highlighted in bold font. “Notation: a line (−) indi-
cates the parameter is not in the expression for R0”.

4. Analysis of non-autonomous model. In this section, dynamical properties
of the non-autonomous model (1) will be explored. The non-autonomous model (1)
has a unique trivial equilibrium point denoted by T ∗0 =

(
E∗, L∗1, L

∗
2, L
∗
3, L
∗
4, P

∗, V ∗,

W ∗, U∗
)

= (0, 0, 0, 0, 0, 0, 0, 0, 0) and positive periodic solution(s) denoted by T ∗1 =(
E∗(t), L∗1(t), L∗2(t), L∗3, L

∗
4(t), P ∗(t), V ∗(t),W ∗(t), U∗(t)

)
which satisfies the unique

periodic system:

dE∗(t)

dt
= ψU (t)

[
1− U∗(t)

KU

]
U∗(t)− [σE(t) + µE(t)]E∗(t),

dL∗1(t)

dt
= σE(t)E∗(t)− [ξ1(t) + µL(t) + δLL

∗(t)]L∗1(t),

dL∗i (t)

dt
= ξ(i−1)(t)L

∗
(i−1)(t)− [ξi(t) + µL(t) + δLL

∗(t)]L∗i (t) ; i = 2, 3, 4,

dP ∗(t)

dt
= ξ4(t)L∗4(t)− [σP (t) + µP (t)]P ∗(t),

dV ∗(t)

dt
= σP (t)P ∗(t) + γUU

∗(t)− ηVH

H + F
V ∗(t)− µA(t)V ∗(t),
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Control measure Effect on population Effect on vectorial Environmental
by model (1) dynamics of mosquitoes reproduction number interpretation

R0

Significant reduction Significant decrease in Significant decrease Personal protection
in the value of α: the population size of in the value of R0 against mosquito
(probability of succ- adult mosquitoes of bite plays an impor-
essfully taking a blo- type U tant role in minimi-
od meal) zing the size of mosq-

uito population in
the community.

Significant reduction Significant decrease in Significant decrease The removal of
in the value of ψU : the population size of in the value R0 mosquito breeding
(deposition rate of all three adult mosquito (egg laying) sites,
female eggs) compartments such as removal of

stagnant waters, is
an effective control
measure against the
mosquito population.

Significant reduction Significant decrease in Significant decrease The removal of
in the value of ξi the population size of in the value R0 mosquito breeding
(maturation rate of all three adult mosquito sites and use of
female larvae) compartments larvicides are effective
and significant incr- control measures
ease of µL against the mosquito
(natural mortality population.
rate of female larvae)

Significant increase Significant decrease in Significant decrease The use of insecticides
in the value of µA: the population size of in the value of R0 and insecticides treat-
(natural mortality adult mosquitoes of ed bednets (ITNs) are
rate of female adult type U important control
mosquitoes) measures against the

mosquito population.

Table 6. Control measures obtained from the sensitivity analysis
of the model (6).

dW ∗(t)

dt
=

ηVH

H + F
V ∗(t)− [τWH + µA(t)]W ∗(t),

dU∗(t)

dt
= ατWHW

∗(t)− [γU + µA(t)]U∗(t),

L∗(t) =

4∑
i=1

L∗i (t).

(22)

4.1. Computation of vectorial reproduction ratio. The vectorial reproduction
ratio, associated with the non-autonomous model (6), will be computed using the
approach in [5, 6, 7, 8, 9, 10, 75]. The next generation matrix F (t) (of the new eggs
deposited) and the M -Matrix V (t) (of the remaining transfer terms), associated
with the non-autonomous model (6) (linearized at the trivial equilibrium T ∗0 ), are
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given, respectively, by

F (t) =

 0 0 F1(t)

0 0 0

0 0 0

 and V (t) =

 V1(t) 0 0

V2(t) V3(t) 0

0 V4(t) V5(t)

 ,
where 0 denotes a zero matrix of order 3, and

F1(t) =

 0 0 ψU (t)

0 0 0

0 0 0

 , V1(t) =

 CE(t) 0 0

−σE(t) C1(t) 0

0 −ξ1(t) C2(t)

 ,

V2(t) =

 0 0 −ξ2(t)

0 0 0

0 0 0

 , V3(t) =

 C3(t) 0 0

−ξ3(t) C4(t) 0

0 −ξ4(t) CP (t)

 ,

V4(t) =

 0 0 −σP (t)

0 0 0

0 0 0

 , V5 =

 C5(t) 0 −γU
−η∗V C6(t) 0

0 −ατ∗W C7(t)

 ,
where τ∗W , η

∗
V , Ci(t) (i = E,P, 1, . . . , 7) are as defined in (7). The linearized version

of the model (1), at T ∗0 , can be expressed as

dx(t)

dt
=
[
F (t)− V (t)

]
x(t)

where x(t) =
(
E(t), L1(t), L2(t), L3(t), L4(t), P (t), V (t),W (t), U(t)

)
. Following [75],

let Y (t, s), t ≥ s, be the evolution operator of the linear ω-periodic system
dy

dt
=

−V (t)y. Thus, for each s ∈ R, the associated 9× 9 matrix Y (t, s) satisfies [75]

dY (t, s)

dt
= −V (t)Y (t, s) ∀ t ≥ s, Y (s, s) = I.

where I is the 9× 9 identity matrix.
Suppose that φ(s) (ω-periodic in s) is the initial distribution of new eggs. Thus,

F (s)φ(s) is the rate of generation (hatching) of new eggs in the breeding habitat
at time s [1, 75]. Since t ≥ s, it follows that Y (t, s)F (s)φ(s) represents the distri-
bution of new eggs at time s, and became adult at time t. Hence, the cumulative
distribution of new eggs at time t, produced by all female adult mosquitoes (φ(s))
introduced at a prior time s = t, is given by

Ψ(t) =

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R9, which
is equipped with maximum norm and positive cone C+

ω

{
φ ∈ Cω : φ(t) ≥ 0,∀ t ∈ R

}
[75]. Define a linear operator L : Cω → Cω [75]

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a) da ∀ t ∈ R, φ ∈ Cω.

The vectorial reproduction ratio of the model (22) (R0TR) is then given by the
spectral radius of L, (i.e., R0TR = ρ(L)). It can be verified that system (6) satisfy
the assumptions A1−A7 in [75]. Hence, the result below follows from Theorem 2.2
in [75].
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Theorem 4.1. The trivial equilibrium (T ∗0 ), of the non-autonomous model (6), is
LAS in C([0],R9

+) if R0TR < 1, and unstable if R0TR > 1.

The global asymptotic stability of the trivial equilibrium T ∗0 of the model is now
considered.

Theorem 4.2. The trivial equilibrium T ∗0 of the non-autonomous model (1) is GAS
in C([0],R9

+) whenever R0TR < 1.

The proof of Theorem 4.2, based on using comparison theorem [69], is given in
Appendix B. The epidemiological implication of Theorem 4.2 is that the mosquito
population (both immature and mature) can be effectively controlled (or eliminated)
if the associated vectorial reproduction threshold, R0TR, can be brought to (and
maintained at) a value less than or equal to unity.

4.2. Existence of non-trivial positive periodic solution. In this section, the
possibility of the existence of a non-trivial positive periodic solution for the non-
autonomous system (1) will be explored using uniform persistence theory [40, 72,
81, 82] (see also [55]). Following and using notations in, Lou and Zhao [40], it is
convenient to define the following sets (X, X0 and ∂X0)

X = Ω,

X0 =
{
φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9) ∈ X : φi(0) > 0 for all i ∈ [1, 9]

}
,

∂X0 = X \X0 =
{
φ ∈ X : φi(0) = 0 for some i ∈ [1, 9]

}
.

Theorem 4.3. Consider the non-autonomous model (2.1). Let R0TR > 1. The
model has at least has at least one positive periodic solution, and there exists a ϕ > 0
such that any solution u(t, φ) of the model with initial value φ ∈ X0 satisfies

lim inf
t→∞

(E,L1, L2, L3, L4, P, V,W,U)(t) ≥ (ϕ,ϕ, ϕ, ϕ, ϕ, ϕ, ϕ, ϕ, ϕ).

Proof. The proof is based on using the approach in [40, 55]. Let u(t, φ) be the unique
solution of model (1), with u(0, φ) = φ. Let Φ(t)ψ = u(t, ψ) and let P : X → X
be the Poincaré map associated with (1) i.e., P(φ) = u(ω, φ) for all φ ∈ X. Then,
using similar approach as in Lemma (2.1), it is easy to see that X0 is a positively
invariant compact set. Hence, since solutions of model (1) are uniformly (ultimately)
bounded, P is point dissipative [40]. It then follows from Theorem 1.1.2 in [82] that
P admits a global attractor in X.

Thus, it suffices to show that model (1) is uniformly-persistent with respect to
(X0, ∂X0) [40]. It is convenient to define

K∂ =
{
φ ∈ ∂X0 : Pn(φ) ∈ ∂X0 for n ≥ 0

}
,

D1 =
{
φ ∈ X : φi(0) = 0 for all i ∈ [1, 9]

}
,

∂X0 \D1 =
{
φ ∈ X : φi(0) ≥ 0 for some i ∈ [1, 9]

}
.

(23)

We claim that K∂ = D1 [40, 55]. This claim can be proved by, first of all, seing that
for any ψ ∈ D1, ui(t, ψ) = 0 for all i ∈ [1, 9], (hence, D1 ⊂ K∂). Furthermore, for
any ψ ∈ ∂X0 \D1, we can choose ψi(0) > 0 for all i = 1, . . . , 9, so that u(t, ψ) ∈ X0.
This implies that for any ψ ∈ ∂X0 \D1, there exist some n with nω > t0, such that
Pn(φ) /∈ ∂X0. Hence, K∂ ⊂ D1. This concludes the proof of the claim.

Thus, from (23), it can be verified that Pn(φ), n ≥ 0 contains exactly one trivial
equilibrium:

T ∗0 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0

)
.
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Hence, the set A := {T ∗0 } is a compact and isolated invariant set for the Poincaré
map P in K∂ [40] and ∪φ∈K∂

ω(φ) = A [40]. Furthermore, {A} does not form a
cycle in K∂ (and hence in ∂X0). In addition, since M∗(t) is a positive periodic
solution with respect to X0, then it follows from the proof of Theorem 3.2 in [40]
that there exists a ε > 0 such that

lim sup
t→∞

|Φ(nω)φ− T0| ≥ ε for all φ ∈ X0.

Thus, it follows that A is an isolated invariant set for P in X and W s(A)∩X0 = ∅
where W s(A) is the stable manifold of A for P [40]. Hence, every trajectory in K∂

converges to A, and {A} is acyclic in K∂ [82]. It then follows from Theorem 1.3.1
in [82] that P is uniformly persistent with respect to X0. Thus, from Theorem 3.1.1
in [82], the periodic semiflow Φ(t) : X → X is also uniformly persistent to X [40]
where Φ(t)ψ = ut(ψ). It then follows from Theorem 4.5 in [42] (see also Theorem
4.6 in [71] and Theorem 3.1 in [83]) that the model (1) admits a positive ω-periodic
solution T ∗1 = Φ(t)φ∗ with φ∗ ∈ X0.

It follows, from Theorem 4.5 in [42] (see also Theorem 2.1 in [84]), that P : X0 →
X0 has a compact global attractor, denoted by A0. Hence, A0 is invariant for P
(that is, A0 = P(A0) = Φ(ω)A0). Furthermore, using the notation in [55, 84], let
A∗0 :=

⋃
t∈[0,ω]

Φ(t)A0. Then, ψi(0) > 0 for all ψ ∈ A∗0, i = 1, . . . , 9 [40]. Since X0 is

invariant, it follows that Φ(t)X0 ⊂ X0. Thus, A∗0 ⊂ X0 and lim sup
t→∞

d(Φ(t)φ,A∗0) = 0

for all φ ∈ X0 [40, 84]. Also, it follows, by the continuity of Φ(t)φ for (t, φ) ∈
[0,∞) × X0 and the compactness of [0, τ ] × A0 [84], that A∗0 is compact in X0

[40, 84]. Thus, inf
φ∈A∗

0

d(φ, ∂X0) = min
φ∈A∗

0

d(φ, ∂X0) > 0 [40, 84]. Consequently, there

exists ϕ > 0 such that

lim inf
t→∞

min
(
E(t, φ), L1(t, φ), L2(t, φ), L3(t, φ), L4(t, φ), P (t, φ), V (t, φ),W (t, φ),

U(t, φ)
)

= lim inf
t→∞

d(φ, ∂X0) ≥ ϕ, for all φ ∈ X0.

In particular, lim inf
t→∞

min(Φ(t)φ∗) ≥ ϕ. Hence, ui(t, φ) > 0, i = 1, . . . , 9 for all

t ≥ 0.

5. Numerical simulations. The non-autonomous model (6) is simulated to il-
lustrate the effect of the two climate variables (temperature and rainfall) on the
population dynamics of adult mosquitoes in a community. Suitable functional
forms for the temperature- and rainfall-dependent functions, relevant to Anopheles
mosquitoes (mostly given in [2, 47, 55, 60]) as defined in Section 2.1, will be used.

For these simulations, water temperature (T̂ ) is taken to be T̂ = T + 30C. Further-
more, the simulations are carried out using the parameter values in Table 4 (with
a fixed nutrient value of N = 100000).

The combined effect of mean monthly temperature and rainfall is assessed by
simulating the non-autonomous model using various mean monthly temperature
and rainfall values in the range [16, 40]0C and [90 − 120] mm, respectively (the
temperature ranges for most tropical and sub-tropical regions of the world lie within
this temperature range [11]). The results obtained (as measured in terms of the
total number of female adult mosquitoes), depicted in Figure 5, show that the total
mosquito population (of a typical community with the aforementioned temperature
and rainfall ranges) is maximized when the mean monthly temperature and rainfall
values lie in the range [20− 25]0C and [105− 115] mm, respectively. Furthermore,
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simulations were carried out using weather (temperature and rainfall) data for three
cities in Africa, namely, KwaZulu-Natal, South-Africa (Southern Africa); Lagos,
Nigeria (Western Africa) and Nairobi, Kenya (Eastern Africa) (see profiles Tables
7, 8 and 9, respectively). While the peak mosquito abundance for KwaZulu-Natal
(Figure 6a) and Lagos (Figure 6b) occur when temperature and rainfall values lie
in the range [22 − 25]0C, [98 − 121] mm (occurring during the months of January,
March, April, November and December) and [24−27]0C [113−255] mm (occurring
during the months of May, July, August, September and October) respectively,
the peak mosquito abundance for Nairobi (Figure 6c) occurs for temperature and
rainfall ranges [20.5− 21.5]0C and [50− 120] mm (occurring during the months of
January, February, March and April).

Figure 5. Simulation of model (1), using parameter values in Ta-
ble 4, showing the total number of female adult mosquitoes (AM )
for various values ofmean monthly temperature and rainfall values
in the range T ∈ [16, 40]◦C and R ∈ [90, 120]mm.

6. Conclusions. This study presents a new mathematical model for the population
biology of the mosquito (the world’s deadliest animal, which accounts for 80% of
vector-borne diseases of humans). Some of the notable features of the new model
are:

(i) incorporating four developmental stages of the mosquito larvae (L1, L2, L3, L4);
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Figure 6. Simulation of non-autonomous model (1) showing the
total number of female adult mosquitoes (AM ) for cities: (a)
KwaZulu-Natal, South-Africa (RIM = 200mm); (b) Lagos, Nige-
ria (RIM = 400mm); (c) Nairobi, Kenya (RIM = 200mm).

(ii) including density dependence for the eggs oviposition process and larval mor-
tality rates;

(iii) including the dispersal states of female adult mosquitoes(U, V and W ).

The model, which takes the form of a non-autonomous deterministic system of
non-linear differential equations, is used to assess the impact of temperature and
rainfall on the population dynamics of the mosquito. The main theoretical and
epidemiological findings of this study are summarized below:

(i) The trivial equilibrium of the autonomous model (6) is globally-asymptotically
stable whenever the associated vectorial reproduction number (R0) is less than
unity. For the case when the associated vectorial reproduction number (R0)
exceeds unity, the autonomous model (6) has at least one non-trivial equi-
librium. Furthermore, it is shown that the autonomous model has a unique
non-trivial equilibrium for the special case with no density-dependent lar-
val mortality (i. e., δL = 0). This unique non-trivial equilibrium is shown
to be globally-asymptotically stable under a certain condition (i.e., when
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1 < R0 < RC0 ) (this equilibrium bifurcates into a limit cycle, via a Hopf
bifurcation at R0 = RC0 ).

(ii) Uncertainty and sensitivity analysis of the autonomous version of the model
shows that the top five parameters that have the most influence on the dynam-
ics of the model (with respect to various response functions) are the probability
of female adult mosquito of type W successfully taking a blood meal (α), the
natural mortality rate of female adult mosquitoes (µA), the natural mortality
rate of female larvae (µL), the deposition rate of female eggs (ψU ) and the
maturation rate of female larvae from Stage 1 to Stage 2 (ξ1). Hence, this
study suggests that the population of adult mosquito in a community can be
effectively-controlled using mosquito-reduction strategies, as well as personal
protection against mosquito bites.

(iii) The trivial periodic solution of the non-autonomous model (1) is shown to be
globally-asymptotically stable, whenever the spectral radius of a certain linear
operator (denoted byR0TR) is less than unity. Furthermore, it is shown, using
uniform persistence theory, that the non-autonomous model (1) has at least
one positive periodic solution whenever R0TR > 1.

Numerical simulations of the non-autonomous model, using relevant functional
forms (given in Section 2.1) and parameter values associated with the Anopheles
species (which causes malaria in humans), show the following:

(i) For mean monthly temperature and rainfall values in the range [10, 40]0C and
[90 − 120] mm, respectively, the peak mosquito abundance lie in the range
[20− 25]0C and [105− 115] mm, respectively.

(ii) For mean monthly temperature and rainfall data for three cities in Africa,
namely, KwaZulu-Natal, South-Africa; Lagos, Nigeria and Nairobi, Kenya
(Tables 7, 8 and 9). The peak mosquito abundance for KwaZulu-Natal (Figure
6a) and Lagos (Figure 6b) occur when temperature and rainfall values lie in
the range [22−25]0C, [98−121] mm (occurring during the months of January,
March, April, November and December) and [24 − 27]0C, [113 − 255] mm
(occurring during the months of May, July, August, September and October)
respectively. The peak mosquito abundance for Nairobi (Figure 6c) occurs for
temperature and rainfall ranges [20.5− 21.5]0C and [50− 120] mm (occurring
during the months of January, February, March and April).
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7. Appendices.

7.1. Appendix A: Coefficients of Equations (14) and (16).

7.1.1. Coefficients of Equation (14).

b0 =

(
1

R0
− 1

)
Q1X6,
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Month Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun
Temperature (◦C) 17.5 18.5 20 21.0 22.5 22.0 25 25 25.5 22.5 20 17.5

Rainfall (mm) 48.2 32.3 65.2 107.1 121 118.3 124 142.2 113 98.1 35.4 34.7

Table 7. Monthly mean temperature (in 0C) and rainfall (in mm)
for KwaZulu-Natal, South Africa [25].

Month Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun
Temperature (◦C) 25.5 25 24 25.5 26 26.5 25.5 26 27 27.5 27 26.5

Rainfall (mm) 255 115 162 113 57 15 20 55 80 150 210 320

Table 8. Monthly mean temperature (in 0C) and rainfall (in mm)
for Lagos, Nigeria [36].

Month Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun
Temperature (◦C) 17.5 18 19 20.5 20 19.5 20.5 20.5 21.5 20.5 19.5 18.5

Rainfall (mm) 14.5 29.8 21.3 36.7 151 79.1 73.9 48.8 89.2 119.9 129.4 15.8

Table 9. Monthly mean temperature (in 0C) and rainfall (in mm)
for Nairobi, Kenya [50].

b1 =

[(
1

R0
− 1

)
Q1X3 +Q2X5X6

]
δL + 1,

b2 =

[(
1

R0
− 1

)
Q1X2 +Q2

(
X5X3 +X4X6

)]
(δL)

2
,

b3 =

[(
1

R0
− 1

)
Q1 +Q2

(
X1X6 +X2X4 +X3X4

)]
(δL)

3
,

b4 = Q2

(
X1X3 +X2X4 +X5 +X6

)
(δL)

4
,

b5 = Q2

(
X1X2 +X3 +X4

)
(δL)

5
,

b6 = Q2 (X1 +X2) (δL)
6
,

b7 = Q2 (δL)
7
,

where,

Q1 =
σECPDKU

ατ∗W η
∗
VB

, Q2 =
KU (CPD)2σECE
(ατ∗W η

∗
VB)2ψU

, X1 = C1 + C2 + C3 + C4,

X2 = C2 + C3 + C4 + ξ1, X3 = C2C3 + C2C4 + C3C4 + C3ξ1 + C4ξ1 + ξ1ξ2,

X4 = C1C2 + C1C3 + C1C4 + C2C3 + C2C4 + C3C4, X5 = C1C2C3 + C1C2C4

+ C1C3C4 + C2C3C4, X6 = C2C3C4 + C3C4ξ1 + C4ξ1ξ2 + ξ1ξ2ξ3,

with τ∗W , η
∗
V , B, C, Ci (i = E,P, 1, . . . , 7) and D as defined in (7).

7.1.2. Coefficients of Equation (16).

A1 =D
(
C1C2C3C4CE + C1C2C3C4CP + C1C2C3CECP + C1C2C4CECP

+ C1C3C4CECP + C2C3C4CECP
)

+ C
(
C5C6 + C5C7 + C6C7

)
> 0,
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A2 =

2∑
i=1

Ci

3∑
j=i+1

Cj

4∑
k=j+1

Cj

5∑
l=k+1

Cl

6∑
m=l+1

Cm

7∑
n=m+1

Cn

(
CE + CP +

7∑
q=n+1

Cq

)

+ CECP

( 3∑
i=1

Ci

4∑
j=i+1

Cj

5∑
k=j+1

Ck

6∑
l=k+1

Cl

7∑
m=l+1

Cm − ατ∗W η∗V γU
3∑
i

Ci

4∑
j=i+1

Cj

)
− ατ∗W η∗V γU

2∑
i=1

Ci

3∑
j=i+1

Cj

4∑
k=j+1

Ck

(
4∑

l=k+1

Cl + CE + CP

)
> 0,

A3 =

3∑
i=1

Ci

4∑
j=i+1

Cj

5∑
k=j+1

Cj

6∑
l=k+1

Cl

7∑
m=l+1

Cm

(
CE + CP +

7∑
n=m+1

Cn

)

+ CECP

 4∑
i=1

Ci

5∑
j=i+1

Cj

6∑
k=j+1

Ck

7∑
l=k+1

Cl − ατ∗W η∗V γU
4∑
i

Ci


− ατ∗W η∗V γU

3∑
i=1

Ci

4∑
j=i+1

Cj

 4∑
k=j+1

Ck + CE + CP

 > 0,

A4 =

4∑
i=1

Ci

5∑
j=i+1

Cj

6∑
k=j+1

Cj

7∑
l=k+1

Cl

(
CE + CP +

7∑
m=l+1

Cm

)

+ CECP

 5∑
i=1

Ci

6∑
j=i+1

Cj

7∑
k=j+1

Ck − ατ∗W η∗V γU


− ατ∗W η∗V γU

3∑
i=1

Ci

 4∑
j=i+1

Cj + CE + CP

 > 0,

A5 =

5∑
i=1

Ci

6∑
j=i+1

Cj

7∑
k=j+1

Cj

(
CE + CP +

7∑
l=k+1

Cl

)
+ CECP

6∑
i=1

Ci

7∑
j=i+1

Cj

− ατ∗W η∗V γUC > 0,

A6 =

6∑
i=1

Ci

7∑
j=i+1

Cj

CE + CP +

7∑
k=j+1

Ck

+ CECP

7∑
i=1

Ci − ατ∗W η∗V γU > 0,

A7 =

7∑
i=1

Ci

CE + CP +

7∑
j=i+1

Cj

 > 0,

A8 =CE + CP +

7∑
i=1

Ci > 0,

where τ∗W , η
∗
V , B, C, Ci (i = E,P, 1, . . . , 7) and D are as defined in (7).

7.2. Appendix B: Proof of Theorem 3.11.

Proof. Consider the model (6) with δL = 0 and sgn(U∗∗−U(t)) = sgn(E∗∗−E(t))
for all t ≥ 0. Furthermore, let 1 < R0 < RC0 , so that the unique non-trivial
equilibrium T1 exists and is LAS (in line with Theorem 3.10). Consider, further,
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the following non-linear Lyapunov function of Goh-Volterra type:

K2 = E − E∗∗ lnE + d1(L1 − L∗∗1 lnL1) + d2(L2 − L∗∗2 lnL2)

+ d3(L3 − L∗∗3 lnL3) + d4(L4 − L∗∗4 lnL4) + d5(P − P ∗∗ lnP )

+ d6(V − V ∗∗ lnV ) + d7(W −W ∗∗ lnW ) + d8(U − U∗∗ lnU),

where,

d1 =
CE
σE

, d2 =
C1CE
ξ1σE

, d3 =
C2C1CE
ξ2ξ1σE

, d4 =
C3C2C1CE
ξ3ξ2ξ1σE

,

d5 =
C4C3C2C1CE
ξ4ξ3ξ2ξ1σE

, d6 =
C

B
, d7 =

C5C

η∗VB
, d8 =

C6C5C

ατ∗W η
∗
VB

,

(24)

with τ∗W , η
∗
V , B, C, Ci (i = E,P, 1, . . . , 7) and D as defined in (7). The following

steady state relations will be used to simplify the derivative of the Lyapunov function
K2.

CEE
∗∗ = ψU

(
1− U∗∗

KU

)
U∗∗, C1L

∗∗
1 = σEE

∗∗, CiL
∗∗
i = ξ(i−1)L

∗∗
(i−1); i = 2, 3, 4,

CPP
∗∗ = ξ4L

∗∗
4 , C5V

∗∗ = σPP
∗∗ + γUU

∗∗, C6W
∗∗ = η∗V V

∗∗, C7U
∗∗ = ατ∗WW

∗∗.

(25)

The Lyapunov derivative of K2 is

K̇2 =

(
1− E∗∗

E

)[
ψU

(
1− U

KU

)
U − CEE

]
+ d1

(
1− L∗∗1

L1

)[
σEE − C1L1

]
+ d2

(
1− L∗∗2

L2

)[
ξ1L1 − C2L2

]
+ d3

(
1− L∗∗3

L3

)[
ξ2L2 − C3L3

]
+ d4

(
1− L∗∗4

L4

)
[
ξ3L3 − C4L4

]
+ d5

(
1− P ∗∗

P

)[
ξ4L4 − CPP

]
+ d6

(
1− V ∗∗

V

)[
σPP − C5V

+ γUU
]

+ d7

(
1− W ∗∗

W

)[
η∗V V − C6W

]
+ d8

(
1− U∗∗

U

)[
ατ∗WW − C7U

]
,

(26)

Substituting (24) and (25) into (26), and simplifying, gives

K̇2 = − ψUU

EKU
(E∗∗ − E)(U∗∗ − U) + γUd6U

∗∗
(

3− UV ∗∗

U∗∗V
− VW ∗∗

V ∗∗W
− U∗∗W

UW ∗∗

)
+ CEE

∗∗
(

9− L∗∗1 E

L1E∗∗
− L∗∗2 L1

L2L∗∗1
− L∗∗3 L2

L3L∗∗2
− L∗∗4 L3

L4L∗∗3
− P ∗∗L4

PL∗∗4
− V ∗∗P

V P ∗∗

− W ∗∗V

WV ∗∗
− U∗∗W

UW ∗∗
− E∗∗U

EU∗∗

)
.

(27)

The first term of (27) is automatically negative in Ω\{T0}, since sgn(U∗∗−U(t)) =
sgn(E∗∗ − E(t)) for all t ≥ 0. Furthermore, since the arithmetic mean exceeds the
geometric mean, it follows that the second and third term of (27) are also negative.

Hence, K̇2 ≤ 0. The proof is concluded as in the proof of Theorem 3.2.

The assumption sgn(U∗∗−U(t)) = sgn(E∗∗−E(t)) for all t ≥ 0 can be justified
by noting the fact that, in order to maintain a non-trivial equilibrium for the adult
mosquito population, it is necessary that each reproducing female mosquito must
produce at least one egg during its entire reproductive life period. Thus, if the
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population of the reproduction female adult mosquitoes (U(t)) increases, so does
the population of eggs laid (E(t)) for all t ≥ 0.

7.3. Appendix C: Proof of Theorem 4.2.

Proof. Consider the non-autonomous model (1) with R0TR < 1. Using the fact

that (and noting that L(t) =
4∑
i=1

Li(t)),

ψU

(
1− U(t)

KU

)
U(t) ≤ ψUU(t) ( since KU > U(t) for all t ≥ 0),

and,

Ci(t) + δLL(t) ≥ Ci(t), for all t ≥ 0,

it follows that the non-autonomous model (1), subject to the aforementioned as-
sumptions, can be re-written as

dE

dt
≤ ψUU − CE(t)E,

dL1

dt
≤ σE(t)E − C1(t)L1,

dLi
dt
≤ ξ(i−1)(t)L(i−1) − Ci(t)Li ; i = 2, 3, 4,

dP

dt
= ξ4(t)L4 − CP (t)P,

dV

dt
= σP (t)P + γUU(t)− C5(t)V,

dW

dt
= η∗V V − C6(t)W,

dU

dt
= ατ∗WW − C7(t)U.

(28)

Following [75], the equations in (28), with equalities used in place of the inequalities,
can be re-written in terms of the next generation matrices F (t) and V (t), as follows

dX(t)

dt
= [F (t)− V (t)]X(t). (29)

It follows, from Lemma 2.1 in [80], that there exists a positive and bounded ω-
periodic function, x(t) =

(
Ē(t), L̄1(t), L̄2(t), L̄3(t), L̄4(t), P̄ (t), V̄ (t), W̄ (t), Ū(t)

)
,

such that

X(t) = eθtx(t), with θ =
1

ω
ln ρ
[
φF−V (ω)

]
,

is a solution of the linearized system (28). Furthermore, it follows from Theorem
2.2 in [75] that R0TR < 1 if and only if ρ

[
φF−V (τ)

]
< 1. Hence, θ is a negative

constant. Thus, X(t) → 0 as t → ∞. Thus, the unique trivial solution of the
linear system (28), given by X(t) = 0, is GAS [40, 55, 66]. For any non-negative
initial solution (E,L1, L2, L3, L4, P, V,W,U)(0))T of the system (29), there exists a
sufficiently large Q∗ > 0 such that [55, 66],

((E,L1, L2, L3, L4, P, V,W,U)(0))
T ≤ Q∗

(
(Ē, L̄1, L̄2, L̄3, L̄4, P̄ , V̄ , W̄ , Ū)(0)

)T
.

Thus, it follows, by comparison theorem [37, 69], that(
E(t), L1(t), L2(t), L3(t), L4(t), P (t), V (t),W (t), U(t)

)
≤ Q∗X(t) for all t > 0,
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where Q∗X(t) is also a solution of (29). Hence,(
E(t), L1(t), L2(t), L3(t), L4(t), P (t), V (t),W (t), U(t)

)
→
(
0, 0, 0, 0, 0, 0, 0, 0, 0

)
,

as t→∞.
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Köppen to Trewartha, Climate Research, 59 (2014), 1–13.
[12] K. Berkelhamer and T. J. Bradley, Mosquito larval development in container habitats: The

role of rotting Scirpus californicus, Journal of the American Mosquito Control Association,
5 (1989), 258–260.

[13] B. Gates, Gatesnotes: Mosquito Week, The Deadliest Animal in the World, https://www.

gatesnotes.com/Health/Most-Lethal-Animal-Mosquito-Week. Accessed: May, 2016.
[14] S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models

of disease transmission: An HIV model, as an example, International Statistical Review, 2
(1994), 229–243.

[15] P. Cailly, A. Tranc, T. Balenghiene, C. Totyg and P. Ezannoa, A climate-driven abundance

model to assess mosquito control strategies, Ecological Modelling, 227 (2012), 7–17.

[16] J. Cariboni, D. Gatelli, R. Liska and Saltelli, A. The role of sensitivity analysis in ecological
modeling, Ecological Modeling, 203 (2007), 167–182.

[17] J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, New York, 1981.
[18] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,

Mathematical Bioscience Engineering, 1 (2004), 361–404.

[19] N. Chitnis, J. M. Cushing and J. M. Hyman, Bifurcation analysis of a mathematical model
for malaria transmission, SIAM Journal on Applied Mathematics, 67 (2006), 24–45.

[20] S. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cam-

bridge University Press, Cambridge, 1994.
[21] J. Couret, E. Dotson and M. Q. Benedict, Temperature, Larval diet, and density effects on

development rate and survival of Aedes aegypti (Diptera: Culicidae), PLoS One, 9 (2014).

[22] J. M. O. Depinay, C. M. Mbogo, G. Killeen, B. Knols and J. Beier, et al. A simulation model of
African Anopheles ecology and population dynamics for the analysis of malaria transmission,

Malaria Journal, 3 (2004), p29.

[23] O. Diekmann, J. Heesterbeek and J. Metz, On the definition and the computation of the basic
reproduction ratio R0 in models for infectious diseases in heterogeneous populations, Journal

of Mathematical Biology, 28 (1990), 365–382.

http://www.ams.org/mathscinet-getitem?mr=MR3634787&return=pdf
http://dx.doi.org/10.1007/s00285-016-1054-9
http://dx.doi.org/10.1007/s00285-016-1054-9
http://www.ams.org/mathscinet-getitem?mr=MR3429855&return=pdf
http://dx.doi.org/10.1142/S0218339015500308
http://dx.doi.org/10.1142/S0218339015500308
http://www.cdc.gov/malaria/about/biology/mosquitoes/
http://www.cdc.gov/malaria/about/biology/mosquitoes/
http://www.ams.org/mathscinet-getitem?mr=MR2544635&return=pdf
http://dx.doi.org/10.1007/s11538-009-9426-6
http://dx.doi.org/10.1007/s11538-009-9426-6
http://www.ams.org/mathscinet-getitem?mr=MR2295844&return=pdf
http://dx.doi.org/10.1007/s11538-006-9166-9
http://dx.doi.org/10.1007/s11538-006-9166-9
http://www.ams.org/mathscinet-getitem?mr=MR2251779&return=pdf
http://dx.doi.org/10.1007/s00285-006-0015-0
http://www.ams.org/mathscinet-getitem?mr=MR2374486&return=pdf
http://dx.doi.org/10.1016/j.mbs.2007.07.005
http://dx.doi.org/10.1016/j.mbs.2007.07.005
http://www.ams.org/mathscinet-getitem?mr=MR2429920&return=pdf
http://dx.doi.org/10.1007/s00285-008-0183-1
http://dx.doi.org/10.1007/s00285-008-0183-1
http://www.ams.org/mathscinet-getitem?mr=MR2786724&return=pdf
http://dx.doi.org/10.1007/s00285-010-0354-8
http://dx.doi.org/10.1007/s00285-010-0354-8
https://www.gatesnotes.com/Health/Most-Lethal-Animal-Mosquito-Week
https://www.gatesnotes.com/Health/Most-Lethal-Animal-Mosquito-Week
http://www.ams.org/mathscinet-getitem?mr=MR635782&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2130673&return=pdf
http://dx.doi.org/10.3934/mbe.2004.1.361
http://www.ams.org/mathscinet-getitem?mr=MR2272613&return=pdf
http://dx.doi.org/10.1137/050638941
http://dx.doi.org/10.1137/050638941
http://www.ams.org/mathscinet-getitem?mr=MR1290117&return=pdf
http://dx.doi.org/10.1017/CBO9780511665639
http://www.ams.org/mathscinet-getitem?mr=MR1057044&return=pdf
http://dx.doi.org/10.1007/BF00178324
http://dx.doi.org/10.1007/BF00178324


WEATHER-DRIVEN MODEL FOR THE POPULATION ECOLOGY 91

[24] F. Dufois, Assessing inter-annual and seasonal variability Least square fitting with Matlab:
Application to SSTs in the vicinity of Cape Town, http://www.eamnet.eu/cms/sites/eamnet.

eu/files/Least_square_fitting_with_Matlab-Francois_Dufois.pdf. Accessed: October,

2016.
[25] Durban Monthly Climate Average, South Africa, http://www.worldweatheronline.com/

Durban-weather-averages/Kwazulu-Natal/ZA.aspx. Accessed: May 2016.
[26] J. Dushoff, W. Huang and C. Castillo-Chavez, Backward bifurcations and catastrophe in

simple models of fatal diseases, Journal of Mathematical Biology, 36 (1998), 227–248.

[27] T. G. George, Positive Definite Matrices and Sylvester’s Criterion, The American Mathemat-
ical Monthly, 98 (1991), 44–46.

[28] H. M. Giles and D. A. Warrel, Bruce-Chwatt’s Essential Malariology, 3rd edition, Heinemann

Medical Books, Portsmouth, NH. 1993.
[29] J. E. Gimnig, M. Ombok, S. Otieno, M. G. Kaufman, J. M. Vulule and E. D. Walker, Density-

dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habi-

tats, Journal of Medical Entomology, 39 (2002), 162–172.
[30] R. E. Harbach, Mosquito Taxonomic Inventory, (2011). http://

mosquito-taxonomic-inventory.info/simpletaxonomy/term/6045. Accessed: May, 2016.

[31] D. Hershkowitz, Recent directions in matrix stability, Linear Algebra and its Applications,
171 (1992), 161–186.

[32] W. M. Hirsch, H. Hanisch and J. P. Gabriel, Differential equation models for some parasitic
infections: Methods for the study of asymptotic behavior, Communications on Pure and

Applied Mathematics, 38 (1985), 733–753.

[33] S. S. Imbahale, K. P. Paaijmans, W. R. Mukabana, R. van Lammeren, A. K. Githeko and W.
Takken, A longitudinal study on Anopheles mosquito larval abundance in distinct geograph-

ical and environmental settings in western Kenya, Malaria Journal, 10 (2011), p81.

[34] K. C. Kain and J. S. Keystone, Malaria in travelers, Infectious Disease Clinics, 12 (1998),
267–284.

[35] V. Kothandaraman, Air-water temperature relationship in Illinois River, Water Resources

Bulletin, 8 (1972), 38–45.
[36] Lagos Monthly Climate Average, Nigeria, http://www.worldweatheronline.com/

lagos-weather-averages/lagos/ng.aspx. Accessed: May 2016.

[37] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Appli-
cations, Academic Press, New York-London, 1969.

[38] V. Laperriere, K. Brugger and F. Rubel, Simulation of the seasonal cycles of bird, equine and
human West Nile virus cases, Preventive Veterinary Medicine, 88 (2011), 99–110.

[39] J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied

Mathematics. SIAM Philadephia. 1976.
[40] Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector

population, SIAM Journal on Applied Mathematics, 70 (2010), 2023–2044.
[41] A. M. Lutambi, M. A. Penny, T. Smith and N. Chitnis, Mathematical modelling of mosquito

dispersal in a heterogeneous environment, Journal of Mathematical Biosciences, 241 (2013),

198–216.

[42] P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dy-
namical systems, SIAM Journal on Mathematical Analysis, 37 (2005), 251–275.

[43] Malaria Atlas Project: Mosquito Malaria Vectors, http://www.map.ox.ac.uk/explore/

mosquito-malaria-vectors/, Accessed: May: 2016.
[44] S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global

uncertainty and sensitivity analysis in systems biology, Journal of Theoretical Biology, 254

(2008), 178–196.
[45] M. D. Mckay, R. J. Beckman and W. J. Conover, Comparison of 3 methods for selecting

values of input variables in the analysis of output from a computer code, Technometrics, 21
(1979), 239–245.

[46] R. G. McLeod, J. F. Brewster, A. B. Gumel and D. A. Slonowsky, Sensitivity and uncertainty

analyses for a SARS model with time-varying inputs and outputs, Mathematical Biosciences
and Engineering, 3 (2006), 527–544.

[47] E. A. Mordecai, et al. Optimal temperature for malaria transmission is dramatically lower

than previously predicted, Ecology Letters, 16 (2013), 22–30.
[48] Mosquito Life Cycle. American Mosquito Control Association, http://www.mosquito.org/

life-cycle, Accessed: May, 2016.

http://www.eamnet.eu/cms/sites/eamnet.eu/files/Least_square_fitting_with_Matlab-Francois_Dufois.pdf
http://www.eamnet.eu/cms/sites/eamnet.eu/files/Least_square_fitting_with_Matlab-Francois_Dufois.pdf
http://www.worldweatheronline.com/Durban-weather-averages/Kwazulu-Natal/ZA.aspx
http://www.worldweatheronline.com/Durban-weather-averages/Kwazulu-Natal/ZA.aspx
http://www.ams.org/mathscinet-getitem?mr=MR1608613&return=pdf
http://dx.doi.org/10.1007/s002850050099
http://dx.doi.org/10.1007/s002850050099
http://www.ams.org/mathscinet-getitem?mr=MR1083614&return=pdf
http://dx.doi.org/10.2307/2324036
http://mosquito-taxonomic-inventory.info/simpletaxonomy/term/6045
http://mosquito-taxonomic-inventory.info/simpletaxonomy/term/6045
http://www.ams.org/mathscinet-getitem?mr=MR1165452&return=pdf
http://dx.doi.org/10.1016/0024-3795(92)90257-B
http://www.ams.org/mathscinet-getitem?mr=MR812345&return=pdf
http://dx.doi.org/10.1002/cpa.3160380607
http://dx.doi.org/10.1002/cpa.3160380607
http://www.worldweatheronline.com/lagos-weather-averages/lagos/ng.aspx
http://www.worldweatheronline.com/lagos-weather-averages/lagos/ng.aspx
http://www.ams.org/mathscinet-getitem?mr=MR0379934&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0481301&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2630019&return=pdf
http://dx.doi.org/10.1137/080744438
http://dx.doi.org/10.1137/080744438
http://www.ams.org/mathscinet-getitem?mr=MR3019708&return=pdf
http://dx.doi.org/10.1016/j.mbs.2012.11.013
http://dx.doi.org/10.1016/j.mbs.2012.11.013
http://www.ams.org/mathscinet-getitem?mr=MR2172756&return=pdf
http://dx.doi.org/10.1137/S0036141003439173
http://dx.doi.org/10.1137/S0036141003439173
http://www.map.ox.ac.uk/explore/mosquito-malaria-vectors/
http://www.map.ox.ac.uk/explore/mosquito-malaria-vectors/
http://www.ams.org/mathscinet-getitem?mr=MR2971156&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2008.04.011
http://dx.doi.org/10.1016/j.jtbi.2008.04.011
http://www.ams.org/mathscinet-getitem?mr=MR533252&return=pdf
http://dx.doi.org/10.2307/1268522
http://dx.doi.org/10.2307/1268522
http://www.ams.org/mathscinet-getitem?mr=MR2217220&return=pdf
http://dx.doi.org/10.3934/mbe.2006.3.527
http://dx.doi.org/10.3934/mbe.2006.3.527
http://www.mosquito.org/life-cycle
http://www.mosquito.org/life-cycle


92 KAMALDEEN OKUNEYE, AHMED ABDELRAZEC AND ABBA B. GUMEL

[49] Mosquitoes of Michigan - Their Biology and Control, Michigan Mosquito Control Orga-
nization, 2013. http://www.mimosq.org/mosquitobiology/mosquitobiology.htm. Accessed:

May: 2015.

[50] Nairobi Monthly Climate Average, Kenya, http://www.worldweatheronline.com/

nairobi-weather-averages/nairobi-area/ke.aspx. Accessed: May 2016.

[51] G. A. Ngwa, On the population dynamics of the malaria vector, Bulletin of Mathematical
Biology, 68 (2006), 2161–2189.

[52] G. A. Ngwa, A. M. Niger and A. B. Gumel, Mathematical assessment of the role of non-

linear birth and maturation delay in the population dynamics of the malaria vector, Applied
Mathematics and Computation, 217 (2010), 3286–3313.

[53] A. M. Niger and A. B. Gumel, Mathematical analysis of the role of repeated exposure on

malaria transmission dynamics, Differential Equations and Dynamical Systems, 16 (2008),
251–287.

[54] T. E. Nkya, I. Akhouayri, W. Kisinza and J. P. David, Impact of environment on mosquito

response to pyrethroid insecticides: Facts evidences and prospects, Insect Biochemistry and
Molecular Biology, 43 (2013), 407–416.

[55] K. O. Okuneye and A. B. Gumel, Analysis of a temperature- and rainfall-dependent model

for malaria transmission Dynamics, Mathematical Biosciences, 287 (2017), 72–92.
[56] H. J. Overgaard, Y. Tsude, W. Suwonkerd and M. Takagi, Characteristics of Anopheles min-

imus (Diptera: Culicidae) larval habitats in northern Thailand, Environmental Entomology,
31 (2002), 134–141.

[57] K. P. Paaijmans, S. S. Imbahale, M. B. Thomas and W. Takken, Relevant microclimate for

determining the development rate of malaria mosquitoes and possible implications of climate
change, Malaria Journal , 9 (2010), p196.

[58] K. P. Paaijmans, M. O. Wandago, A. K. Githeko and W. Takken, Unexpected high losses of

Anopheles gambiae larvae due to rainfall, PLOS One, 2 (2007).
[59] P. E. Parham and E. Michael, Modeling the effects of weather and climate change on malaria

transmission, Environmental Health Perspectives, 118 (2010), 620–626.

[60] P. E. Parham, D. Pople, C. Christiansen-Jucht, S. Lindsay, W. Hinsley and E. Michael,
Modeling the role of environmental variables on the population dynamics of the malaria

vector Anopheles gambiae sensu stricto, Malaria Journal, 11 (2012), p271.

[61] P. C. Park, A new proof of Hermite’s stability criterion and a generalization of Orlando’s
formula, International Journal of Control , 26 (2012), 197–206.

[62] J. M. Pilgrim, X. Fang and H. G. Stefan, Correlations of Minnesota Stream Water Temper-
atures with Air Temperatures, Project Report 382, prepared for National Agricultural Water

Quality Laboratory Agricultural Research Service U. S. Department of Agriculture Durant,

Oklahoma, 1995.
[63] T. Porphyre, D. J. Bicout and P. Sabatier, Modelling the abundance of mosquito vectors

versus flooding dynamics, Ecological Modelling, 183 (2005), 173–181.
[64] E. B. Preud’homme and H. G. Stefan, Relationship Between Water Temperatures and Air

Temperatures for Central U. S. Streams, Project Report No. 333, prepared for Environmental

Research Laboratory U.S. Environmental Protection Agency Duluth, Minnesota, 1992.

[65] F. Rubel, K. Brugger, M. Hantel, S. Chvala-Mannsberger, T. Bakonyi, H. Weissenbock and N.
Nowotny, Explaining Usutu virus dynamics in Austria: Model development and calibration,

Preventive Veterinary Medicine, 85 (2008), 166–186.
[66] M. A. Safi, M. Imran and A. B. Gumel, Threshold dynamics of a non-autonomous SEIRS

model with quarantine and isolation, Theory in Biosciences, 131 (2012), 19–30.

[67] J. Shaman and J. Day, Reproductive phase locking of mosquito populations in response to

rainfall frequency, Plos One, 2 (2007), p331.
[68] O. Sharomi, C. N. Podder, A. B. Gumel, E. H. Elbasha and J. Watmough, Role of inci-

dence function in vaccine-induced backward bifurcation in some HIV models, Mathematical
Biosciences, 210 (2007), 436–463.

[69] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive

and Cooperative Systems, American Mathematical Society, 1995.
[70] H. L. Smith and P. Waltman, Perturbation of a globally stable steady state, American Math-

ematical Society, 127 (1999), 447–453.

[71] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically
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