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Abstract. The recent measles outbreaks in US and Germany emphasize the

importance of sustaining and increasing vaccination rates. In Slovakia, de-
spite mandatory vaccination scheme, decrease in the vaccination rates against

measles has been observed in recent years. Different kinds of intervention at

the state level, like a law making vaccination a requirement for school entry or
education and advertising seem to be the only strategies to improve vaccination

coverage. This study aims to analyze the economic effectiveness of intervention
in Slovakia. Using real options techniques we determine the level of vaccination

rate at which it is optimal to perform intervention. We represent immunization

rate of newborns as a stochastic process and intervention as a one-period jump
of this process. Sensitivity analysis shows the importance of early intervention

in the population with high initial average vaccination coverage. Furthermore,

our numerical results demonstrate that the less certain we are about the future
development of the immunization rate of newborns, the more valuable is the

option to intervene.

1. Introduction. The World Health Organization (WHO) Measles and Rubella
Strategic Plan aims to eliminate measles and rubella in at least five WHO regions
by the end of 2020 ([18]). However, despite the existence of an inexpensive measles
vaccine there are obstacles to achieving this goal. In developing countries the vaccine
is not always available. Whether the poorest countries with poor infrastructure for
routine health services can achieve sufficiently high coverage is unknown ([18]).

In Europe, the elimination of measles is endangered by non-vaccinated individ-
uals; a growing number of parents refuse to vaccinate their children for various
reasons, e.g. too many shots or concern about autism (see e.g. [16]).

Slovakia is one of the few European countries where vaccination is enacted by law.
Vaccination against measles was introduced in 1969. Currently, to prevent measles,
children should be vaccinated with the measles, mumps, and rubella (MMR) vac-
cine. Two doses of this vaccine are needed for complete protection. Children should
be given the first dose of MMR vaccine at 15 to 18 months of age. The second dose
should be given at the 11th year of life. As Figure 1a indicates, because of the
mandatory vaccination, incidence of measles cases in Slovakia is quite low com-
pared to other surrounding countries: in the period 2003–2014 only six measles
cases have been registered in Slovakia, all of them imported.
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(a) Number of measles cases per
100,000 of the population in Slovakia
and in the selected surrounding coun-
tries, 2003-2014.
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(b) Immunization rate of newborns
(MCV1) in the Slovak counties by the
birth years 2002–2012.

Figure 1. Measles in Slovakia: number of cases and immunization
rate of newborns. Source: [19] and [9].

Since becoming independent in 1993, annual immunization rate of newborns
for measles-mumps-rubella (MMR) vaccine in Slovakia has been above the criti-
cal level needed to achieve herd immunity, which, for measles, is estimated to be
approximately 94% (see the theoretical derivation in e.g [12]). However, recent fre-
quent mass media discussions about the adverse effects of vaccination have gradually
eroded compliance of parents. As a result, the favorable epidemiological situation
started to change, and a decrease in immunization rate of newborns has been ob-
served in recent years. This is especially true for MMR vaccine. Figure 1b depicts
the percentage of fully immunized children for MMR vaccine by birth year, starting
from 2002 to 2012, in eight Slovak counties. Currently, the drop in vaccination rates
has been observed in all regions. For the birth year 2012, the vaccination coverage
has decreased bellow the critical level needed to achieve herd immunity in 4 out of
8 Slovak counties. The most significant decline has been observed in the capital,
Bratislava region: the annual immunization rate of newborns has dropped from 99%
in 2008 to only 88% in 2012.

One can identify several factors responsible for this situation. Firstly, a decline
in immunization rates of newborns is most likely related to the increasing activity of
the anti-vaccination lobby: their massive campaign has started in the beginning of
the year 2010, after the launch of the first web page with anti-vaccination contents
in the Slovak language. It is further aided by the present favorable epidemiological
situation in Slovakia: the general tendency to underestimate the risk of natural
infection and overestimate the risk of the vaccine side effects is stronger during
the periods without disease outbreaks. Finally, the penalties for nonvaccinators,
as stated by the current law, do not appear to be sufficiently effective: the worst
inconvenience for the parents refusing vaccination is a fine of around 330e per child
per vaccination (see: [14]).

In the light of the above, the question we need to resolve is whether we should
worry about the decline in the vaccination rates and coverage. For how long can
the past high immunization rates of newborns save us from the future measles
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outbreaks? Naturally, it all mainly depends on the future dynamics of the immu-
nization rate of newborns. In order to illustrate the problem, we have proposed
three potential situations, which are depicted on Figure 2.
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Figure 2. Time development of the average vaccination coverage under
different evolution scenarios of immunization rate of newborns.

The three curves represent temporal dynamics of the average vaccination cov-
erage under three different scenarios, the horizontal grey line depicts the critical
vaccination coverage needed to achieve herd immunity. In Figure 2a the initial
immunization rate of newborns is assumed to be 90% and the initial average vac-
cination coverage is 98%. This setup corresponds to the current situation in the
Bratislava region. Under the first scenario, the immunization rate of newborns is
assumed to stay constant at its initial level 90%. The next two scenarios represent
a situation where the immunization rate of newborns declines from its initial level
of 90% by 1%, resp. 2% per year. As we can see, it takes from 12 to 28 years
to reach the critical boundary. However, if the initial average vaccination coverage
were just 95%, the situation would be more critical: as Figure 2b indicates, for the
above three scenarios, it would take just 2–4 years to decline below the critical level
of vaccination.

The only possible way to get the vaccination coverage back above the critical level
appears to be an intervention at the government level. Examples of intervention
applied in different countries are summarized e.g. in the study by [15]. The most
frequent types are advertisement, education, or law restrictions requiring a proof of
vaccination for the school entry.

For the purposes of this study, we have defined intervention in terms of financial
or real options terminology as a right but not the obligation to intervene at any time
until the end of the planning period. The real options approach can be viewed as an
extension of the financial options theory into the investment making process. The
standard valuation techniques, such as, for instance, the net present value method
(see e.g. [3]), consider a single decision pathway with fixed outcomes only: all
decisions are thus prespecified by the expected future revenues path. Moreover, it is
assumed that the decision maker follows the original plan irrespectively of changing
circumstances. On the other hand, the real options models allow to incorporate
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flexibility into the model and thus modify business plans taking into account new
information. This is particularly important when modeling highly uncertain future
outcomes.

In our proposed model setup we assume that the intervention induces costs and
results in predetermined increase in immunization rate of newborns in the next
period. Our aim is to analyze the cost-effectiveness of intervention and to estimate
the moment when it is optimal to intervene. We introduce a real options model,
which is a kind of stochastic dynamic problem. It is constructed from the perspective
of a policy maker, who faces three types of uncertainties: the stochastic evolution of
the future immunization rate of newborns, the random occurrence of an imported
measles case and the uncertain outbreak size. Using real options techniques (see
e.g. [7], [6]) we determine the level of vaccination coverage at which it is optimal
to intervene. A sensitivity analysis shows the importance of early intervention
in the population with high initial average vaccination coverage. Furthermore,
our numerical results demonstrate that the less certain we are about the future
development of the immunization rate of newborns, the more valuable is the option
to intervene. To our knowledge, this is the first study analyzing the economic effect
of intervention using real options techniques.

During the last two decades many authors attempted to explain human decision-
making with respect to vaccination (see e.g.[13]). As the first study within this
concept can be probably considered the work [2]. Under the game theory setup
authors propose vaccination game and show that it is not possible to eradicate a
disease under voluntary vaccination scheme. A number of studies has followed to
extend this result. The work [8], resp. [4] seems to be the most relevant to our study.
The authors introduce various models of the vaccination behavior dynamics and
discuss the impact of information dependence function on the resulting vaccination
coverage. In this paper we adopt a different approach: we try to extend the existing
studies by establishing a model under the presence of uncertainty in the vaccination
behavior. Our assumption reflects the possibility that behavior of a part of parents
does not present any rational pattern and therefore cannot be explained by any
deterministic model. Furthermore, stochastic setup enables us to study the role of
uncertainty in the planning vaccination interventions.

The paper is organized as follows. We first introduce the newly developed real
options model, which constitutes a flexible evidence-based dynamic decision making
tool. We then present the results of simulations. As a benchmark case, we analyze
the model without intervention. In the next step we compare the expected costs
with and without the intervention, and thus calculate the value of the option to
intervene. We conclude with the most relevant observations following from this
modelling exercise.

2. The model. The aim of the policy maker is to minimize the expected costs
associated with a measles outbreak during the fixed time period of length T . His/her
decision is driven by three types of uncertainties: stochastic evolution of future
immunization rate of newborns, random occurrence of imported measles case and
uncertain outbreak size. A natural way to describe the stochastic optimization
problem is to formulate it via the following Bellman equation:

V (t, xt, Xt) = min
ut

{
utP +

1

1 + r
E(Ṽ (t+ 1, xt+1, Xt+1|t, xt, Xt))

}
, (1)

for t = 0, . . . , T − 1. In Equation 1 the strategy costs are represented by the value
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function V (.) of three state variables: time t, the immunization rate of newborns
xt and the average vaccination coverage Xt. For the purpose of this study, the
immunization rate of newborns refers to the percentage of vaccinated children born
in the same year whereas the average vaccination coverage refers to the average
of vaccination rates over all the age cohorts. The symbol E(.|t, .) stands for the
conditional expected value operator as seen at the time t, P denotes the amount
invested in intervention and r represents the discount rate. The function Ṽ (.) is the
expectation of the value function V (.) over the random event (see definition in the
text below).

The minimization procedure chooses either to intervene (ut=1) or not (ut = 0),
depending on which action minimizes the sum of the intervention costs plus the
discounted expected value of continuation (future) costs. The expected future costs
depend on the action chosen, on the uncertain future development of the immu-
nization rate of newborns and on the random occurrence of imported measles cases.
More formally, the expected future costs can be expressed as the weighted costs
during outbreak plus the expected costs without outbreak occurrence as follows:

E(Ṽ (t+ 1, xt+1, Xt+1|t, xt, Xt)) = pepi(c0E(It|Xt)

+ E(V (t+ 1, xmax, Xmax|t, xt, Xt))) + (1− pepi)E(V (t+ 1, xt+1, Xt+1|t, xt, Xt))

(2)
In Equation 2 the weight pepi represents the probability of occurrence of an

imported measles case. Further, we assume that after the outbreak occurrence, the
immunization rate of newborns and the average vaccination coverage reach their
maximum values, hereby represented by the variable xmax, resp. Xmax.

The outbreak costs are the product of costs per case c0, and the expected number
of cases. We estimate the expected number of cases as a function of the average
vaccination coverage using the homogeneous Susceptible-Infected-Recovered (SIR)
epidemic model with the constant population size N , transmission rate β and re-
covery rate γ :

dSt

dt
=(1− xt)µN −

(
βIt
N

+ µ

)
St

dIt
dt

=
βIt
N
St − (γ + µ)It

dRt

dt
=xtµN + γIt − µRt

(3)

with the initial conditions S0 = N − Xt − I0, I0 = 1, R0 = Xt. The resulting
function can be described as follows:

E(It|Xt) =

{
a0 − a1Xt, if Xt < 1− 1/R0

0 if Xt ≥ 1− 1/R0

(4)

As Equation 4 states, if the average vaccination coverage is below the critical
level 1 − 1/R0 of herd immunity, the dependence of the number of cases on the
average vaccination coverage is adequately represented by a linear approximation.
For the average vaccination coverage above the critical boundary, the homogeneous
SIR model predicts zero incidences. We assume that a1 ≥ 0 and that there is
continuity at the point Xt = R0.

In order to complete our model specification, we need to describe the dynamics of
the state variables. First, we propose that without intervention, the immunization
rate of newborns follows Geometric Brownian motion (GBM) process, i.e. the rate
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xt satisfies the following stochastic differential equation:

dxt = αxtdt+ σxtdWt, (5)

whereWt denotes standard Wiener process and α, σ ≥ 0 are assumed to be constant.
This assumption has been adopted from the real options theory (see e.g. [7]), but it
has an economic interpretation in this case as well. We argue that the decision to
vaccinate against measles depends mainly on the country legislation as well as on
the primary information parents receive from the health care practitioners rather
than on past disease incidence as claimed by e.g. [2], [4]. The latter idea of [2] has
been contradicted by, e.g., [5]. Unlike the work presented in [8] which attempts
to deterministically model the immunization rate of newborns, we model it as a
stochastic proces.

Equation 5 states that the percentage change in the immunization rate of new-
borns equals the drift term α plus the error term. Although the group of par-
ents making decisions about vaccination changes each year, the global environment
(pediatricians, law restrictions) remains the same: the drift term α describes the
long-term trend in the incentive to vaccinate as a result of the country vaccination
program, while the stochastic term σdWt, represents the random fluctuations which
induce uncertainty in vaccination coverage, such as the increasing activity of the
anti-vaccination lobby or the measles outbreak in Berlin.

For the modeling purposes, we have used the discretized version of the process
6. We denote the size of the time step by ∆t. Uncertainty is now presented by the
term εt ∼ N(0, 1), where εt are i.i.d (for more details see derivation in e.g. [11]).
Further, we assume that after the intervention has taken place, the immunization
rate of newborns in the following time period jumps up from the current level by an
amount determined by the function g(.). Our assumptions can be formally stated
as follows:

xt+1 =

{
xt + αxt∆t+ σxtεt

√
∆t if ut = 0

xt + g(xt) if ut = 1
(6)

Several properties are required for a function g(.) and any xt ∈ [0, 1] in order to
represent the jump:

1. xt + g(xt) ≤ 1: the immunization rate of newborns in the next period cannot
exceed 100%,

2. g′(xt) ≤ 0: the higher the current immunization rate of newborns, the harder
it is to motivate the remaining parents to vaccinate, i.e. the smaller the jump
size,

3. g′′(xt) ≥ 0: the effect of the increase of vaccinated children induced by the
intervention is smaller for the higher immunization rate of newborns.

The above mentioned properties must hold for any 0 ≤ xt ≤ 1 and for all
0 ≤ t ≤ T . In the numerical analysis we take g(x) = 1.5(e−x − e−1). It can be
easily verified that this function fulfills all the proposed properties.

The dynamics of the average vaccination coverage is described as follows:

Xt+1 = Xt +
1

n
(xt − xDt ) (7)

where n denotes the number of the considered age cohorts, and xDt represents the
immunization rate of the oldest age cohort1 at time t. Equation 7 has been derived

1We should remark here that the oldest cohorts have not been vaccinated but they are immune
thanks to recovery from the natural infection.
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under the assumption that the population can be divided into n equally-sized co-
horts. In the numerical analysis, we set n = 70. Further, we assume that at the
initial time the immunology status of each age cohort is known. These assumptions
enable us to reduce the number of state variables.

3. Model inputs. In terms of the numerical analysis, we perform a case study mo-
tivated by the current epidemiological situation in Slovakia as described in Section
1. We chose the Bratislava region as the study area because its decline in the im-
munization rate of newborns is the most significant in recent years. The region has
approximately 400000 inhabitants. In all the simulations the length of the studied
time period is set to 20 years. Further parameters represent measles characteristics;
the reproduction number, the rate of recovery, and the rate of transmission have
all been taken from the literature (see e.g. [17]). In order to simplify the calcula-
tions, in our model the birth rate equals the death rate. The parameters of the
expected cost curve are fitted by the least squares method in accordance with the
homogeneous SIR model (3). The costs per measles case have been determined as
an average of direct and indirect costs associated with the disease and potential
complications according to the Slovak social and health care system. The value has
been taken from the study by [10] and adjusted for inflation. The range of values of
intervention costs has been selected subjectively. Parameters of the GBM process
have been estimated using historical data on immunization rate of newborns in Eu-
rope ([19]). Probability of the occurrence of an imported measles case in Slovakia
should be seen as a rough estimate based on historical records from the last 13 years
(Source: [19]). Values of all input parameters are summarized in Table 1.

Table 1. Model inputs.

Time horizon T = 20 years
Population size N = 400000
Reproduction number R0 = 17
Recovery rate γ = 0.1
Birth/death rate µ = 0.01
Expected cases a0 = 0.9789N , a1 = 1.04
Costs per measles case c0 = 600e
Intervention costs P ∈ 〈0, 500000〉e
Probability of potential outbreak pepi = 0.1
Drift term of immunization rate of newborns α = 0.0076
Volatility of immunization rate of newborns σ = 0.057
Discount rate r = 1%

4. Numerical results. Solving the problem formulated in Section 2 requires im-
plementation of a dynamic programming algorithm moving backwards with respect
to decision time points. The crucial point is the computation of the conditional ex-
pected value. Several techniques can be applied; we have adopted the basic and the
most popular one, known as the binomial lattice (see e.g. [11]). The basic idea of
this approach is a discrete time approximation of the underlying stochastic process
Y . We assume that during each time interval the process Y jumps either up to uY
or down to dY . Probability of the moving up is assumed to be pup. The resulting
structure is a recombining binomial tree: this fact is important when considering
algorithmic aspects. The values of u, d and pup are chosen in such a way that they
match the mean and the volatility of Y . More details can be found e.g. in [11].
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In order to determine the cost efficiency of intervention, we have performed sev-
eral numerical experiments. As a basic case, we have analyzed the model without
intervention. We have simulated stochastic development of the immunization rate
of newborns until the first occurrence of an imported measles case, which happens
with exogenously given probability pepi. For each such simulation, we have eval-
uated the total costs, the number of cases and the vaccination rate at outbreak.
Since occurrence of an imported case is random, in order to compare the costs from
periods of unequal length, we have expressed the costs in terms of the so called
equivalent annual cost (EAC), which can be calculated using the following formula
(see e.g. [3]):

EAC =
NPV

EAC factor
(8)

Symbol NPV in Formula 8 represents the net present value of the total costs during

the period of the length K, i.e. NPV =
∑K

i=0
Ci

(1+r)i . Factor EAC equals to:

EAC factor =
1− ( 1

1+r )K

r
, (9)

where K stays for the time of outbreak and r denotes the discount rate.

4.1. Case without intervention. Figure 3a summarizes results for the case with-
out intervention and the initial immunization rate of newborns 90%. The x-axis
represents the initial average vaccination coverage; the y-axis depicts expected costs
expressed in terms of EAC. The depicted curves differ in the level of uncertainty of
the immunization rate of newborns development. The value σ = 0.057 corresponds
to an estimate from historical data.

Naturally, as the initial average vaccination coverage increases, expected costs
decline. However, it is important to realize that this curve declines quite sharply:
a decrease of 3% below critical boundary needed to achieve herd immunity in the
initial average vaccination coverage increases the cost by almost 1.8mil. per year.
Figure 3a further shows how uncertainty of immunization rate of newborns influ-
ences the expected costs curve. As we can see, the 15% increase in volatility has no
significant impact on the resulting expected costs.

The results of the sensitivity analysis on the initial immunization rate of new-
borns are presented in Figure 3b. The dashed curve represents the situation when
the initial average vaccination coverage is 95% and the solid line represents the
case when the initial average vaccination coverage is 98%. As we can see, the high
initial average vaccination coverage ensures lower costs. When the initial average
vaccination coverage is 98%, the immunization rate of newborns above 82% results
in the prediction of zero costs during the next 20 years period, while for the initial
average vaccination coverage of 95%, the immunization rate of newborns of at least
94% is needed to ensure zero outbreak costs for the planning period.

4.2. Model with intervention. In this section we explore the model incorpo-
rating intervention options. In the first step of calculation, the so called decision
tool is created. It means that for each combination of state variables we deter-
mine whether it is optimal to intervene or not. Figure 4 shows the typical shape of
decision diagrams under the stochastic immunization rate of newborns.

On all subfigures, the x-axis corresponds to the immunization rate of newborns,
and the average vaccination coverage is shown on the y-axis. The optimality of
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Figure 3. Expected costs as function of initial average vaccination cover-
age (left) and initial immunization rate of newborns (right), respectively.
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Figure 4. Optimal decisions for different levels of intervention costs:
grey = do intervene, black = do not intervene, t = 10, σ = 0.057.

intervention and non-intervention are reflected by the black and grey areas respec-
tively. The details depend on the exact intervention costs. However, based on the
diagrams, several general conclusions can be drawn. If costs are very low, it is
optimal to intervene at any level of immunization rate of newborns. On the other
hand, if the costs are very high, it is optimal not to intervene at any combination of
state variables. Between 500e and 500000e, the major determinant of the optimal
decision is the immunization rate of newborns, although the average vaccination
coverage does influence the decision to a certain extent.

As a further step we have run 100000 simulations and compared the expected
costs with and without the intervention, thus producing an estimate for the value
of the option to intervene. Figure 5 shows the sensitivity of the option value to the
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two model parameters: the level of the intervention costs P and the volatility in
the immunization rate of newborns σ.
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Figure 5. Value of the option to intervene. Initial immunization rate of
newborns 90% and initial average vaccination coverage 95%.

The first observation is rather expected: higher intervention costs decrease costs-
effectiveness of an intervention. However, the value of intervention option tends
to decrease rather slowly. E.g., the option becomes cost-less for the intervention
costs of approx. 2.2 × 104 under the assumption of constant immunization rate of
newborns and for the intervention costs approx. 5× 105 for σ = 0.057.

Further, the simulations show that under our model setup, an increase in the
volatility of the immunization rate of newborns implies an increase in the interven-
tion option value. For the considered range of the intervention costs, the highest
considered volatility (σ = 0.15) increases the option value approx. two times com-
pared to the case of estimated value (σ = 0.057). Moreover, the level of uncertainty
has a larger and more significant impact on the option value than the costs invested
to intervention.

Table 2a summarizes the estimated percentage of annual savings induced by the
intervention. For the initial average vaccination coverage 92% and the initial immu-
nization rate of newborns 90%, the percentage of savings induced by the intervention
stays at the same level irrespective of intervention costs. A more significant decline
can be observed for low levels of intervention costs only.

However, these results are highly sensitive to the level of the initial average
vaccination coverage. As Table 2b shows, if the initial average vaccination coverage
is below the critical level needed to achieve herd immunity, the savings in expected
costs induced by intervention reach only around 3%. However, if the initial level of
the average vaccination coverage is above or slightly below the critical vaccination
coverage needed to achieve herd immunity, the percentage of savings induced by
the intervention exceeds 50%.
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Table 2. Savings induced by intervention.

intervention costs savings in
(in thousands of e) exp. costs

0 8.8%
2 6.7%
4 4.0%
8 3.5%
10 2.3%
20 2.0%
30 1.8%

(a) Initial immunization rate of new-
borns 90%, initial average vaccina-
tion coverage 92%, σ = 0.057.

inital average savings in
vacc coverage expected costs

92% 2.3%
93% 2.9%
94% 4.4%
95% 55.9%
96% 72.5%
97% 78.6%
98% 79.9%

(b) Initial immunization rate of
newborns 90%, intervention costs
10000e, σ = 0.057.

In Table 3 we present the expected time of the first intervention together with
the expected number of interventions during the 20 years planning period. Given
intervention costs of P = 10000e, the initial average vaccination coverage 95% and
σ = 0.057, the expected time of the first intervention varies from 6 to 10 years. Not
surprisingly, the earliest intervention is observed for the lowest initial immunization
rate of newborns. Sensitivity analysis shows that the lower initial immunization
rate of newborns is, the earlier it is optimal to intervene. The expected number
of interventions is not significantly affected by the level of the initial immunization
rate of newborns: during the planning period of 20 years it is optimal to intervene
three times on average.

Table 3. Expected time of first intervention and the expected
number of interventions. Intervention costs P = 10000e, initial
average vaccination coverage x̄ = 95% and σ = 0.057.

Initial Time Number
immunization rate of first intervention of interventions

of newborns expected s.e. expected s.e.
90% 6.87 3.79 3.48 3.05
91% 6.89 3.86 3.20 2.79
92% 7.92 4.26 3.36 2.81
93% 7.92 4.34 3.10 2.68
94% 7.96 4.44 2.89 2.51
95% 9.19 4.13 3.19 2.71
96% 9.21 4.19 2.97 2.55
97% 10.04 4.11 3.09 2.53
98% 10.14 4.19 2.93 2.42

5. Conclusions. This study provides a detailed valuation analysis of cost-
effectiveness of an intervention aimed to improve the immunization rates of new-
borns. The impetus comes from the policy makers in Slovakia who are facing decline
of the parents’ willingness to vaccinate against measles in all regions. However, since
a corresponding decline can be observed worldwide the conclusions are of general
interest.

We have introduced a decision model assuming that a policy maker faces un-
certainty in the future development of the immunization rate of newborns and a
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random occurrence of imported measles cases. To our knowledge, the presented
study is the first attempt to evaluate the option to intervene using real options
techniques. This modern valuation approach enables one not just to estimate the
value of intervention option but in addition it provides a way to estimate the optimal
time to carry out the intervention.

Numerical results indicate the impact of several factors involved in the decision to
intervene. We have demonstrated that the value of the option to intervene decreases
for high intervention costs. This result is consistent with our expectations since,
under the assumptions of the proposed model, the resulting increase in the immu-
nization rate of newborns is independent of the amount invested in intervention.
Furthermore, simulations show the importance of early intervention in the popula-
tion with a long history of high immunization rate of newborns, e.g. with high initial
average vaccination coverage. Intervention directed to improve immunization rate
of newborns is more cost effective if the average vaccination coverage remains close
to the critical boundary needed to achieve herd immunity. Once the average vacci-
nation coverage falls far below the critical boundary, interventions of this type might
not be sufficiently efficient due to a long time period needed for generation-based
shift. Another significant role in determination of cost-effectiveness of intervention
is played by the level of volatility of the underlying stochastic process. Our results
illustrate that the less certain we are about the future development of the immu-
nization rate of newborns the more valuable is the option to intervene. Of course,
this is the consequence of the proposed model setup: due to the Markov property
of GBM intervention helps not just increase but also stabilize immunization rate of
newborns to certain extent.

The presented real options model can be extended in several directions. First of
all, the specification of the stochastic model for immunization rate of newborns can
be modified: In our study the willingness to vaccinate was modeled via a random
variable. According to the real options techniques, we have selected GBM as the
first natural candidate. However, one can perform a detailed statistical analysis
based on the large data set on historical immunization rates in different countries
provided by WHO and thus propose a more sophisticated model. The sensitivity of
the option value with respect to the model chosen is another interesting aspect. An-
other subject to modification is the model of the number of expected cases. In our
work, this estimation has been based on the assumption of homogeneous population.
However, in reality this is rarely the case: typically, the unvaccinated individuals
are members of a single local community (the role of the heterogeneous setup is
highlighted e.g in [1]). Examples include religious groups, kindergartens or schools
which do not require children to be vaccinated in order to be accepted. In the case of
a heterogeneous population, micro-level aspects should also be taken into account.
The model, presented in this paper, can be modified for this case. For instance, in
the case of a kindergarten, age categories can be modeled as state variables. An-
other natural extension is to analyze the option value under the assumption of an
uncertain effect of intervention. This would cover the case of interventions relying
on advertisement and education rather than law or other penalty establishment. Fi-
nally, the recent large scale European immigration may increase the likelihood of the
occurrence of measles cases in particular countries and change the epidemiological
dynamics in general. This fact makes the development of a flexible evidence-based
dynamic decision making tools even more urgent.
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