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Abstract. For an intervention against the spread of communicable diseases,

the idealized situation is when individuals fully comply with the intervention
and the exposure to the infectious agent is comparable across all individuals.

Some level of non-compliance is likely where the intervention is widely imple-
mented. The focus is on a more accurate view of its effects population-wide.

A frailty model is applied. Qualitative analysis, in mathematical terms, re-

veals how large variability in compliance renders the intervention less effective.
This finding sharpens our vague, intuitive and empirical notions. An effective

reproduction number in the presence of frailty is defined and is shown to be

invariant with respect to the time-scale of disease progression. This makes the
results in this paper valid for a wide spectrum of acute and chronic infectious

diseases. Quantitative analysis by comparing numerical results shows that they

are also robust with respect to assumptions on disease progression structure
and distributions, such as with or without the latent period and the assumed

distributions of latent and infectious periods.

1. Introduction. This manuscript extends a previous work [20] which examined
how variability of the latent and infectious periods of an infectious disease could
affect the threshold value ρ > 0 by assuming an intervention against transmission
applied homogeneously across individuals at a rate φ so that, when φ ≥ ρ, the
controlled reproduction number, as defined in [20], would be kept below unity. The
objective here is to address how between-individual variability in adherence makes
the theoretically proven effective control measure less effective when φ ≥ ρ.

1.1. Brief review of the previous work. A branching process is often used
to approximate the cumulative number of infected individuals during the initial
phase of an epidemic, when an infectious “seed” is planted in an infinitely large
susceptible population [2]. The basic reproduction number R0 is the mean value of
the branching process and plays a very important role. According to theory ([19],
[17]), if R0 ≤ 1, the branching process will become extinct with certainty. If R0 > 1,
there exists a positive probability that the branching process will grow infinitely
large. The branching process approximation is valid only for the establishment
phase during which the depletion of the susceptible individuals is negligible and no
intervention has taken place.

2010 Mathematics Subject Classification. Primary: 92B05, 60E10, 60E15.
Key words and phrases. Frailty model, heterogeneity, infectious diseases control, intervention,

reproduction number.

275

http://dx.doi.org/10.3934/mbe.2018012


276 PING YAN

Assuming a very large population with homogeneous mixing, the infectious con-
tact process (as defined in [3]) is a Poisson process with constant rate β. If an
infected individual has a random infectious period with finite mean µI , the basic
reproduction number is R0 = βµI (see [1]).

This paper only considers the case R0 > 1. If the branching process does not
die out during the establishment phase, the epidemic does not grow infinitely large.
The depletion of the susceptible population depletes the reproduction number over

time according to Rt = R0
S(t)
n where S(t) is the expected number of susceptible

individuals and n is the total population size, which is assumed to be constant.
Rt will be depleted to a threshold value 1 at some point of time. After that, two
scenarios might happen.

1. Rt remains less than 1. The result is an end of the epidemic with a positive
proportion 0 < η < 1 of the population cumulatively infected. Under certain
circumstances (e.g. closed population, no death), η satisfies a final size equa-
tion 1 − η = s0e

−R0η, η > 0, where s0 is the initial proportion of susceptible
individuals in the population at the beginning of the epidemic. This equation
holds true in a very large population with homogeneous mixing so that the
infectious contact process is a Poisson process. It holds true for arbitrarily
distributed latent and infectious periods, regardless whether there is a latent
period [10].

2. Due to loss of immunity of recovered individuals or by demography, there is
replacement of susceptible individuals so that Rt is sustained at Rt ≈ 1 in the

long run, resulting an asymptotic equilibrium condition S(t)
n ≈

1
R0
.

In both scenarios, R0, defined at the very beginning of the outbreak, transcends
to the long run outcome, in theory.

In practice, R0 is not only depleted by the transmission dynamics, but also by
interventions during the outbreak. The long run outcome, such as the final size
η, does not transcend back to R0. It is manifested as if the reproduction number
had been Rc < R0 at the very beginning and there had been no intervention. Such
an analogy is appropriate given the generality of the transcendental relationships
between R0 and the final size or the asymptotic equilibrium level, as proven in [10].

In [20], Rc is called the controlled reproduction number and modelled in a
quarantine-isolation paradigm. Infected individuals are quarantined (or isolated)
at a constant rate φ > 0, assuming that the intervention is applied homogeneously
across individuals. This is the idealized situation.

A latent period is a random duration TE during which an individual is infected
but not yet able to infect other susceptible individuals through contact. With
quarantine rate φ, the probability that an individual during the latent period escapes
from being quarantined and becomes infectious is

∫∞
0
e−φxfE(x)dx where fE(x) is

the probability density function (p.d.f.) of TE . The infectious contact process is a
“thinned” Poisson process with rate β

∫∞
0
e−φxfE(x)dx which returns to β when

φ = 0. The infectious period TI has survival function F I(x). Infectious individuals
are isolated at rate φ from contacting other individuals. The effective mean duration
of infectiousness among infectious individuals is

∫∞
0
e−φxF I(x)dx which returns to

µI =
∫∞
0
F I(x)dx when φ = 0. Using Laplace transform notations L[fE ](s) =∫∞

0
e−sxfE(x)dx and L[F I ](s) =

∫∞
0
e−sxF I(x)dx, Rc is expressed by

Rc(φ) = βL[fE ](φ)L[F I ](φ). (1)
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The threshold condition is βL[fE ](ρ)L[F I ](ρ) = 1 so that Rc(φ) ≤ 1 when φ ≥ ρ.
Define a new p.d.f. fW (x) = 1

µI
F I(x) which is recognized as the equilibrium

distribution in renewal process theory. At a randomly chosen time t, “currently”
infectious individuals form a prevalence cohort. The infectious period of individuals
in this cohort is length-biased because those with longer infectious period have a
large probability of being included. If the system is under equilibrium (i.e. the
prevalence proportions for susceptible, latent, infectious, recovered and immune
individuals are approximately constant), the length-biased infectious period is on
average longer than µI , which is µI(1 + cv2) and cv is the coefficient of variation of
the infectious period TI defined as the ratio of standard deviation to its mean. The
corresponding length-biased p.d.f. is x

µI
fI(x). Meanwhile, the time from the begin-

ning of infectiousness of these individuals in the prevalence cohort to the observation
time t, is identically distributed, denoted by W, with mean equals to 1

2µI(1 + cv2)

and the corresponding p.d.f. is fW (x) = 1
µI
F I(x).

Under equilibrium, if an individual at a randomly chosen time t, assuming sus-
ceptible at t − ∆t, comes in contact with any of the infectious individuals in the
prevalence cohort, G = TE + W is the total latent period plus part of the length-
biased infectious period, where W is the duration between the time of infection of
individuals who are in the prevalence cohort and time t. An illustration is given in
Figure 1 in which the red line is the infectious period and the blue line is the latent
period. In this figure, only two of the four individuals are in the prevalence cohort
and W is defined. The mean value for G is µE + 1

2µI(1 + cv2).

Figure 1. Length-biasness in a prevalence cohort: the red sections
represent the infectious period. Only 2 individuals with longer
infectious periods are included in the prevalence cohort.

Assuming independency, the p.d.f. for G = TE + W , denoted by fG(x), is
defined by the convolution between fE(x)and fW (x). Its Laplace transform is the
product L[fG](s) = L[fE ](s)L[fW ](s),s > 0,where L[fW ](s) = 1

µI
L[F I ](s). Thus

(1) becomes Rc(φ) = R0L[fG](φ)and the threshold condition is

R0L[fG](ρ) = 1. (2)

1.2. Highlights of this paper. The quarantine-isolation paradigm in [20] is for
the convenience of discussion. In this manuscript, the control measure is generalized
into many types of intervention applied to individuals during their latent period
and/or their infectious period. Such interventions include, but are not limited
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to, condom use for the reduction of sexual transmission of diseases, prophylactic
intervention and use of antiviral drugs to reduce transmission, and so on.

Several factors may influence the risk of infection separately from any impact
of the intervention. One of them is between-individual heterogeneity in compliance
that individuals may not fully comply with the intervention. When individuals fully
comply with the intervention and the exposure to the infectious agent is comparable
across all individuals being studied, this is the idealized situation. The impact of
an intervention is sometimes called the efficacy of the intervention. Since some
level of non-compliance is likely where an intervention is widely implemented, the
focus will be on effectiveness that provides a more accurate view of possible effects
population-wide.

Throughout the paper, the notation ρ is the threshold parameter calculated by
solving (2). The condition Rc(ρ) = 1 is a reflection of efficacy under the idealized sit-
uation. In the presence of between-individual heterogeneity in the implementation,
at the calculated threshold value ρ, the actually realized controlled reproduction
number, denoted by Rv(ρ), will be in the range 1 < Rv(ρ) < R0. This is a reflection
of effectiveness.

Section 2 is a qualitative analysis. A frailty model, with a random effect z > 0,
is used to characterize unobservable heterogeneity. The variability of z is measured
according to the convex order given by Definition 2.2, which is a more natural way
to describe dispersion and a more general definition than variance. It shows that
the more variable the frailty z according to convex order, the larger the value of
Rv(φ). The control measure is most effective if applied homogeneously across all
individuals. It also contains an important finding that, given the threshold ρ under
the idealized situation, the value of Rv(ρ) > 1 is invariant with respect to the time
scale of disease progression, regardless if the disease is acute (e.g. measured in days
like influenza) or chronic (e.g. HIV, viral hepatitis). Given the model for frailty,
Rv(ρ) only depends on R0 and fG. The latter includes assumptions on the existence
of the latent period and the distributions of the latent and the infectious periods.

Section 3 is a quantitative analysis to evaluate how much influence fG has on
Rv(ρ). It turns out that the influence is quite weak under the numerical results
calculated in 32 different cases. Detailed calculation formula and associated tables
are given in Appendix.

The results presented in this paper are not only invariant to the time scale of
the disease progression, but also robust with respect to model assumptions in the
disease progression.

2. Model intervention heterogeneity as frailty.

2.1. The frailty model, efficacy and effectiveness. In survival analysis, the
frailty model is a random effect model to account for unobservable heterogeneity
between individuals [7]. In the proportional hazard model h(x|z) = zh0(x), z > 0,
where h0(x) > 0 is the baseline hazard function, z > 0 is called the frailty parameter
and is assumed to be random with mean value E(z) = 1 and p.d.f. ξ(z). It can
be alternatively written in terms of survival functions F (x|z) = e−zH0(x), where
H0(x) =

∫ x
0
h0(u)du is the cumulative baseline hazard. If there is no heterogene-

ity, then ξ(z) degenerates to z ≡ 1 without variation and the survival function is
F 0(x) = e−H0(x). In the presence of unobserved heterogeneity, the frailty model has
the survival function
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F
(frailty)

(x) =

∫ ∞
0

F (x|z)ξ(z)dz =

∫ ∞
0

e−zH0(x)ξ(z)dz = L[ξ](H0(x)) (3)

where L[ξ](s) =
∫∞
0
e−zsξ(z)dz is the Laplace transform of ξ(z) and L[ξ](H0(x)) is

L[ξ](s) evaluated at s = H0(x). The importance of Laplace transform in the context
of frailty modelling in survival analysis was pointed out in [6].

In the current context, the intervention is associated with a rate φ > 0 under
the idealized situation. The baseline hazard function is h0(x) = φ, H0(x) = φx and
F 0(x) = e−φx. If there is no heterogeneity in control measures, Rc is a fraction of
R0 and this fraction is

∫∞
0
e−φxfG(x)dx. The controlled reproduction number is

Rc(φ) = R0

∫ ∞
0

e−φxfG(x)dx = R0L[fG](φ). (4)

In the presence of frailty with a non-degenerated p.d.f. ξ(z), replacing e−φx with
L[ξ](φx) > e−φx, the following inequality is established

R0

∫∞
0
e−φxfG(x)dx < R0

∫∞
0
L[ξ](φx)fG(x)dx < R0

‖ ‖
Rc(φ) Rv(φ)

(5)

where Rc(φ) reflects the efficacy in the idealized situation and Rv(φ) reflects the
effectiveness in the presence of frailty when the intervention is applied in a large
population. The inequalities are mathematical phrases that qualitatively describe
the conventional wisdom, that, the control measure is most effective if applied
homogeneously across all individuals.

2.2. Variability of the frailty parameter according to convex order. Un-
observable heterogeneity is measured by variability for z. The order of variability
for two non-negative random variables is described based on “marjorization” and
defined in [11]. If X1 and X2 have equal mean value µ1 = µ2 (should they exist),
corresponding to p.d.f. f1 and f2, respectively, the verbal description for X2 being
more dispersed (spread out) than X1 is about the change of signs between. f1 and
f2 and their corresponding survival functions F 1 and F 2 as shown in Figure 2 This
is the definition of the convex order X1 ≤

cv
X2.

Figure 2. Verbal and graphic presentation for the convex order
showing that X2 is more “spread out” than X1.

Definition 2.1. X1 ≤
cv
X2 if and only if µ1 = µ2 plus the following two statements:

1. f2(x)− f1(x) has two sign changes and the sign sequence is: +,−,+.
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2. F 1(x)− F 2(x) has one sign change and the sign sequence is: +,−.

By this definition, the larger the distribution in convex order, the more it “spreads
out” around its mean value. It is mathematically equivalent [11] to the following
definition.

Definition 2.2. X1 ≤
cv
X2 if E[Ψ(X1)] ≤ E[Ψ(X2)] for all convex functions Ψ(x)

for which these expectations exist.

The convex order is stronger than variance comparison as the choice of a convex
function Ψ(x) = x2 leads to the conclusion that X1 ≤cx X2 ⇒ var[X1] ≤ var[X2].

The following identity, first proven in [5],∫ ∞
0

L[ξ](φx)fG(x)dx =

∫ ∞
0

∫ ∞
0

e−φxzξ(z)fG(x)dzdx =

∫ ∞
0

L[fG](φz)ξ(z)dz

leads to

Rv(φ) = R0

∫ ∞
0

L[ξ](φx)fG(x)dx = R0

∫ ∞
0

L[fG](φz)ξ(z)dz.

It can be shown that L[fG](z) is log-convex with respect to z. This gives additional
insight into (5), that, the more variable the frailty z according to convex order, the
larger the value of Rv(φ).

2.3. Scale invariance with respect to disease natural history. The natural
history in the current context refers to assumptions in fG, which include the ex-
istence of the latent period and the distributions of the latent and the infectious
periods. Assuming f∗G(y) is the p.d.f. for G according to the standard time scale
λ = 1, on a transformed time by a scale parameter λ, x = y/λ, fG(x;λ) = λf∗G(λx).

Because the Laplace transform of a p.d.f. of a non-negative random variable is a
survival function (arising from the mixture of an exponential survival function with
the p.d.f. as the mixing distribution, see [11]), L[ξ](x) is a survival function. Under
the scale transform x = y/λ, L[ξ](y) = L[ξ](λx) and e−y = e−λx. Therefore

Rv(φ) = R0

∫ ∞
0

L[ξ](φy)f∗G(y)dy = R0

∫ ∞
0

L[ξ](λφx)fG(x;λ)dx, (6)

Rc(φ) = R0

∫ ∞
0

e−φyf∗G(y)dy = R0

∫ ∞
0

e−λφxfG(x;λ)dx. (7)

Both Rv(φ) and Rc(φ), divided by R0, are plotted in Figure 3, re-scaled by λ.
The following statements hold.

1. The solid line is L[f∗G](φ) =
∫∞
0
e−φyf∗G(y)dy. It is a survival function (of φ)

constructed from a mixture of the exponential survival function e−sy with the
mixing function f∗G(y). The threshold condition R0L[fG](ρ) = 1 is equivalent

to say that ρ is the
(
1−R−10

)th
percentile corresponding to this survival

function. This percentile is unchanged with respect to the scale transformation
x = y/λ.

2. The dashed line is
∫∞
0
L[ξ](φy)f∗G(y)dy =

∫∞
0
L[f∗G](φz)ξ(z)dz in the presence

of frailty. In order to achieve Rv(φ) = 1, a new threshold value ρ′ is the(
1−R−10

)th
percentile corresponding to the survival function (of φ) given by

the dashed line. The ratio ρ′/ρ does not depend on λ.
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Figure 3. Schematic presentation of Rv(φ)/R0 and Rc(φ)/R0 as
two survival functions standardized by the scale parameter λ.

3. Rv(ρ) = R0

∫∞
0
L[fG](ρz)ξ(z)dz and R0L[fG](ρ) = 1 yield

Rv(ρ) =

∫ ∞
0

L[fG](ρz)

L[fG](ρ)
ξ(z)dz ≡ Rv(R0, fG) (8)

where ρ is a function of (R0, fG) and depends on λ. Meanwhile, L[fG](ρz) is

L[fG](z) scaled by its
(

1− 1
R0

)th
percentile ρ and the ratio

G(z;R0, fG) =
L[fG](ρz)

L[fG](ρ)
(9)

is independent of λ. Thus Rv(ρ) =
∫∞
0
G(z;R0, fG)ξ(z)dz only depends on

the basic reproduction number R0, independent of λ.

Both L[f∗G](φ) and
∫∞
0
L[f∗G](φz)ξ(z)dz in Figure 3 are heavy tailed because the

class of distributions with decreasing hazard rates are closed under mixtures (see
[15], pp. 407-409 for details). L[f∗G](φ) arises from a mixture of the exponential dis-
tribution.

∫∞
0
L[f∗G](φz)ξ(z)dz is a mixture of L[f∗G](φ) with ξ(z). Both correspond

to decreasing hazard functions. Because ρ and ρ′ are the
(
1−R−10

)th
percentiles

corresponding to these survival functions, if R0 is large, these threshold values take
place on the far right end of these tails. Numerical results will show that, when
the variance of z is getting large, the ratio ρ′/ρ increases steeply, highlighting the
difficulty in achieving the same objective if there is frailty in the implementation of
intervention measures.

3. Robustness of Rv(ρ) with respect to the assumed distribution fG(x).
The equation (8) shows that Rv(ρ) is a function of (R0, fG), of which, fG in-
corporates assumptions about whether there is a latent period and assumptions
of distributions for the latent and the infectious periods. The integrand in (8),
G(z;R0, fG)ξ(z), separates fG from the frailty distribution ξ(z), where G(z;R0, fG)
is given by (9). Rv(R0, fG) depends on fG only through G(z;R0, fG).
G(z;R0, fG) is a log-convex function of z, monotonically decreasing, satisfying:

G(0;R0, fG) = R0, G(1;R0, fG) = 1 and limz→∞G(z;R0, fG) = 0. Figure 4 gives
a schematic presentation. The dependence on fG mainly shows on the right hand
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Figure 4. A schmatic presentation of G(z;R0, fG).

tails. Another log-convex function with a simple Pareto form

G∗(z;R0) =
R0

1 + (R0 − 1) z
(10)

has the same features as G(z;R0, fG) but no longer depends on fG.
On the other hand, the p.d.f. ξ(z) for frailty, satisfying E[z] = 1, tends to

decrease to zero quickly when z is getting large, such as the Gamma distribution
given below. Intuitively, Rv(R0, fG) =

∫∞
0
G(z;R0, fG)ξ(z)dz is the area under the

product G(z;R0, fG)ξ(z) and is expected to be in close agreement. For numerical
demonstration, we choose the Gamma distribution E[z] = 1, var[z] = v and

ξ(z; v) =
1/v

Γ(1/v)
(z/v)

1/v−1
e−z/v (11)

The Laplace transform is L[ξ](s) = (1 + sx)
−1/v

. As illustrated in Figure 5, the
shape of ξ(z; v) changes dramatically at v = 1. When 0 < v < 1, z is “more or
less” concentrated at E[z] = 1. One may loosely call this as “almost homogeneous”
in the control measure with some mild variability. When v > 1, it is “highly
heterogeneous”.

When ξ(z) is given by (11), F
(frailty)

(x) = L[ξ](φx) = (1 + φxv)
−1/v

. The

limiting cases are limv→0 (1 + φxv)
−1/v

= e−φx and limv→∞ (1 + φxv)
−1/v

= 1.

For any x, F
(frailty)

(x) is an increasing function of v. The variance v ranks the
frailty variable z according to stochastic order. According to (5),

Rv(φ) = R0

∫ ∞
0

(1 + φxv)
−1/v

fG(x)dx. (12)

When φ = ρ, based on (8)-(9), Rv(ρ) = Rv(R0, fG) which is

Rv(R0, fG) =
1/v

Γ(1/v)

∫ ∞
0

G(z;R0, fG) (z/v)
1/v−1

e−z/vdz. (13)

We also compare it with the approximation

R∗v(R0) =
1/v

Γ(1/v)

∫ ∞
0

G∗(z;R0) (z/v)
1/v−1

e−z/vdz. (14)
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Figure 5. Shapes of ξ(z) and F
(frailty)

(x) = (1 + φxv)
−1/v

.

G(z;R0, fG) will be specified by assumptions for fG and G∗(z;R0) is given by (10).
We restrict discussions to distributions of the latent and the infectious periods that
their Laplace transforms can be expressed explicitly.

3.1. In the absence of a latent period. Assuming the infectious period has a
finite mean µ, fG(x) = 1

µF I(x). According to (9),

G(z;R0, fG) =
L[F I ](ρz)

L[F I ](ρ)
. (15)

We consider two parametric models for the infectious period, both with mean µ and
var[TI ] = θµ2. The first model is the Gamma distribution. In this case, L[F I ](s) =
1
s

[
1− (1 + sθµ)

−1/θ
]

when 0 < θ <∞. Hence (15) becomes

GGamma(z) =
1

z

1− (1 + y(R0, θ)z)
−θ

1− (1 + y(R0, θ))
−θ , θ > 0 (16)

where y(R0, θ) = ρθµ. It is a function of θ and R0 because the threshold ρ must

satisfy R0

ρµ

[
1− (1 + ρθµ)

−1/θ
]

= 1. Then (13) is written as

Rv(R0, θ) =
(1/v)

1/v

Γ(1/v)

∫ ∞
0

1− (1 + y(R0, θ)z)
−1/θ

1− (1 + y(R0, θ))
−1/θ z

1
v−2e−z/vdz (17)

where y(R0, θ) = Root of
(
R0θ

[
1− (1 + y)

−1/θ
]

= y, y > 0
)
.

The second model is the inverse-Gaussian distribution. In this case, L[F I ](s) =
1
s

(
1− exp

{
1−
√
1+2θµs
θ

})
. In this case, ρ satisfies R0

(
1− exp

{
1−
√
1+2ρθµ
θ

})
=

ρµ. In a similar manner, the expression for (15) is

Ginv−Gaussian(z) =
1

z

1− eθ
(
1−
√

1+2y(R0,θ)z
)

1− eθ
(
1−
√

1+2y(R0,θ)
) , θ > 0 (18)

and (13) is expressed as

Rv(R0, θ) =
(1/v)

1
v

Γ(1/v)

∫ ∞
0

1− e
1−
√

1+2y(R0,θ)z

θ

1− e
1−
√

1+2y(R0,θ)

θ

z
1
v−2e−z/vdz (19)
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where y(R0, θ) = Root of
(
R0θ

(
1− exp

{
1−
√
1+2y
θ

})
= y, y > 0

)
.

When θ → 0, the infectious period degenerates to a fixed point µ and fG(x) =
1
µF I(x) is the p.d.f. of the uniform distribution U [0, µ]. In this case,

Rv(R0, 0) =
(1/v)

1/v

Γ(1/v)

∫ ∞
0

1− e−y(R0,0)z

1− e−y(R0,0)
z

1
v−2e−z/vdz. (20)

The corresponding expression for (9)is GDeg(z) = 1
z
1−e−y(R0,0)z

1−e−y(R0,0)
where y(R0, 0) =

Root of (R0 (1− e−y) = y, y > 0) .
The Gamma distribution includes the exponential distribution as a special case

when θ = 1, the inverse-Gaussian distribution does not include the exponential
distribution as a special case.

Figure 6. Comparing GGamma(z) given by (16) and
Ginv−Gaussian(z) given by (18) against G∗(z) = R0

1+(R0−1)z .

GGamma(z) and Ginv−Gaussian(z) can be numerically calculated for each R0, θ.
Figure 6 presents the case when R0 = 3 with θ ranging from 0 (i.e. the special case
GDeg(z)) to θ = 10. They include a wide range of the infectious period distributions
for a constant point µ with no random variation to very large variance 10µ2.Figure
6 also includes the Pareto function G∗(z;R0) given by (10) as the approximation,
shown as the dark thick line.

In spite of the differences shown in Figure 6 when z becomes large, the product
GGamma(z) z

1
v−1e−z/v gives the integrand in (17) and the product Ginv−Gaussian(z)

z
1
v−1e−z/v gives the integrand in (19). Figure 7 presents plots of these integrands

corresponding to R0 = 3 as function of z for v = 0.25, 0.5, 1 and 5 in the four panels.
Within each panel, both GGamma(z) z

1
v−1e−z/v and Ginv−Gaussian(z) z

1
v−1e−z/v

are plotted together for a very wide range of θ from 0.1 to ∞.
Figure 7 shows close agreements among the integrands in (17) and (19) in a very

wide range of θ at each v. One expects Rv(R0, θ), as areas covered by these curves, to
be robust with respect to fG and in close agreement with the approximation R∗v(R0)
given by (14). Table 1 shows the numerical results for θ = 0, 0.2, 1, 2 and 10 at
R0 = 2 and R0 = 3. Although Rv(R0, θ) depends on the choice of the distribution
family as well as the shape parameter θ, they all fall into a very narrow range
around R∗v(R0) for each R0 and v, and R∗v(R0) does not involve any assumption of
the distribution fG.
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Figure 7. Integrand in (17) at R0 = 3; θ from 0.01 to ∞ .

Incidentally, G∗(z;R0) given by (10) is a special case of GGamma(z) when θ = 1,
that is, exponentially distributed infectious period.

R0 = 2
v R∗v θ θ > 0 : Gamma θ > 0 : inv-Gaussian

→ 0 0.2 1 2 10 0.2 1 2 10
0.25 1.059 1.061 1.061 1.059 1.057 1.055 1.060 1.056 1.054 1.049
0.50 1.109 1.113 1.112 1.109 1.108 1.105 1.112 1.106 1.103 1.095
1.00 1.193 1.196 1.195 1.193 1.191 1.188 1.195 1.189 1.185 1.176
2.00 1.311 1.313 1.313 1.311 1.310 1.308 1.312 1.308 1.304 1.297

R0 = 3
R∗v θ θ > 0 : Gamma θ > 0 : inv-Gaussian

→ 0 0.2 1 2 10 0.2 1 2 10
0.25 1.109 1.132 1.123 1.109 1.103 1.095 1.123 1.105 1.095 1.077
0.50 1.211 1.244 1.232 1.211 1.201 1.188 1.231 1.204 1.187 1.156
1.00 1.384 1.425 1.411 1.384 1.372 1.355 1.410 1.374 1.352 1.308
2.00 1.637 1.677 1.663 1.637 1.624 1.606 1.662 1.626 1.603 1.554

Table 1. Tabulation of R∗v(R0) in (14) along with Rv(R0, θ) with
respect to Gamma and inverse-Gaussian distributed infectious pe-
riod at R0 = 2 and R0 = 3, noticing that R∗v(R0) is identical to
Gamma distributed infectious period with θ = 1.
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3.2. In the presence of a latent period. In this case, fG(x) is the convolution
between fE(x) and fW (x) = 1

µF I(x). From (8) and (13)

Rv(R0, θ) =

∫ ∞
0

L[fG](ρz)

L[fG](ρ)
ξ(z)dz

=
(1/v)

1
v

Γ(1/v)

∫ ∞
0

L[fE ](ρz)L[F I ](ρz)

L[fE ](ρ)L[F I ](ρ)
z

1
v−1e−z/vdz, (21)

where θ may involve parameters that specifies the latent and the infectious period
distributions. For notations, µE is the mean latent period and θE is the shape
parameter of the latent period distribution. Without index, µ is the mean infectious
period and θ is the shape parameter of the infectious period distribution. For
the chosen distributions of the latent period and infectious period with explicit
Laplace transforms, the variance of the latent period is θEµ

2
E and the variance

of the infectious period is θµ2. In the following combination of latent period and
infectious period distributions, L[fE ](s) and L[F I ](s) have analytic forms and (21)
can be straightforwardly computed.

1. Gamma latent period + Gamma infectious period (including degenerated and
exponential distributions):

L[fE ](s) = (1 + θEµEs)
−1/θE ,

L[F I ](s) =
1

s

[
1− (1 + θµs)

−θ
]

where µE is the mean latent period and θE is the shape parameter of the
latent period distribution and µ is the mean latent period and θ is the shape
parameter of the infectious period distribution.

2. Gamma latent period + inverse-Gaussian infectious period

L[fE ](s) = (1 + θEµEs)
−1/θE ,

L[F I ](s) =
1

s

(
1− e

1−
√

1+2θµs
θ

)
.

3. Inverse-Gaussian latent period + Gamma infectious period

L[fE ](s) = exp

(
1−
√

1 + 2θEµEs

θE

)
,

L[F I ](s) =
1

s

[
1− (1 + θµs)

−1/θ
]

4. Inverse-Gaussian latent period + inverse-Gaussian infectious period

L[fE ](s) = exp

(
1−
√

1 + 2θEµEs

θE

)
,

L[F I ](s) =
1

s

(
1− e

1−
√

1+2θµs
θ

)
.

Without repeating the investigation for robustness in the previous subsection,
numerical results from selected special cases when both the latent and infectious
period distribution are chosen from the Gamma family are presented.
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3.3. Numerical results for special cases. For these numerical results, 16 dis-
tribution models for fG will presented at two level of R0. In total, there are 32 sets
of special cases.

The first 4 models assume Gamma distributed infectious period without the
latent period. In particular, The p.d.f. for the infectious period TI is

fI(x) =
1

θµΓ( 1
θ )

(
x

θµ

)1/θ−1

e−
1
θµx

by mean value µ and variance θµ2. The p.d.f. for G = W is

fG(x) =
1

µ
F I(x) =

1

µ

∫ ∞
x

fI(s)ds,

involving the incomplete Gamma function. The mean value for G is E[G] =
µ
2 (1 + θ). The shapes of fG(x) is illustrated in Figure 8, which includes the follow-
ing two special cases.

1. When θ → 0, TI has a degenerated distribution with mass at a constant µ.
The survival function is F I(x) = 1 if x ≤ µ and F I(x) = 0 otherwise. G
corresponds to the uniform distribution U [0, µ] with E[G] = µ

2 and p.d.f.

fG(x) = 1
µF I(x) = 1

µ when x ≤ µ and fG(x) = 0 otherwise.

2. When θ = 1, G = W is identically distributed as the infectious period TI with
fG(x) = 1

µe
−x/µ.

The scale parameter in Figure 8 is µ−1. Numerical calculation for Rv(ρ), with
ξ(z; v) defined in (11) is given by (17) for 0 < θ < ∞. Table 1 contains results
corresponding to θ → 0, θ = 1 and θ = 2.

Figure 8. fG(x) = 1
µF I(x) when the infectious period is Gamma distributed.

The next 12 models include a latent period so that G = TE + W. Four special
cases are considered: (i) constant latent period+constant infectious period, (ii) ex-
ponentially distributed latent period + exponentially distributed infectious period,
(iii) exponentially distributed latent period + constant infectious period, and (iv)
exponentially distributed latent period + constant infectious period. The mean la-
tent period is parameterized as µE = lµ, l ≥ 0 and µ is the mean infectious period.
The shapes of fG(x) from combinations of assumed latent period and infectious
period distributions are displayed in Figure 9 (a)-(c) with respectively assumed
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relative length of the average latent period to the average length of the infectious
period l = 0.5, 1 and 2.

Figure 9. Shapes of fG(x) in the special cases in the presence of
a latent period.

Numerical calculation for Rv(ρ), with ξ(z; v) given by (11), can be derived from
(21) applied to each of the special cases. Detailed calculation formula and corre-
sponding tables are given in Appendix.

Figure 10. The left panel is for the value Rv(ρ) and the right
panel is for the correponding final sizes. At each level of R0, there
are 16 points plotted at each v.

The left panel of Figure 10 provides a comparison of the results for Rv(ρ) at v in
the range from 0 to 4 by 0.25 increment. For each v, there are 16 points (in black)
corresponding to R0 = 3 and 16 points (in blue) corresponding to R0 = 2. The
trends representing Rv(ρ) as functions of v are calculated as average and plotted
as lines. It shows that assumptions on the structure (e.g. with or without latent
period), on the types of distributions of these periods as well as the relative lengths
between the latent and the infectious periods have little influence on Rv(ρ). The
predominant parameters are R0 and v. For example: If R0 = 3, a control measure at
intervention rate ρ that in theory could have made the epidemic under control (i.e.
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Rc(ρ) = 1), may result in an outbreak as if manifested by a reproduction number
Rv ≈ 1.4.

The right panel of Figure 10 is analogous to the left panel, representing the
final size η through the approximate final size equation 1 − η = exp(−Rvη). The
final size, as a measure, is only applicable in certain epidemics, typically without
replacement of the susceptible population and recovered individuals have immunity.
However, unlike Rv(ρ), which is mainly a theoretical parameter, the final size (where
applicable) is also an observable quantity, also known as the infection attack rate.
Once again, assumptions on the structure (e.g. with or without latent period), on
the types of distributions of these periods as well as the relative lengths between
the latent and the infectious periods have little influence on η.

Remark 1. It is well known that univariate frailty models are not identifiable from
the survival information alone. In the current context, the true value of control rate
φ is not identifiable from v in ξ(z; v). Meanwhile,.the basic reproduction number
R0 is a theoretical value that is difficult to estimate. The observed (or estimated)
parameters during or after the outbreak, such as Rv or η, cannot identify R0, φ
and v. If one follows some guidelines with a given control rate at a threshold φ = ρ
with proven (in theory) efficacy to get the epidemic under control and if one has
observed an outbreak the ends with final size about 35% of the population, it could
arise from an outbreak with R0 = 3 and the control measure implemented with
relatively good but not perfect adherence at v = 0.5, or from an outbreak with
R0 = 2 and the control measure implemented with poor adherence at v = 1.25, or
an outbreak with R0 = 1.23 with no intervention at all. An outbreak with infection
attack rate 35% is nonetheless a large outbreak. In the absence of knowledge of R0

along with unobservable frailty, it leaves impression as if the control measure that
looks good on paper “does not work at all” in practice.

Figure 11 echoes the comments made at the end of Section 2 that, if R0 is large,
the control thresholds ρ and ρ′ take place on the far right end tails of the survival
functions corresponding to L[f∗G](φ) and

∫∞
0
L[f∗G](φz)ξ(z)dz and both are heavy

tailed. Consequently, the ratio ρ′/ρ increases steeply if the variance of z is getting
large. Of all the 32 cases examined, the predominant parameters are R0 and v.
The assumptions on distributions of the latent period and/or infectious period have
very little effect on the quantitative results. However, the assumption on whether
there is a latent period does have some influence. Generally speaking, the presence
of a latent period somewhat make the control efforts easier. The ratio ρ′/ρ does
not depend on the time scale on disease progression. Figure 11 demonstrates that
it is important to ensure strong adherence to minimize the frailty. When v > 1, in
order to get the outbreak under control, the level of difficulty, represented by the
ratio ρ′/ρ, increases steeply. For instance, at v = 4, it requires increasing to the
control threshold by 7 folds at R0 = 2 and by 20 folds at R0 = 3.

4. Discussions and limitations.

4.1. On the use of frailty model versus more structured models for in-
tervention heterogeneity. The idealized situation, assuming homogeneous inter-
vention effect at rate φ on all individuals, is the null hypothesis. The frailty model
by introducing a random effect z with E[z] = 1 is one of the many alternative
hypotheses. One could argue the choice of this alternative hypothesis versus more
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Figure 11. At each R0 level, there are 16 points plotted at v =
0.00, ..., 4.00 by 0.5 increment with trend lines as the averages.

structured hypotheses, such as spatial structure and time-dependence. Indeed, dif-
ferent alternative hypotheses need to be evaluated and some need more complex
models. They also lead to different answers to different questions.

The frailty model addresses unobservable (and even un-quantifiable) heterogene-
ity that could arise in many situations, such as non-adherence (e.g. condom use),
“leakage” (e.g. imperfect quarantine or isolation), or, in a prophylactic interven-
tion, individuals may not take the prescribed dose of the medication provided. The
frailty model in this paper provides some qualitative insights. More in-depth ques-
tions could be posed in each of the situation as alternative hypotheses and targeted
models can be developed and applied. Even with that, there will still be unobserv-
able part of heterogeneity and some random effect model may need to be added
on top of the structured models. Take the condom use example, condom cover-
age can be explicitly modelled by space and time, yet there is still unobservable
heterogeneity between and within individuals in adherence.

A related issue is the dependence between individuals. Under the null hypothesis,
the intervention is applied homogeneously, and independently, on all individuals.
Alternatively, one could question about independency and model correlation such
as in a spatial structured model. The frailty model also introduces dependency. If a

random effect ξ(z) is introduced in F
(frailty)

(x) =
∫∞
0
e−zφxξ(z)dz, the intervention

is no longer applied independently on all individuals. The proof of this is similar
to the proof that a mixed Poisson process no longer preserves the independent
increment property. Structured models can explicitly describe dependency and
provide answers to targeted questions. The frailty model addresses the unobservable
aspect and provides qualitative insight for more general questions.

An important aspect of model is to order thoughts and sharpen vague intuitive
notions. Empirical wisdom has told us that the control measure is most effective if
applied homogeneously across all individuals and the more variable in adherence,
the less the effectiveness. The first half of the sentence is mathematically expressed
by (5). The notion variability is vague and intuitive. Definition 2.1 provides a
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verbal description and an illustration of the general concept of variability, which
is sharpened in its mathematical equivalence, Definition 2.2. In return, variability
according to Definition 2.2 leads to the order of Rv(φ) = R0

∫∞
0
L[fG](φz)ξ(z)dz,

corresponding to the second half of the sentence.
The findings that Rv(ρ), along with its derived quantities, is scale invariant

and robust to the disease progression natural history fG have wide application
importance. Although quantitative analysis is used to investigate the robustness,
the emphasis of the value of these results should be on the qualitative aspect. The
frailty model is aimed to draw general conclusions and is complementary to models
for specific questions on spatial-temporal heterogeneity and spatial dependence.

4.2. Non-identifiability and challenges in the design of intervention stud-
ies. The non-identifiability problem in Remark 1 poses challenges in the design
of intervention studies at the population level. They are confounding factors that
hinders the ability to distinguish the ‘pure’ impact of the intervention without
the distorting influence of compliance from the effectiveness since some level of
non-compliance are likely. Both the pure impact (efficacy) and population level
effectiveness are important objectives in intervention studies.

4.3. Relation to other disciplines in science. The concept of frailty goes back
to Greenwood and Yule [4] on accident proneness. The term frailty was introduced
in demography [18]. It has been widely used to model heterogeneity in life insurance
[13]. As extensions of the proportional hazard model [7], frailty models and are
widely used in clinical applications where the study population must be considered
as a heterogeneous sample, i.e. a mixture of individuals with different hazards.

When ξ(z) is Gamma distributed, F
(frailty)

(x) = (1 + φxv)
−1/v

is a special
case of the Pareto-II distribution [11] or the Lomax distribution [9]. Re-written

as e−xq ≡ [1 + (q − 1)x]
− 1
q−1 , x ≥ 0, q > 1, it is called as the q-exponential

distribution [14] with the exponential distribution e−x1 ≡ e−x. The transform∫∞
0

(1 + sxv)
−1/v

fG(x)dx, s > 0 in (12) has found its applications in astrophysics
and statistical mechanics.([8], [12]). It is usually called the generalized Stieltjes
transform, but also referred to as the q−Laplace transform

∫∞
0
e−sxq f(x)dx ([8],

[12]) by its connection with the q-exponential function.
Application of frailty models has been employed in a growing number of empir-

ical works on a large variety of themes, including scale-free networks and dynamic
systems. Examples include the population of cities, the study of stock markets,
DNA sequences, family names, human behavior, geomagnetic records, train delays,
reaction kinetics, air travel networks, hydrological phenomena, earthquakes, world
bank records, voting processes, internet, citation of scientific papers, among others.
A brief review of this distribution and a list of references of these studies are pro-
vided in Picoli et al. [14]. This manuscript adds another application field in this
growing theme.

Acknowledgments. The author sincerely thank two anonymous referees for their
useful comments and discussions which helped to re-develop the Discussions and
limitations section.

Appendix. Tables 2 - 8 contain numerical values for Rv(ρ), the final size η (where
applicable) and the ratio ρ′/ρ corresponding to Figures 10-11, arising from 16 dif-
ferent types of distributions with p.d.f. fG(x) as illustrated in Figures 8 and 9 at
two levels R0 = 2 and R0 = 3.
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Constant infectious period, no latent period. The survival function for TI
is F I(x) = 1 if x ≤ µ and F I(x) = 0 otherwise. G corresponds to the uniform
distribution U [0, µ] with p.d.f. fG(x) = 1

µF I(x) = 1
µ when x ≤ µ and fG(x) = 0

otherwise. E[G] = µ
2 . Rv(ρ) is calculated according to

Rv(ρ) =

 R0

(
1−(1+ρµv)1−

1
v

ρµ(1−v)

)
, v 6= 1

R0
log(ρµ+1)

ρµ , v = 1
, (22)

of which, ρ is calculated by solving R0 (1− e−ρµ) = ρµ. The scale parameter for
the uniform distribution U [0, µ] is λ = µ−1. Given any µ, the threshold ρ is scaled
according to µ−1. Rv(ρ) is invariant to the length of the infectious period. With
respect to R0 = 2 and R0 = 3, the threshold ρ is calculated as ρ = 1.594/µ at
R0 = 2 and ρ = 2.821/µ at R0 = 3. Results are presented in Table 2.

R0 = 2, ρ = 1.594/µ R0 = 3, ρ = 2.821/µ
v Rc(ρ) η ρ′/ρ v Rc(ρ) η ρ′/ρ

0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.061 0.113 1.120 0.25 1.132 0.224 1.190
1.00 1.196 0.309 1.577 1.00 1.426 0.531 2.024
2.00 1.313 0.436 2.510 2.00 1.678 0.681 4.253
3.00 1.394 0.506 4.056 3.00 1.847 0.750 9.352
4.00 1.454 0.551 6.668 4.00 1.971 0.789 21.512

Table 2. Constant infectious period without latent period.

Exponentially distributed infectious period, no latent period. In this case,
G = W is identically distributed as the infectious period TI with fG(x) = 1

µe
−x/µ.

The scale parameter is µ−1. The threshold ρ = µ−1 (R0 − 1) is a function of R0,
scaled according to µ−1. For each of the two scenarios R0 = 2 and R0 = 3, ρ = 1/µ
at R0 = 2 and ρ = 2/µ at R0 = 3. Rv(ρ) is calculated according to

Rv(ρ) =
(1/v)

1/v

Γ(1/v)

∫ ∞
0

(
zR0

zR0 − z + 1

)
z

1
v−2e−z/vdz. (23)

The quantities are presented in Table 3.

R0 = 2, ρ = 1/µ R0 = 3, ρ = 2/µ
v Rc(ρ) η ρ′/ρ v Rc(ρ) η ρ′/ρ

0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.059 0.108 1.133 0.25 1.109 0.190 1.186
1.00 1.193 0.305 1.639 1.00 1.384 0.498 2.022
2.00 1.311 0.434 2.670 2.00 1.637 0.661 4.257
3.00 1.393 0.506 4.370 3.00 1.811 0.737 9.325
4.00 1.454 0.552 7.229 4.00 1.940 0.780 21.295

Table 3. Exponential infectious period without latent period.
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Gamma distributed infectious period, variance/mean ratio =2
R0 = 2, θ = 0.5, ρ = 0.719/µ R0 = 3, θ = 0.5, ρ = 1.5/µ
v Rc(ρ) η ρ′/ρ v Rc(ρ) η ρ′/ρ

0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.057 0.106 1.136 0.25 1.103 0.181 1.185
1.00 1.191 0.303 1.660 1.00 1.372 0.488 2.030
2.00 1.310 0.433 2.731 2.00 1.624 0.655 4.295
3.00 1.393 0.505 4.501 3.00 1.800 0.732 9.425
4.00 1.454 0.551 7.481 4.00 1.930 0.777 21.507

Gamma distributed infectious period, variance/mean ratio =0.5
R0 = 2, θ = 2, ρ = 1.236/µ R0 = 3, θ = 2, ρ = 2.372/µ
v Rc(ρ) η ρ′/ρ v Rc(ρ) η ρ′/ρ

0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.060 0.110 1.129 0.25 1.116 0.201 1.186
1.00 1.194 0.306 1.618 1.00 1.397 0.509 2.017
2.00 1.312 0.435 2.611 2.00 1.650 0.668 4.234
3.00 1.393 0.506 4.249 3.00 1.823 0.741 9.272
4.00 1.454 0.552 7.006 4.00 1.950 0.783 21.215

Table 4. Gamma distributed infectious period in four scenarios.

Gamma distributed infectious period, no latent period. The calculation of
Rv as a function of R0 and θ was given by (17) and extensively covered in the
previous section. Rv(θ;R0) according to selected values for θ and v, stratified by
R0 = 2 and R0 = 3 presented in Table 1. Table 4 add the final size η (when
applicable) and the ratio ρ′/ρ for the following two scenarios:

1. TI with larger than exponential variance at θ = 2. The threshold is calculated
as ρµ = 0.719 at R0 = 2 and ρµ = 1.5 at R0 = 3, respectively.

2. TI with smaller than exponential variance at θ = 0.5. The threshold is calcu-
lated as ρµ = 1.236 at R0 = 2 and ρµ = 2.372 at R0 = 3, respectively.

Constant latent period+constant infectious period. In this case, TE ≡ lµ
and TI ≡ µ without random variation. Although the sum of the latent and the
infectious period is constant, the sum G = TE+W is random, which is the constant
lµ plus an uniformly distributed W between 0 and µ. The mean of G is E[G] =(
l + 1

2

)
µ. The p.d.f. for G is fG(x) = 1

µ , if lµ < x ≤ (l + 1)µ and fG(x) = 0

otherwise. The threshold condition is R0e
−lρµ (1− e−ρµ) = ρµ. When l is given,

the threshold ρ is scaled according to µ−1. At the threshold ρ, Rv(ρ) is calculated
by

Rv(ρ) = R0

∫ l+1

l

[1 + (ρµ) yv]
−1/v

dy. (24)

Although
∫ l+1

l
[1 + (ρµ) yv]

−1/v
dy does not give explicit mathematical forms, it is

easy to evaluate numerically. The preserved quantity is the product ρµ. Let us
consider l = 0.5, 1 and 2 at R0 = 2 and R0 = 3. At l = 0.5, ρ = 0.714/µ when
R0 = 2 and ρ = 1.153/µ when R0 = 3; at l = 1, ρ = 0.468/µ when R0 = 2 and
ρ = 0.748/µ when R0 = 3; at l = 2, ρ = 0.279/µ when R0 = 2 and ρ = 0.443/µ
when R0 = 3. Numerical results under each of these are displayed in Table 5.
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The latent period is half the infectious period: l = 1/2
R0 = 2, l = 0.5, ρ = 0.714/µ R0 = 3, l = 0.5, ρ = 1.153/µ
v Rc(ρ) η ρ′/ρ v Rc(ρ) η ρ′/ρ

0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.057 0.105 1.097 0.25 1.136 0.229 1.156
1.00 1.184 0.294 1.463 1.00 1.428 0.533 1.842
2.00 1.298 0.421 2.209 2.00 1.676 0.680 3.685
3.00 1.378 0.493 3.444 3.00 1.844 0.748 7.968
4.00 1.438 0.540 5.537 4.00 1.967 0.788 18.345

The latent period equals to the infectious period: l = 1
R0 = 2, l = 1, ρ = 0.468/µ R0 = 3, l = 1, ρ = 0.748/µ
v Rc(ρ, ρ) η ρ′/ρ v Rc(ρ, ρ) η ρ′/ρ
0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.056 0.104 1.094 0.25 1.136 0.230 1.153
1.00 1.182 0.292 1.451 1.00 1.429 0.533 1.829
2.00 1.296 0.419 2.182 2.00 1.677 0.681 3.658
3.00 1.376 0.491 3.398 3.00 1.845 0.749 7.919
4.00 1.436 0.539 5.461 4.00 1.968 0.788 18.257

The latent period is twice the infectious period: l = 2
R0 = 2, l = 2, ρ = 0.279/µ R0 = 3, l = 2, ρ = 0.443/µ
v Rc(ρ, ρ) η ρ′/ρ v Rc(ρ, ρ) η ρ′/ρ

0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.056 0.103 1.093 0.25 1.136 0.230 1.152
1.00 1.182 0.291 1.446 1.00 1.430 0.534 1.823
2.00 1.295 0.418 2.170 2.00 1.678 0.681 3.647
3.00 1.375 0.491 3.377 3.00 1.845 0.749 7.899
4.00 1.435 0.538 5.428 4.00 1.968 0.788 18.222

Table 5. Constant latent period and constant infectious period in
six scenarios.

Exponentially distributed latent period + exponentially distributed in-
fectious period. We assume that µE = E[TE ] = lµ and µI = E[TI ] = µ, In this
special case, W is identically distributed as TI . The p.d.f. for G = TE +W is

fG(x) =

{
1

(1−l)µ

(
e−

x
µ − e−

x
lµ

)
, l 6= 1

1
µ2xe

− xµ , l = 1
.

The mean value of G is E[G] = (l + 1)µ. The threshold condition is R0

(1+lρµ)(1+ρµ) =

1. When l is given, the threshold ρ is scaled according to µ−1. At the threshold ρ,
Rv(ρ) is calculated by

Rv(ρ) =

{
R0

∫∞
0

[1 + (ρµ) yv]
−1/v

ye−ydy, l = 1
R0

(1−l)
∫∞
0

[1 + (ρµ) yv]
−1/v

(
e−y − e− 1

l y
)
dy, l 6= 1

(25)

The quantity ρµ is preserved. In addition, the relative lengths of the latent period
and the infectious period can be reversed, without changing the numerical results
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Mean latent period equals to the mean infectious period: l = 1
R0 = 2, ρ = 0.414/µ R0 = 3, ρ = 0.732/µ

v Rc(ρ) η ρ′/ρ v Rc(ρ) η ρ′/ρ
0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.059 0.110 1.116 0.25 1.126 0.215 1.174
1.00 1.191 0.303 1.548 1.00 1.413 0.521 1.930
2.00 1.307 0.430 2.414 2.00 1.663 0.674 3.923
3.00 1.387 0.501 3.831 3.00 1.833 0.745 8.463
4.00 1.447 0.547 6.209 4.00 1.958 0.785 19.310

Either µE = µ, µI = 2µ or µE = 2µ, µI = µ
R0 = 2, ρ = 0.281/µ R0 = 3, ρ = 0.5/µ

v Rc(ρ, ρ) η ρ′/ρ v Rc(ρ, ρ) η ρ′/ρ
0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.059 0.109 1.117 0.25 1.124 0.213 1.174
1.00 1.191 0.302 1.552 1.00 1.410 0.519 1.931
2.00 1.307 0.430 2.425 2.00 1.660 0.673 3.926
3.00 1.387 0.501 3.851 3.00 1.831 0.744 8.463
4.00 1.448 0.547 6.242 4.00 1.956 0.784 19.298

Table 6. Exponentially distributed latent period and exponen-
tially distributed infectious period.

for Rv(ρ) in (25). In other words, the re-parametrizations{
µE = lµ, l > 0
µI = µ

and

{
µE = µ,
µI = lµ, l > 0

give identical results. When l = 1, the product ρµ satisfies R0 = (1 + ρµ) (1 + ρµ) ,
such that ρ = 0.414/µ when R0 = 2 and ρ = 0.732/µ when R0 = 3. If either
µE = µ, µI = 2µ or µE = 2µ, µI = µ, ρµ satisfies R0 = (1 + 2ρµ) (1 + ρµ) , such
that ρ = 0.281/µ when R0 = 2 and ρ = 0.5/µ when R0 = 3. Thus numerical values
for Rv(ρ) are identical when the mean latent period is half of that of the infectious
period, and when the mean latent period is twice as long as the mean infectious
period. Results are presented in Table 6.

Constant latent period+exponentially distributed infectious period. The
mean value for G = TE +W is E[G] = (l + 1)µ with p.d.f.

fG(x) =

{
0 if x ≤ lµ
1
µe
− x−lµµ if lµ < x

.

The Laplace transform for G is
∫∞
0
e−sxfG(x)dx = e−lsµ (1 + sµ)

−1
. The threshold

condition is R0e
−lρµ = 1 + ρµ. When l is given, ρ is scaled according to µ−1. Let

us consider l = 0.5, 1 and 2 at R0 = 2 and R0 = 3. At l = 0.5, ρ = 0.53249/µ
at R0 = 2 at ρ = 0.90659/µ at R0 = 3; at l = 1, ρ = 0.3748/µ at R0 = 2 and
ρ = 0.61764/µ at R0 = 3; at l = 2, ρ = 0.2393/µ at R0 = 2 and ρ = 0.386/µ at
R0 = 3. At the threshold ρ, Rv(ρ) is calculated by

Rv(ρ) = R0

(∫ ∞
l

[1 + (ρµ) yv]
−1/v

e−(y−l)dy

)
. (26)
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The latent period is half the infectious period: l = 1/2
R0 = 2, ρ = 0.53249/µ R0 = 3, ρ = 0.90659/µ

v Rc(ρ) η ρ′/ρ v Rc(ρ) η ρ′/ρ
0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.057 0.106 1.106 0.25 1.127 0.216 1.160
1.00 1.186 0.296 1.501 1.00 1.413 0.521 1.855
2.00 1.301 0.424 2.289 2.00 1.661 0.673 3.701
3.00 1.381 0.495 3.581 3.00 1.831 0.744 7.953
4.00 1.441 0.542 5.757 4.00 1.956 0.784 18.210

The latent period equals to the infectious period: l = 1
R0 = 2, ρ = 0.3748/µ R0 = 3, , ρ = 0.61764/µ

v Rc(ρ, ρ) η ρ′/ρ v Rc(ρ, ρ) η ρ′/ρ
0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.057 0.105 1.100 0.25 1.131 0.223 1.156
1.00 1.184 0.294 1.476 1.00 1.421 0.527 1.840
2.00 1.298 0.421 2.232 2.00 1.669 0.6769 3.673
3.00 1.378 0.493 3.482 3.00 1.838 0.746 7.921
4.00 1.438 0.540 5.596 4.00 1.962 0.786 18.201

The latent period is twice the infectious period: l = 2
R0 = 2, ρ = 0.2393/µ R0 = 3, ρ = 0.386/µ.

v Rc(ρ, ρ) η ρ′/ρ v Rc(ρ, ρ) η ρ′/ρ
0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.056 0.104 1.096 0.25 1.134 0.227. 1.154
1.00 1.183 0.292 1.458 1.00 1.426 0.531 1.831
2.00 1.297 0.420 2.196 2.00 1.674 0.679 3.658
3.00 1.377 0.492 3.421 3.00 1.842 0.748 7.909
4.00 1.437 0.539 5.498 4.00 1.966 0.787 18.215

Table 7. Constant latent period and exponentially distributed in-
fectious period.

The preserved quantity is ρµ. Results are given in Table 7.

Exponentially distributed latent period + constant infectious period. In
this setting, G = TE +W has the mean E[G] =

(
l + 1

2

)
µ with p.d.f.

fG(x) =

{
1
µ

(
1− e−x/lµ

)
, x ≤ µ

1
µe
−x/lµ(e1/l − 1), x > µ

.

The Laplace transform is L[fG](s) = L[fE ](s)L[fW ](s) = 1
1+lµs

1−e−sµ
sµ . The thresh-

old condition is R0 (1− e−ρµ) = (1 + lρµ) ρµ. Rv(ρ) is calculated by

Rv(ρ) = R0


∫ 1

0
[1 + (ρµ) yv]

−1/v
dy

+e
1
l

∫∞
1

[1 + (ρµ) yv]
−1/v

e−y/ldy

−
∫∞
0

[1 + (ρµ) yv]
−1/v

e−y/ldy

 . (27)

The preserved quantity is ρµ. At l = 0.5, ρ = 0.7788/µ when R0 = 2 and ρ =
0.1325/µ whenR0 = 3; at l = 1, ρ = 0.5432/µ when R0 = 2 and ρ = 0.9426/µ when
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The latent period is half the infectious period: l = 1/2
R0 = 2, ρ = 0.7788/µ R0 = 3, ρ = 0.1325/µ

v Rc(ρ) η ρ′/ρ v Rc(ρ) η ρ′/ρ
0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.059 0.109 1.109 0.25 1.131 0.222 1.169
1.00 1.189 0.300 1.517 1.00 1.422 0.528 1.907
2.00 1.304 0.427 2.340 2.00 1.671 0.678 3.865
3.00 1.385 0.499 3.694 3.00 1.840 0.747 8.351
4.00 1.445 0.545 5.972 4.00 1.964 0.787 19.123

The latent period equals to the infectious period: l = 1
R0 = 2, ρ = 0.5432/µ R0 = 3, , ρ = 0.9426/µ

v Rc(ρ, ρ) η ρ′/ρ v Rc(ρ, ρ) η ρ′/ρ
0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.058 0.108 1.112 0.25 1.127 0.216 1.168
1.00 1.189 0.300 1.528 1.00 1.414 0.522 1.903
2.00 1.304 0.427 2.362 2.00 1.664 0.674 3.849
3.00 1.385 0.499 3.731 3.00 1.834 0.745 8.298
4.00 1.445 0.545 6.030 4.00 1.958 0.785 18.965

The latent period is twice the infectious period: l = 2
R0 = 2, ρ = 0.3455/µ R0 = 3, ρ = 0.6186/µ

v Rc(ρ, ρ) η ρ′/ρ v Rc(ρ, ρ) η ρ′/ρ
0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.25 1.058 0.108 1.116 0.25 1.122 0.209 1.170
1.00 1.189 0.300 1.548 1.00 1.405 0.515 1.910
2.00 1.305 0.428 2.410 2.00 1.655 0.670 3.860
3.00 1.386 0.500 3.816 3.00 1.826 0.742 8.301
4.00 1.446 0.546 6.173 4.00 1.951 0.783 18.915

Table 8. Exponentially distributed latent period and constant in-
fectious period.

R0 = 3; at l = 2, ρ = 0.3455/µ when R0 = 2 and ρ = 0.6186/µ when R0 = 3.
Results are given in Table 8.
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