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Abstract. Tuberculosis (TB) is returning to be a worldwide global public

health threat. It is estimated that 9.6 million cases occurred in 2014, of which
just two-thirds notified to public health authorities. The “missing cases” con-

stitute a severe challenge for TB transmission control. TB is a severe disease in

India, while, worldwide, the WHO estimates that one third of the entire world
population is infected.

Nowadays, incidence estimation relies increasingly more on notifications of

new cases from routine surveillance. There is an urgent need for better esti-
mates of the load of TB, in high-burden settings. We developed a simple model

of TB transmission dynamics, using a dynamical system model, consisting of

six classes of individuals. It contains the current medical epidemiologists’ un-
derstanding of the spread of the Mycobacterium tuberculosis in humans, which

is substantiated by field observations at the district level in India. The model

incorporates the treatment options provided by the public and private sectors
in India. Mathematically, an interesting feature of the system is that it exhibits

a backward, or subcritical, bifurcation.

One of the results of the investigation shows that the discrepancy between
the diagnosis rates of the public and private sector does not seem to be the cause

of the endemicity of the disease, and, unfortunately, even if they reached 100%
of correct diagnosis, this would not be enough to achieve disease eradication.

Several other approaches have been attempted on the basis of this model to

indicate possible strategies that may lead to disease eradication, but the rather
sad conclusion is that they unfortunately do not appear viable in practice.

1. Background. Tuberculosis (TB) is an infectious disease caused by the bac-
terium Mycobacterium Tuberculosis, which typically affects lungs (known as pul-
monary TB of PTB) and that mostly occurs in adults, i.e. in individuals above 14
years of age, but could also affect other parts of body (known as extra-pulmonary
TB or EPTB). Tuberculosis is one of the leading causes of death worldwide after
HIV and remains a major public threat in many countries. An estimate shows that
globally about one-third of the population is infected with TB bacteria. The global
incidence of all forms of TB cases during 2008 was estimated to be 9.4 million, at
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the rate of 139/100,000 population and in 2014 there were an estimated 9.6 million
incident cases of TB, which is equivalent to 130/100,000 population.

In this paper we present a model for the disease situation in India, one of the
countries in which the disease is endemic. This work is an extension of previous
results, [3,15,18] and in particular of the work in progress [19], in that we account for
the diagnostic system to be partioned into the public and private sectors, contrary
to what was assumed in the earlier works.

2. Motivation. In India, the tuberculosis situation is characterized by high preva-
lence (total number of TB cases over a period of one year) and incidence (new TB
cases over a period of one year) of disease or active TB (when the individual is in-
fectious and transmits bacteria to others) and high rate of transmission of infection
(the latent TB-individual is infected with TB bacteria but cannot transmit them
to others; also, in this situation, bacteria remain in the dormant state). Primary
surveys show that about 30% - 50% of India population is latently infected. This
means that people have been infected by TB bacteria but are not ill with the disease
and do not transmit it but may become infectious in the future.

The countrywide National Tuberculosis Program (NTP) to control TB was origi-
nally undertaken in 1962, but it did not achieve the goal of disease burden reduction.
The Government of India has intensified anti-tuberculosis activities by implement-
ing the DOTS strategy under the Revised National Tuberculosis Control Program
(RNTCP) since 1998. DOTS is the WHO recommended treatment strategy to cure
TB. The 2015 TB statistics show that the incidence rate is 217 [112-315] per thou-
sand individuals in the population [16] and the prevalence rate estimate for the year
2014 is 195 [131-271] per 100,000 individuals in the population, [17]. The imple-
mentation of DOTS across the world has shown a decline of 1.5% in incidence over
the past decade. In the new 2016-2020 Global Plan to end TB, “The Paradigm
Shift”, one of the targets is to achieve a 10% annual decline in TB incidence. The
question of resistance to treatment and reactivation has been addressed in [13,14].

By formulating a model and analysing it, the objective of this paper is to give
some estimates of the crucial parameters so that acting on these parameters may
help in achieving the eradication of TB. These results could help in defining polices
to bring down the TB burden in India. To achieve these goals the need for modelling
is evident.

As it will become clear in the following sections, there is a discrepancy between
the rates at which TB is diagnosed between the public and the private sectors.
While one would expect the latter to be more efficient, and therefore to achieve a
higher diagnosis rate, in fact exactly the opposite occurs. One highly improbable
possibility is that the equipment or the doctors in the private sector is less efficient
than in the public one. Another alternative considers instead psychologic reasons:
doctors would be reluctant to notify paying patients that they have been exposed
to the disease or maybe are even asymptomatic disease-carriers. At this point,
independently of the reason, the question arises whether this diagnosis failure rate
contributes in a substantial way to the endemicity of the disease.

On the basis of the above discussion, we would like then to address two main
questions: namely whether the somewhat surprising difference in the diagnosis rates
of the public and private sector makes a relevant difference for the disease eradica-
tion, and whether this eradication is at all possible.
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3. The model assumptions. The flow diagram in Figure 1 below corresponds to
the understanding among epidemiologists in India of how a susceptible person in a
population may become infected and infectious, move through treatment, recover
and then possibly become infectious again. This provides the road map for writing
the mathematical model for TB. In India, the healthcare sector is segregated into
two sectors: the public one (i.e. government run hospitals) and the private one
(clinics and/or hospitals run by private practitioners). Research shows that diag-
nosis and treatment in the public sector has a larger success rate in comparison to
seeking care in the private sector. But, unfortunately, due to different reasons TB
patients tend to seek care in private sector clinics/hospitals. TB spread is deter-
mined largely by the nature of interaction of patients with active TB with the rest
of the population.

We assume that the total human population is N(t). This population is divided
into six classes consisting of susceptible S(t), latently-infected L1(t), latent but
recovered L2(t), the infectious or diseased population D(t), population treated in
public sector T1(t) and lastly the population treated in private sector T2(t). Note
that the L2 individuals are cured (recovered) after completing six-months of anti-
TB treatment (ATT). These cured individuals remain latent as TB bacteria may
remain dormant in the host body. Thus

N(t) = S(t) + L1(t) + L2(t) +D(t) + T1(t) + T2(t). (1)

For convenience we omit the explicit dependence on time in these population classes.
The model, given by equations (2) below, assumes standard incidence between

the diseased and susceptible population and mass action interaction between the
latent but recovered L2 individuals and diseased populations. A fraction σ of the
latent persons exposed to infection L1 rapidly moves to the infectious/diseased
state D, because the disease progresses spontaneously to the virulent form. The
rest (1 − σ) remain latently infected (L1) for a long period of time. In the model
we have considered only endogenous reactivation which means that the TB bacteria
which remain dormant have now become active and thus the individual becomes
infectious. Thus an L1 individual becomes diseased only by reactivation. Also, it
is known that the relapse to the infectious state (D) from the latent state (L2) is
enabled by contact with an infectious individual. Thus recovered individuals, L2,
become diseased by re-infection. This can only happen after interacting with the
diseased population, D. Therefore, we have considered mass-action of L2 and D
individuals to model these interactions and thus to represent the re-infection process
of the L2 class.

Further, note that the individuals under treatment cannot infect the suceptibles
and recovered populations, since the TB bacterium becomes inactive already in the
first few weeks of the treatment. Also, other safety measures, like wearing masks,
reduce the chances of transmitting disease early in the treatment. Therefore, in the
model we have not assumed transmission of disease from individuals undergoing
treatment i.e. T1 and T2.

The parameter β is reported by epidemiologists as the number of people infected
by one infected person per year. Usually people who are in class D show symptoms
and seek treatment. The rate at which treatment is sought from public clinics is ν1
and from private clinics is ν2. Not all diseased individuals are successfully treated.
Those seeking treatment from the public and the private sectors remain diseased at
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rates µ12 and µ22 respectively. This happens for several reasons including noncom-
pliance of drug regimen, drug resistance or other health complications. Recovery
after treatment occurs at rates µ11 and µ21 from the public and the private sector,
respectively. Recovered individuals are considered latently infected as the TB bacilli
remain in their lungs. So these fall into the class L2 and are more likely to relapse
into the diseased (D) class than those in class L1. The progression to diseased state
from the L1 class occurs at rate φ1. The progression rate to the diseased state from
the L2 class is φ2 with φ2 > φ1. In India 40% of the population lies in classes L1

and L2, with 1% of the population being added every year.
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Figure 1. Diagram showing the flow of population through 6 dif-
ferent possible population classes

4. The mathematical model. Recalling (1) and using standard incidence for
modeling the disease spread among susceptibles and diseased, as explained in the
previous section, we have

dS

dt
= A− βSD

N
− α0S (2)

dL1

dt
= (1− σ)β

SD

N
− α0L1 − φ1L1

dD

dt
= σβ

SD

N
− α2D + φ1L1 + φ2L2D + (µ12T1 + µ22T2)− (ν1 + ν2)D
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dT1
dt

= ν1D − (α3 + µ11 + µ12)T1

dT2
dt

= ν2D − (α4 + µ21 + µ22)T2

dL2

dt
= µ11T1 + µ21T2 − α1L2 − φ2L2D

For later purposes, we give here the Jacobian of (2)

J =



J11 β
SD

N2
β
S

N

(
D

N
− 1

)
β
SD

N2
β
SD

N2
β
SD

N2

J21 J22 J23 J24 J25 J26
J31 J32 J33 J34 J35 J36
0 0 ν1 J44 0 0
0 0 ν2 0 J55 0
0 0 −φ2D µ11 µ21 J66


(3)

with

J11 = β
D

N

(
S

N
− 1

)
− α0, J21 = (1− σ)β

D

N

(
1− S

N

)
,

J22 = −(1− σ)β
SD

N2
− (α0 + φ1) , J23 = J24 = J25 = J26 = −(1− σ)β

SD

N2
,

J31 = σβ
D

N

(
1− S

N

)
, J32 = φ1 − σβ

SD

N2
,

J33 = σβ
S

N

(
1− D

N

)
+ φ2L2 − (ν1 + ν2 + α2), J34 = µ12 − σβ

SD

N2
,

J35 = µ22 − σβ
SD

N2
, J36 = φ2D − σβ

SD

N2
, J44 = −(α3 + µ11 + µ12),

J55 = −(α4 + µ21 + µ22), J66 = −(α1 + φ2D).

5. Basic reproduction number. It is easily seen that there are only two possible
equilibria, as all other combinations of population values lead to some inconsistency
in the solution of the equilibrium system.

The disease-free equilibrium (DFE) E0 = (S0, 0, 0, 0, 0, 0) is easily assessed, the
value of susceptibles coming from the first equilibrium equation of (2), S0 = Aα−10 ,
with all other populations vanishing. Then there is possibly the coexistence equi-
librium E∗ = (S∗, L∗1, D

∗, T ∗1 , T
∗
2 , L

∗
2), which will be discussed later.

Note that presently there are no available data on the value of R0 for TB in
India. We thus calculate the basic reproduction number R0 as the spectral radius
of next generation matrix [30].

There are two infected classes L1 and D, so evaluating the gains and losses of
each such compartment, we have:


New infections, i.e. Gains to L1

New infections, i.e. Gains to D
Losses from L1

Losses from D

 =


(1− σ)β

SD

N

σβ
SD

N
+ φ2L2D + φ1L1

(α0 + φ1)L1

(α2 + ν1 + ν2)D − (µ12T1 + µ22T2)


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By suitably taking partial derivatives, we find

F =


∂

∂L1

[
(1− σ)β

SD

N

]
∂

∂D

[
(1− σ)β

SD

N

]
∂

∂L1

(
σβ

SD

N
+ φ2L2D

)
∂

∂D

(
σβ

SD

N
+ φ2L2D

)


=

 −(1− σ)β
SD

N2
(1− σ)β

S

N
− (1− σ)β

SD

N2

φ1 − σβ
SD

N2
σβ

S

N
− σβSD

N2
+ φ2L2

 ,
V =

 ∂

∂L1
((α0 + φ1)L1)

∂

∂D
((α0 + φ1)L1)

V21 V22

 =

[
α0 + α1 0

0 α2 + ν1 + ν2

]
,

with

V21 =
∂

∂L1
((α2 + ν1 + ν2)D − (µ12T1 + µ22T2))

V22 =
∂

∂D
((α2 + ν1 + ν2)D − (µ12T1 + µ22T2)).

Evaluation at E0 then gives

FE0 =

[
0 (1− σ)β
φ1 σβ

]
, VE0 =

[
α0 + α1 0

0 α2 + ν1 + ν2

]
so that

V −1E0
=


1

α0 + φ1
0

0
1

α2 + ν1 + ν2

 ,

G = FE0
V −1E0

=


0

(1− σ)β

α2 + ν1 + ν2

φ1
α0 + φ1

σβ

α2 + ν1 + ν2

 .
It follows that the dominant eigenvalue of G gives the value of the basic reproduction
number

R0 =
1

2

{
σβ

α2 + ν1 + ν2
+

[
σ2β2

(α2 + ν1 + ν2)2
+ 4

(1− σ)βφ1
(α0 + φ1)(α2 + ν1 + ν2)

] 1
2

}
.

With the values reported in Table 1, it appears that R0 ≈ 1.8414, a value that indi-
cates that the disease is endemic, and this value of the basic reproduction number
is also not too close to the eradication threshold.

To gain more insight, we provide a sensitivity analysis of R0 in terms of the most
important parameters of the model. Since the basic reproduction number depends
on six them, we choose to fix β as a reference. In each parameter space given by β
coupled with one of the remaining parameters, namely σ, φ1, α0, α2, ν1 and above
all ν2, we plot the surface R0 and the contour line corresponding to the threshold
R0 = 1. The resulting surfaces and contour curves are plotted in Figures 2-7.

Recall that to achieve disease eradication, a value of R0 < 1 must necessarily
be attained. We thus concentrate now on possible means to achieve this goal.
The following discussion aims at ascertaining whether acting on each parameter
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that appears in the expression for R0, a sufficient reduction of this threshold can
at all be obtained. This could perhaps lead to indications for suitable policies to
be pursued by the authorities in order to curb the burden of this endemic and
pernicious disease.

From Figure 2 it appears that from the current situation, variations in σ will not
lead to any improvement, in fact if this parameter is enlarged, the endemicity of
the disease will be more pronounced, while even if it is reduced to values very close
to zero, the disease is not going to disappear, without a simultaneous reduction of
the transmission rate β. A similar situation appears from Figure 3. The system
behavior is sensitive to the parameter φ1, in that a relatively small reduction of
the latter induces disease eradication. But this parameter is an intrinsic parameter
of the disease, the spontaneous progression to the active form from an unknown
latently infected individual. It therefore appears that acting on this parameter in
practice is extremely difficult if at all possible.

Sensitivity with respect to the diagnosis and treatment rates is shown in Figures
4 and 5. The same result is obtained in Figure 7, by an increased diseased-related
mortality, which however goes in the opposite direction of the goal of saving lives.
Incidentally, this is an example of what in ecology and epidemiology is sometimes
found, that something harmful at the individual level is beneficial for the community,
and vice versa. Such an observation is found for instance in beehives, [2]. It appears
that an increase in the identification of the cases and their cure will help in reducing
the endemicity range of the disease. Clearly Figure 6 shows that an increase in the
natural death rate will contribute also to disease eradication, but this is certainly
not a practical recommendation to follow.

In Figure 8 we observe that changes in φ2 are irrelevant on the value of the basic
reproduction number. This however is to be expected, in that φ2 does not appear
in the definition of R0.

Finally, in Figure 9 we plot the value of the basic reproduction number as function
of the treatment rates in both public and private sectors. The findings indicate
that the difference in the public and private sectors diagnosis rate is not essential
for eradicating the disease. In fact, even if they were 100%, the plot indicates that
the surface for R0 would still be above the critical threshold 1, so that the disease
could not be eradicated.

6. Nonlinear stability of the disease-free equilibrium. We can assess the as-
ymptotic stability of the disease-free equilibrium E0 by means of a suitable nonlinear
Lyapunov function. As candidate, choose:

L1 = aS0

[
S − S0

S0
− ln

(
1 +

S − S0

S0

)]
+ bL1 + cD + eT1 + fT2 + gL2.

Note that L1 is nonnegative and L1(E0) = 0. Differentiation with respect to time
and use of (2), with N0 = S0, leads to

L′1 = −aA (S − S0)2

SS0
+ β

(S − S0)D

N
[b(1− σ)− a+ cσ]

+β
D

N
(N −N0)S0[b(1− σ) + cσ] + L1[cφ1 − b(α0 + φ1)] +DL2(c− g)φ2

+D

[
β
S0

N0
[b(1− σ) + cσ] + eν1 + fν2 − c(α2 + ν1 + ν2)

]
− α1gL2

+T1[cµ12 − e(α3 + µ11 + µ12) + gµ11] + T2[cµ22 − f(α4 + µ21 + µ12) + gµ21].
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Taking then c = g and a = b(1 − σ) + cσ, since N − N0 ≤ N , we find the upper
bound

L′1 ≤ −aA
(S − S0)2

SS0
+ L1[cφ1 − b(α0 + φ1)]

+D

[
aβS0 + aβ

S0

N0
+ eν1 + fν2 − c(α2 + ν1 + ν2)

]
− α1cL2

+T1[cµ12 − e(α3 + µ11 + µ12) + cµ11] + T2[cµ22 − f(α4 + µ21 + µ12) + cµ21].

Finally imposing the following inequalities

cφ1 < b(α0 + φ1), aβS0

(
1 +

1

N0

)
+ eν1 + fν2 < c(α2 + ν1 + ν2),

c(µ12 + µ11) < e(α3 + µ11 + µ12), c(µ22 + µ21) < f(α4 + µ21 + µ22),

it follows that

L′1 ≤ −aA
(S − S0)2

SS0
− α1cL2 ≤ 0

showing that it is nonpositive definite. This is not enough to ensure global stability.
Rather, it could be the starting point to assess the largest domain of attraction of
the DFE. Following [20], one can search for the largest invariant subset in R6 for

which L′1 = 0, i.e. S = S̃ and L2 = 0. In principle it can be obtained by making
such substitutions into the right hand side of (2) and solving the resulting system.
This appears to be rather complicated, so that we will only investigate the situation
via numerical methods below.

7. Local stability of the disease-free equilibrium and backward bifurca-
tion. At the disease-free equilibrium the Jacobian (3) has immediately three easy
eigenvalues −α0 < 0, −(α0 + φ1) < 0, −α1 < 0. The remaining ones, that charac-
terize the stability of this equilibrium, are those of the submatrix

J0 = J (E0) =

 σβ − (ν1 + ν2 + α2) µ12 µ22

ν1 −(α3 + µ11 + µ12) 0
ν2 0 −(α4 + µ21 + µ22)


(4)

We now investigate numerically the disease-free equilibrium and the endemic one.
Departing from the Table values only for the new individuals recruitment rate,
setting it to the value A = 100, for which the susceptibles at disease-free equilibrium
would attain the value S0 = 14085.50704 we find that R0 = 1.8414 > 1, so that the
disease is endemic. However, the computation of the eigenvalues shows that they
are negative, −1.5390, −0.7265, −1.0528 and this is further convalidated by the
Routh-Hurwitz conditions at the DFE. Denoting by M2 the sum of the principal
minors of order 2 of J0, they are

−tr (J0) = 3.3184 > 0, −det (J0) = 1.1772 > 0,

−tr (J0)M2 (J0)− det (J0) = 10.4481 > 0.

This shows that the DFE is stable, therefore giving rise to a bistability situation and
to a backward, or subcritical, bifurcation, see [29] and [12] page 28. We investigated
numerically the possibility of attaining the DFE, searching the initial values space
for values that upon integration would lead to the DFE. In fact, this occurs, but
for unrealistically small values of the diseased classes, namely L1(0) = D(0) =
10−15, but the value for the susceptibles can be large, reasonably far away from the
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equilibrium value, S(0) = S0 + 9950, while the remaining initial conditions have
always been chosen as

T1(0) = 0.49D(0), T2(0) = 0.41D(0), L2(0) = 0.85T1(0) + 0.51T2(0).

Any increase in the values of L1(0), D(0) or S(0) given above would instead make
the system tend to the endemic equilibrium.

We then tried to study this situation as β decreases. For β = 2.3, we find
R0 = 1.2044 but the eigenvalues at DFE are still negative, −1.5623, −0.7476,
−1.0535, so that this equilibrium is stable. The initial conditions leading to the
DFE can now be chosen a bit larger, namely L1(0) = D(0) = 10−12 while the
choice for the susceptibles is now much wider, up to S(0) = S0 + 179000.

A further decrease, β = 1.5, gives now R0 = 0.97045, for which apparently
the disease would be eradicated. But again, in view of the backward bifurcation,
the endemic equilibrium persists and is attained for the following choice of initial
conditions

S(0) = S0 + 180000 = 194084.5070, D(0) = 0.3S(0) = 58225.3521, (5)

T1(0) = 28530.4225, T2(0) = 23872.3944,

L2(0) = 36425.7803, L1(0) = .8S(0) = 155267.6056.

It is plotted in Figure 10.
A similar situation arises for β = 0.9, giving R0 = 0.7501, but the endemic equi-

librium is found for the same initial conditions (5), see Figure 11. Here susceptibles
more than double the value of Fig 10, latently infected do not change sensibly,
infected are found at a smaller steady level.

For β = 0.6, we find R0 = 0.6116, in this case using the initial conditions (5),
the endemic equilibrium seems now to have disappeared, and the same holds for
β = 0.4, for which R0 = 0.4988.

8. Coexistence equilibrium analysis. Although the result of the previous sec-
tion indicates that the disease could in principle be eradicated, in addition, we could
now pursue an alternative road for trying to curb it.

First of all, we investigate whether the the coexistence equilibrium can be assessed
analytically. We solve the fourth and the fifth equilibrium equations in terms of D
and solve the sixth one for L2, to get T1 = Dη1, T2 = Dη2 with

η1 =
ν1

α3 + µ11 + µ12
, η2 =

ν2
α4 + µ21 + µ22

, L2 =
µ11T1 + µ21T2
α1 + φ2D

. (6)

Using the first two above equations in the last one, we find L2 in terms of D,

L2 =
D

α1 + φ2D

[
µ11ν1

α3 + µ11 + µ12
+

µ21ν2
α4 + µ21 + µ22

]
=
D(µ11η1 + µ21η2)

α1 + φ2D
. (7)

Taking the linear combination of the first two equilibrium equations with weights
1− σ and 1 respectively, we find

L1 = (1− σ)
A− α0S

α0 + φ1
. (8)

Adding the first, with weight σ, and the third equilibrium equations, setting Ω =
µ12η1 + µ22η2 − α2 − ν1 − ν2 ∈ R and using (7), we obtain

σA− α0σS + φ1L1 + φ2D
2µ11η1 + µ21η2

α1 + φ2D
+DΩ = 0. (9)
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Rearranging (9) and letting

W = Ω + µ11η1 + µ21η2 ∈ R, θ =
σα0 + φ1
α0 + φ1

> 0,

leads to

σAα1 + φ1α1L1 +D(σAφ2 + Ωα1) + φ1φ2L1D + φ2D
2W = α0σS(α1 + φ2D). (10)

Use of (8) into (10) gives

Φ(S,D) := θAα1 − α0α1θS +D(θAφ2 + Ωα1)− α0φ2θSD + φ2D
2W = 0. (11)

Finally, the first equilibrium equation can be rewritten as (A− α0S)[S +L1 +D+
T1 +T2 +L2]−βSD = 0 from which, substituting into it (6), (8) and (7), we obtain

Ψ(S,D) := −βSD (12)

+(A− α0S)

[
S + (1− σ)

A− α0S

α0 + φ1
+D(η1 + η2 + 1) +D

µ11η1 + µ21η2
α1 + φ2D

]
= 0.

The curve obtained by taking the common denominator in (12) and setting the
numerator to zero is a third order implicit function and therefore very difficult to
study, even numerically. The values of the diseased and susceptible populations at
the coexistence equilibrium would be obtained by the intersection of Φ and Ψ in
the first quadrant of the S−D plane, while the remaining populations would come
from (6), (7) and (8).

The mathematical problem appears to be a hard task. For this reason, in or-
der to gain anyway some insight into the actual situation, we make a very strong
simplifying assumption. The mathematical difficulty arises from the denominator
in the last fraction of (12). To simplify it, we assume φ2 = 0, which implies that
there are no relapses after treatment. As said, this is very unlikely, but we use it as
a probe into the problem.

In view of the simplification, the equations for Φ and Ψ become easier to handle,
in fact the first one is a straight line and the second one a conic section, namely:

Φs(S,D) := θA− α0θS +DΩ = 0, (13)

Ψs(S,D) := ρA2 + νAS + πAD − (α0π + β)SD − α0θS
2 = 0, (14)

where

ρ =
1− σ
α0 + φ1

> 0, ν =
2α0σ − α0 + φ1

α0 + φ1
∈ R, π = η1+η2+1+

µ11η1 + µ21η2
α1

> 0.

Note that the straight line Φs(S,D) in the S−D plane has slope and height at the
origin of uncertain signs, α0θΩ

−1 ∈ R, AθΩ−1 ∈ R. But its intercept with the D
axis is positive, S0 = Aα−10 > 0. Now Ψs(S,D) is a nondegenerate curve if its first
invariant does not vanish, a condition that in fact we assume:

1

4
A2
[
α0θπ

2 − (α0π + β)πν − (α0π + β)2ρ
]
6= 0.

In particular it is a hyperbola, since its second invariant is negative, −4−1(α0π +
β)2 < 0. We study it by intersecting it with vertical lines, S = k. Its intersections
with these lines are the points

D =
α0θk

2 − kνA− ρA2

Aπ − (α0π + β)k
.

The latter are feasible when positive, which shows that there is a feasible branch

of Ψs(S,D) in between the values S∗ and Ŝ = k̂ = Aπ(α0π + β)−1. Here S∗ =
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S± = k± = A(2α0θ)
−1[ν ± (ν2 + 4α0ρθ)

1
2 ], where the plus sign is taken when ν > 0

since then S∗ = S+ > 0 > S− and the minus sign whenever ν < 0, since in such
case S∗ = S− > 0 > S+. This situation leads to two possible configurations. Thus,

depending on whether S∗ > Ŝ or Ŝ > S∗, Ψs(S,D) has a branch raising up to

+∞ at S = Ŝ from the zero at S = S∗, in the former case, or conversely decaying

from +∞ at S = Ŝ to zero at S = S∗ in the second one. An intersection with
Φs(S,D) cannot occur for sure if the zero S0 of this straight line, whenever its slope
is positive, lies beyond the zero of Ψs(S,D), or conversely if the slope is negative,

namely either for S0 > max{S∗, Ŝ}, Ω > 0 or for S0 < min{S∗, Ŝ}, Ω < 0. In our
case, taking again A = 30, we find Ω = −1.0754 < 0, S∗ = 4225.352112676057

Ŝ = 213.0447, S0 = 4225.352112676056 < S∗. We would need S0 < 213.0447 which
is not true, indicating that the intersection exists. In fact, in Figure 12 we plot the
situation and discover that in fact there are 2 intersections. In order to eradicate
the disease, one could try to make them vanish, through a saddle-node bifurcation,
by influencing the slope of the straight line m = α0θΩ

−1 < 0, but that cannot
certainly be achieved by reducing the natural mortality rate α0. An increase of m
is then necessary so that the intersections do not occur. The same result can be
achieved by lowering the height at the origin, Aθ(−Ω)−1 > 0. A decrease in the
recruitment rate A could be viable, but highly improbable. One can try then to
reduce θ or to increase −Ω. For the former, one could try to reduce σ, but that at
most gives θ|σ=0 = φ1(α0 + φ1)−2, which might not be enough; on the other hand,
observe that

dθ

dφ1
= α0

1− σ
(α0 + φ1)2

> 0,

implying that we must reduce φ1. The second alternative it to increase −Ω =
α2 + ν1 + ν2 − µ12η1 − µ22η2, the maximum being of course −Ω = 2 + α2, if the
diagnosis rates achieve 100% of precision and the failure rates after treatment vanish
altogether.

Disease eradication can in fact be achieved for an almost extreme case, taking
φ1 = 0.001, φ2 = 0, σ = 0, µ12 = 0, µ22 = 0, ν1 = 1, ν2 = 1 and in this case
Ω = −2.320, see left column of Figure 13. In the right column, a similar situation
occurs, for the following parameters that do not achieve the extreme values, but are
really quite close to them: φ1 = 0.001, φ2 = 0, σ = 0.01, µ12 = 0.001, µ22 = 0.001,
ν1 = .999, ν2 = .999 for which Ω = −2.316. In any case these considerations would
hold only for φ2 = 0, which is a very restrictive situation.

9. Discussion. The model that has been introduced here was meant to compare
the TB treatments performed in the public and private sectors of health care in
India. The bottom line of the results of our investigation are the considerations
that can be inferred from Fig. 9, namely that the low rate of diagnosis actually
found in the private sector, whether it be due to malpractice, poorer diagnostic
means or simply ascribed to the fact that doctors may be reluctant to let paying
patients know that they are infected, seems not to constitute the main problem in
the disease endemicity. It appears thus that even achieving 100% correct diagnosis
in both sectors would not help in eradicating the disease.

From the extensive simulations that we ran, see Figures 2-8, it appears that apart
from the disease contact rate, the effect of the other parameters affecting R0 is rather
thin and essentially negligible in the disease eradication issue. At most, changing
some of them might render the set in the parameter space where R0 < 1 smaller,
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but without a corresponding substantial change in the disease contact rate β the
critical threshold cannot be crossed. On the other hand, by drastically reducing this
parameter, the basic reproduction number can be reduced to values less than one.
In this case, however, another unexpected and unpleasant phenomenon occurs, the
onset of a backward, or subcritical, bifurcation, for which, in spite of the theoretical
result assessing the possibility of achieving disease eradication, because the system
is coming from an endemic equilibrium, it will continue on this manifold, even if
the disease-free equilibrium exists. This happens until really low values of β are
achieved, which might be unrealistic in practice.

Alternatively, for values of β that bring R0 below the critical threshold, or even
larger values of β, one could try to achieve the disease-free equilibrium by acting
on the initial conditions of the system, drastically and suddenly reducing them, so
that this change brings the system into the domain of attraction of the disease-free
equilibrium. But our experiments indicate that in order to fall into the domain
of attraction of this equilibrium, the number of infected must be so small to be
essentially unreacheable in ordinary life.

A different approach has also been attempted, namely to try to render the en-
demic equilibrium unfeasible. This approach appears to be analytically untractable,
except for the unrealistic case of no disease relapses, i.e. φ2 = 0, from the class L2 of
latent and cured individuals, and also difficult to address numerically. In principle
however this approach indicates an alternative way of fighting the disease, namely
to render the coexistence equilibrium unfeasible.

For the particular case φ2 = 0, a highly improbable situation to achieve, since
in practice it is nearly impossible to prevent relapses, the system is reduced to the
intersections of the curves (11) and (12), i.e. Φs and Ψs. The point at which they
meet provides the population values for susceptibles and diseased at the endemic
equilibrium. To attain this situation some means of rendering disease relapses after
cure impossible or negligible enough should be devised, to keep φ2 at zero or at a
very low level. Although we did not perform on this an exhaustive investigation,
nevertheless some information can be gathered. Our simulations in the previous
section indicate that disease eradication is possible but for values of the some of
the parameters that are almost extreme. This entails for instance that φ1 must be
reduced. However, this is an almost impossible task, as this parameter models the
intrinsic progress from the latently infected individuals to active disease outbreak.
In other words, even if a drug would be discovered to slow down this progression, it
would need to be administered to a set of unknown individuals, the latently infected,
or it could be given to the same set of people after their identification, following
a suitable screening, which is probably a measure that has enourmous economical
costs. The other relevant parameters are the disease diagnosis rates νi, in both
public and private sectors. These should achieve almost 100% certainty. Further,
µ1i, the relapse rates after treatment, should drop almost to zero and the proportion
of the primary latently infected progressing to the active disease stage should be
lowered too, but not that dramatically. However this last task is rather difficult,
as σ is an intrinsic disease parameter and it is difficult to act on it, even if some
drug to this effect were discovered, as this parameter pertains also to the unknown
population of the latently infected as mentioned above. Hence, also this approach
unfortunately does not appear to be viable in practice.
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The rater sad conclusion that we must draw from all these considerations is
therefore that eradicating the disease in the present state of affairs is rather difficult
if not at all impossible.
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Description Symbol Value Unit Reference
Immigration rate A 30 [21]
transmission rate β 5.31 [1, 4, 5, 7, 8]

[11, 24,25,31]
Proportion of infectious σ 0.015 pure number [6]
rapidly progressing to

active disease
Progression from latent φ1 0.02284 year−1 [9]

to diseased class
Diagnosis and ν1 0.49 year−1 [16, 17,22]
treatment rate

in the public sector
Diagnosis and ν2 0.41 year−1 [16, 17,22]
treatment rate

in the private sector
Recovery (cure) rate µ11 0.89 year−1 [16]

after treatment
in the public sector
Recovery (cure) rate µ21 0.51 year−1 [10, 27,28]

after treatment
in the public sector

Failure rate µ12 0.064 year−1 [16]
after treatment

in the private sector
Failure rate µ22 0.32 year−1 [27]

after treatment
in the private sector

Relapse from treatment φ2 0.11 year−1 [23, 26]
Natural death rate α0 0.0071 person−1 year−1 [21]
Latently infected α1 0.016 year−1 [23]

population L2

death rate
Diseased population α2 0.32 year−1 [17]

death rate (Case fatality
rate in untreated)
Population under α3 0.074 year−1 [16]

treatment death rate
in public sector

Population under α4 0.32 year−1 [27]
treatment death rate

in private sector
Table 1. Model parameters
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Figure 2. With the remaining parameter values taken from the
Table, the plot of the R0 surface as function of (β, σ) ∈ {[0, 6] ×
[0, 1]} is shown in the left frame. The countour line indicating the
domain in which R0 is larger than 1 is shown in the corresponding
right frame. Therefore the disease is endemic on the right portion
of the parameter space plot. The star denotes the situation with
these parameters as given originally in the Table.
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Figure 3. With the remaining parameter values taken from the
Table, the plot of the R0 surface as function of (β, φ1) ∈ {[0, 6] ×
[0, 1]} is shown in the left frame. The countour line indicating
the domain in which R0 is larger than 1 is blown-up and shown
for (β, φ1) ∈ {[0, 6] × [0, 0.1]} in the corresponding right frame.
Therefore the disease is endemic in the upper right corner of the
plot. The star denotes the situation with these parameters as given
originally in the Table.
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Figure 4. With the remaining parameter values taken from the
Table, the plot of the R0 surface as function of (β, ν1) ∈ {[0, 6] ×
[0, 1]} is shown in the left frame. The countour line indicating the
domain in which R0 is larger than 1 is shown in the corresponding
right frame. Therefore the disease is endemic on the right portion
of the parameter space plot. The star denotes the situation with
these parameters as given originally in the Table.
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Figure 5. With the remaining parameter values taken from the
Table, the plot of the R0 surface as function of (β, ν2) ∈ {[0, 6] ×
[0, 1]} is shown in the left frame. The countour line indicating the
domain in which R0 is larger than 1 is shown in the corresponding
right frame. Therefore the disease is endemic on the right portion
of the parameter space plot. The star denotes the situation with
these parameters as given originally in the Table.



250 SURABHI PANDEY AND EZIO VENTURINO

0

2

4

6 0

0.5

10

0.5

1

1.5

2

2.5

 α
0
 

 β 

R
0

 β 

 α
0 

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25
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Table, the plot of the R0 surface as function of (β, α0) ∈ {[0, 6] ×
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domain in whichR0 is larger than 1 is shown blown-up, for (β, α0) ∈
{[0, 6] × [0, 0.3]}, in the corresponding right frame. Therefore the
disease is endemic in the very thin strip at the bottom right corner
of the plot. The star denotes the situation with these parameters
as given originally in the Table.
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Figure 7. With the remaining parameter values taken from the
Table, the plot of the R0 surface as function of (β, α2) ∈ {[0, 6] ×
[0, 1]} is shown in the left frame. The countour line indicating the
domain in which R0 is larger than 1 is shown in the corresponding
right frame. Therefore the disease is endemic on the right portion
of the parameter space plot. The star denotes the situation with
these parameters as given originally in the Table.
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Figure 8. With the remaining parameter values taken from the
Table, the plot of the R0 surface as function of (β, φ2) ∈ {[0, 6] ×
[0, 1]} is shown in the left frame. The countour line indicating the
domain in which R0 is larger than 1 is shown in the corresponding
right frame. Therefore the disease is endemic on the right portion
of the parameter space plot. The star denotes the situation with
these parameters as given originally in the Table.
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Figure 9. With the remaining parameter values taken from the
Table, the plot of the R0 surface as function of ν1, ν2 ∈ {[0, 1] ×
[0, 1]} is shown. It is always above the level 1. Therefore the
disease remains endemic independently of the performance of the
two hospitalization sectors.
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Figure 10. Endemic equilibrium for A = 100, β = 1.5 and
with the other parameter values taken from the Table. Left frame:
susceptibles S at steady level 2100; Center frame: treated but
latently infected T1 + T2 + L2 at steady level 200; Right frame:
infected in the active stage of the disease D + L1 at steady level
2900.

Figure 11. Endemic equilibrium for A = 100, β = 0.9 and with
the parameter values taken from the Table. Left frame: suscep-
tibles S at steady level 5000; Center frame: treated but latently
infected T1 +T2 +L2 at steady level 200; Right frame: infected in
the active stage of the disease D + L1 at steady level 2200.
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Figure 12. Endemic equilibrium for φ2 = 0. The top frame
shows the 2 intersections of the straight line Φs (red) with the hy-
perbola Ψs (blue); note that the vertical line on the left represents
the vertical asymptote. The center frame is a blow up of the 2 in-
tersections closest to the vertical axis, while the bottom one shows
the intersection farther on the right.
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Figure 13. Top frame: disease eradication for φ1 = 0.001, φ2 =
0, σ = 0, µ12 = 0, µ22 = 0, ν1 = 1, ν2 = 1. The top frame
shows the plot over the whole relevant range of the straight line
Φs (red) and the hyperbola Ψs (blue), again with the vertical line
on the left representing the vertical asymptote of the latter. The
other frames are blow ups of the former. The second one from
top shows the range [2000, 3000] with no intersections, the third
one the range [3000, 4220] again with no intersections, the bottom
one contains the range [4220, 4230], with a much lower vertical
scale, where again no intersections occur. Bottom frame: disease
eradication for φ1 = 0.001, φ2 = 0, σ = 0.01, µ12 = 0.001, µ22 =
0.001, ν1 = .999, ν2 = .999 for which Ω = −2.316. The frames
contain similar information as for the left column.
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