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Abstract. This paper is dedicated to the application of two types of SEIR

models to the influenza outbreak peak prediction in Russian cities. The first
one is a continuous SEIR model described by a system of ordinary differential

equations. The second one is a discrete model formulated as a set of difference

equations, which was used in the Baroyan-Rvachev modeling framework for the
influenza outbreak prediction in the Soviet Union. The outbreak peak day and

height predictions were performed by calibrating both models to varied-size

samples of long-term data on ARI incidence in Moscow, Saint Petersburg, and
Novosibirsk. The accuracy of the modeling predictions on incomplete data was

compared with a number of other peak forecasting methods tested on the same
dataset. The drawbacks of the described prediction approach and possible ways

to overcome them are discussed.

1. Introduction. Acute respiratory infections (ARIs) are among the oldest and
the most widely spread human infectious diseases. The most notorious of them,
influenza, causes repetitive epidemic outbreaks with ARI incidence dramatically
exceeding the average seasonal level. Outbreaks of influenza result in 3 to 5 million
cases of severe illness annually worldwide, and the mortality rate is from 250 to 500
thousand individuals per year [29]. Influenza also causes an increase of heart attacks
and strokes [4], as well as other disease complications. Even during an epidemic
outbreak, only 15 to 20% of the total ARI cases are attributed to influenza [22], and
diagnosis of influenza or another acute respiratory infection with similar symptoms
is possible only through laboratory testing [3]. Due to those issues, the common
clinical diagnosis ‘influenza-like illness’ (ILI) is often used, which includes all severe
ARI cases fitting to a certain description. The criteria of ILI vary slightly in different
national healthcare systems. According to the WHO, ILI is an acute respiratory
infection with measured fever of ≥ 38 C and cough with onset within the past 10
days [30]. Although is is not completely accurate from the epidemiological point,
for the sake of simplicity we consider ‘flu’, ‘influenza’, and ‘ILI’ synonyms.

The earliest attempts of mathematical modeling of influenza-like illness outbreaks
took place in the late 1960s and this area of mathematical epidemiology is still pop-
ular today. Despite the efforts of various scientific groups to clarify the mechanism
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of flu propagation dynamics, many unresolved questions remains. Today researchers
try to enhance the descriptive abilities of their models by taking into account differ-
ent external factors, such as weather [11], [24], [31], variation of virus strains [26],
individual contact patterns, and others. A thorough review on the corresponding
research papers and the flu-related factors considered can be found in [25].

One of the particular applications of the calibrated flu dynamics models is out-
break prediction. For that purpose, in addition to the variations of classical Kermack-
McKendrick SEIR models [10], [32], other various approaches are used including
agent-based modeling [13], metapopulational modeling [7], and social media data
analysis [8], [12]. A detailed review on influenza forecasting can be found in [5].
One of the issues that the researchers face is the lack of reliable long-term flu inci-
dence data provided by well-established influenza surveillance systems. As a result,
the majority of studies are performed on data from Western Europe ([9], [27]) and
Northern America ([11], [24], [28]). However, there are several exceptions, such as
[2], where flu incidence in Chile is regarded. The use of the data from a limited
set of geographical areas sometimes brings researchers to disputable assumptions.
For instance, when flu incidence data from tropical regions became available in last
decade, it demonstrated that some well-established hypotheses on the nature of ILI
dynamics emerged from the temperate regions data have limited applicability [25].
Therefore, it is fruitful to expand the number of ILI incidence data sources.

Russia is one of the countries that can potentially contribute to the field. In-
fluenza is considered a reportable disease by the Russian healthcare. In Saint-
Petersburg (earlier Leningrad) ARI incidence has been collected since 1935, which
gives one of the longest flu surveillance periods known [15]. In 1957, the all-USSR
surveillance center was established. Its aim was to collect weekly and daily reports
on ARI incidence from the local healthcare units throughout the country, with the
number of covered cities being constantly increased over the years. The efficiency of
the Soviet system of ARI cases registration led to the possibility of predicting the flu
outbreaks in Soviet cities with a fairly high accuracy [6]. The employed model, cre-
ated by Baroyan and Rvachev, was utilized by the specialists of Research Institute
of Influenza [14] specifically for the sake of within-USSR flu propagation modeling
[1]. Later it was applied to worldwide propagation of the pandemic flu [23]. The
Baroyan-Rvachev model was a combination of the discrete Kermack-McKendrick
SEIR model (“the local model”) and a linear model of inter-city migration flows
(“the transport model”). Although the structure itself was not novel, it matched
real disease dynamics and made it possible to achieve accurate forecasts of the
starting moments and peaks of influenza outbreaks in Soviet cities. For instance,
from all the cases of epidemic outbreaks in 1970’s, the day of the outbreak start
was predicted without errors in 56.1% of cases and with a bias less than a week in
92.2% of cases, the same numbers for the day of the outbreak peak were 53.0% and
87.4% correspondingly [15].

However, from early 1980’s the Soviet modeling framework for flu forecasting
showed the signs of growing incoherence with the epidemic outbreak patterns ob-
served in Soviet cities. According to [15], its malfunction was caused by the growing
levels of herd immunity to flu due to increasing speed of its circulation around the
globe. The core idea of Baroyan-Rvachev approach was that the fraction of non-
immune individuals was the same in all Soviet cities and depended only on currently
circulating virus strain. Since herd immunity levels grow with a rate dependent from
different factors, including the structure of contact networks within an urban area,
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the aforementioned assumption is less applicable now than in Soviet times. Profes-
sor Ivannikov, who was in charge of utilizing the Soviet forecasting system, claimed
that a new model for the influenza peak prediction in Russia should be built to
provide accurate forecasts [16]. Unlike the Baroyan-Rvachev model, it should rely
heavily on the analysis of the local urban incidence data, thus making it possible
to overcome the issue of unequal herd immunity levels within the country. Never-
theless, this idea has never been tested on actual data.

In this paper, the authors aim at assessing the accuracy of the peak predictions
with the help of two different SEIR models calibrated with local incidence data,
and discussing the ways of improving it.

2. Research idea. In [17] we formulated the continuous SEIR (”Susceptible-
Exposed-Infected-Recovered“) model for flu outbreak dynamics and calibrated it
to the long-term Russian ARI incidence data. It was shown that the classical
SEIR model, without any modifications accounting for the influence of external fac-
tors, may provide a satisfactory fit for the majority of influenza outbreak incidence
datasets (the value of the coefficient of determination was R2 > 0.91 for 64 epi-
demic curves out of 67). The current paper represents the next step of the research
aimed at assessing the predictive force of the simple epidemic models for the case
of Russian ARI incidence data. Our goals were:

• to assess the possibility of accurate prediction of the epidemic outbreak peaks
in any of the Russian cities relying on the incomplete incidence data for the
current outbreak in this city only — apart from Baroyan-Rvachev approach,
where the ARI incidence in all Soviet cities along with migration flow data
was used to obtain predictions;

• to find out whether it is possible to obtain the desired accuracy without in-
corporating external factors into the model;

• to assess the number of incidence points for model calibration and, conse-
quently, the average time before the actual peak, required to obtain the accu-
rate prediction.

The particular steps we had to take to reach the aforementioned goals consisted
of the following:

• to perform the retrospective forecast of influenza dynamics in three Russian
cities (Moscow, Saint Petersburg and Novosibirsk) with the help of the SEIR
model calibrated on incomplete data using long-term incidence data from
Research Institute of Influenza;

• to assess the accuracy of the epidemic peak parameters prediction, particularly
the day of the peak and its prospected height, and its dependence on the
number of incidence points used for the model calibration.

Assuming that the accuracy of prediction may largely depend on the model serv-
ing as a core of the fitting algorithm, we have decided to employ the local submodel
of Baroyan-Rvachev modeling framework [1], [15] in addition to our continuous
SEIR model, and to compare their predictive abilities.

3. Models description.

3.1. The continuous SEIR model. For the sake of describing the dynamics of
influenza epidemic process, we have utilized a simple populational model represented
by a system of ordinary differential equations. Since the flu has an incubation
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period, and recovered individuals acquire immunity from the particular virus strain
[29], the population of an urban area under consideration is represented by set
of four groups of individuals: susceptible (vulnerable to flu infection), exposed
(asymptomatic and non-infectious), infectious (symptomatic, spreading the flu) and
removed (immune to the flu). The sizes of groups are measured in fractions of total
population N : let S be the fraction of susceptible individuals, E — the fraction of
exposed individuals, I — the fraction of infectious individuals, and R — the fraction
of removed individuals. Following [1], [23], we state that a certain fraction of the
population in every city under consideration is not vulnerable to flu. This subgroup
includes people with immunity gained from previous infections and those who are
not immune on their own but are protected by herd immunity. The fraction of
population which is vulnerable to the currently circulating flu virus strain is denoted
by α ∈ [0; 1], and the remaining population is considered immune to the infection.
The dynamics of the groups’ sizes over time are set by the following equations:

dS

dt
= −βSI, (1)

dE

dt
= βSI − γE,

dI

dt
= γE − δI,

dR

dt
= δI,

S(t0) = S0 ≥ 0, E(t0) = E0 ≥ 0, I(t0) = I0 ≥ 0,

S0 + E0 + I0 = α,R(t0) = 1− α. (2)

Since the duration of the epidemic process is relatively short, we consider the
influence of birth and migration processes on the disease dynamics negligible and
do not include these processes into the model. The description of parameters used
for fitting the model is given in Table 1. Further in the text we consider t0 = 0
without loss of generality.

3.2. The Baroyan-Rvachev model. The local submodel used in the Baroyan-
Rvachev prediction framework was represented by the system of difference equa-
tions, with the time step equal to one day. Following the notations introduced in
[15], let xt be the fraction of susceptibles in the population, yt be the number of
newly infected individuals at the moment t and yt – the cumulative number of in-
fectious persons (i.e. those who can transmit flu) by the time t. Then, the equation
system may be written in the following manner:

yt =

T∑
τ=0

yt−τgτ , (3)

yt+1 =
β

ρ
xtyt,

xt+1 = xt − yt+1,

x0 = αρ. (4)

The piecewise constant function gτ gives a fraction of infectious individuals in
the group of individuals infected τ days before the current moment t. The func-
tion reflects the change of individual infectiousness over time from the moment of
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acquiring influenza. It is assumed that there exists some moment t: ∀t ≥ t gτ = 0,
which reflects the moment of recovery.

4. Outbreak incidence data. The original dataset provided by the Research
Institute of Influenza [14] contains weekly cumulative incidence for all the ARI
types (including flu) in three Russian cities from 1986 to 2014. Before the model
fitting, we have to refine the incidence data by restoring the missed values and fixing
the under-reporting. We also need to extract flu incidence from the cumulative ARI
incidence data. Corresponding algorithms are described in detail in [18], here we
introduce briefly the sequence of operations.

• Under-reporting correction. Since infected people avoid visiting healthcare
facilities during holidays, the corresponding weekly prevalence is lower than
the actual number of newly infected. This under-reporting bias can be cor-
rected by means of cubic interpolation [1] using the incidence registered in the
adjacent weeks. The sporadic gaps in incidence data are filled in the same
fashion.

• Bringing the incidence data to daily format. The daily incidence is found
with the help of cubic interpolation of weekly incidence. We assume that
nThuinf = nWinf/7, where nWinf is the weekly incidence taken from the database

and nThuinf is the daily incidence for Thursday of the corresponding week.

01.07 01.08 01.09 01.10 01.11 01.12 01.01 01.02 01.03 01.04 01.05 01.06
0

2000

4000

6000

8000

10000 ARI incidence, Saint Petersburg, 01 Jul 2003 to 30 Jun 2004
Under-reported data

Epidemic outbreak

Level transition

Lower non-flu ARI level

Higher non-flu ARI level

Figure 1. An example of the epidemic curve extraction from the
interpolated ARI incidence.

• Extracting data on influenza outbreak from the cumulative seasonal ARI data
with the help of a separate epidemic curve allocation algorithm. At first,
the algorithm finds higher non-flu ARI incidence level a2, which corresponds
to the average number of newly infected in non-epidemic period (figure 1,
red horizontal dashed line). ARI epidemic curves, which are detected as flu
outbreaks (figure 1, red solid line), should have their peaks well above the
higher ARI level. They should also comply with the time period during which
the ARI prevalence exceeds the non-epidemic ARI threshold assessed in the
Flu Research Institute (figure 1, red rectangle). The beginning and ending of
the extracted curve is chosen to match the level a2. The first incidence point
of the curve is considered to be the first day of the epidemic outbreak.
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5. Fitting models to data.

5.1. General procedure. Let Z(dat) be the set of incidence data points loaded
from the input file and corresponding to one particular outbreak. Assume that the
number of points is t1, which equals the observed duration of the outbreak. The
basic idea of the model fitting procedure is the same for the both models. The
algorithms vary the values of model parameters to achieve the model output, which
minimizes the distance between the modeled and real incidence points:

F (Z(mod), Z(dat)) =

t1∑
i=0

(z
(mod)
i − z(dat)

i )2, (5)

Here z
(dat)
i and z

(mod)
i are the absolute incidence numbers for the i-th day taken from

the input dataset and derived from the model correspondingly. The limited-memory
BFGS optimization method is used to find the best fit [21]. Since the existence of
several local minima is possible, the algorithm has to be launched several times with
different initial values of input variables. The best fit is chosen as a minimum among
the distances achieved from all the algorithm runs. To characterize the goodness of
fit we utilize the coefficient of determination R2 ∈ (0, 1]. This coefficient shows the
fraction of the response variable variation that is explained by a model [27].

Before optimizing the model parameters, we need to match accurately the model
timeline (t = 0, 1, . . . ) to the timeline of the epidemic outbreak incidence dataset.
In this paper we use two approaches for that, namely:

• Aligning the timelines by outbreak starting day. We assume that the
moment t = 0 of the model coincides with the first incidence point of the
curve.

• Aligning the timelines by peak day. We assume that the peak moment
of the modeled epidemic curve coincides with the epidemic peak day from the
dataset.

The first one is a part of a fitting algorithm for the continuous SEIR model, the
second one is used for the Baroyan-Rvachev model calibration.

The issue that affects timelines alignment is inaccuracy of procedure input. The
outbreak starting day detection depends on the curve extraction algorithms em-
ployed (fig. 2) and cannot be established accurately due to absence of distinct
diagnosis of influenza and other acute respiratory illnesses. The peak moment is
known only in the case we fit the model to data on past epidemic outbreaks, apart
from performing predictions for the ongoing outbreak, but even then, biases in in-
cidence registration (like the aforementioned under-reporting during holidays) can
lead to incorrect determination of the peak moment.

In this paper we compensate the uncertainty in the input (outbreak starting
day and peak day obtained from the dataset) by introducing curve positioning
parameters. These parameters are the part of fitting algorithms, not the models
themselves. Thus, their function is to not change the shape of the model curves,
but rather to adjust the position of the modeled curve relatively to the epidemic
incidence data. The main issue of using curve fitting parameters is that they give
additional degrees of freedom to the fitting algorithm. Thus, they make it possible
to fit various model curves to incidence data and expand the range of possible model
parameter values.

The details on the curve positioning parameters used in each of two fitting algo-
rithms are given in the subsequent section.
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Figure 2. ARI incidence curve showing the discrepancy between
different curve allocation algorithms

Table 1. Parameters of the fitting algorithm for the continuous
SEIR model

Definition Description Value Unit

Epidemiological parameters

α Initial ratio of susceptible individu-
als in the population

Estimated -

β Intensity of infection Estimated 1/(person · day)
γ Intensity of transition to infective

form of the disease
0.39 1/day

δ Intensity of recovery 0.133 1/day
I0 Initial ratio of the infected 0.0001 -

Curve positioning parameters

kinc Relative vertical bias of the mod-
eled incidence curve position

Estimated -

∆s Absolute horizontal bias of the
modeled incidence curve epidemic
start position compared to the data

Estimated day

5.2. The continuous SEIR model fitting. The list of parameters involved in
the fitting procedure (table 1), apart from five model parameters (α, β, γ, δ and
I0), includes two curve positioning parameters, ∆ and kinc. ∆ has sense of the
difference between the day of the outbreak start detected by the curve allocation
algorithm and the outbreak start demonstrated by the model. kinc is the relative
difference between the baseline ARI level found from the data and the corresponding
level obtained as a result of model fitting. The necessity of variation of the two
parameters (both for horizontal and vertical model curve positioning) arises from
possible controversies in the assessment of the epidemic outbreak period depending
on the chosen curve detection algorithm. For example, apart from figure 1, where
the base of visually distinguished epidemic curve coincides with the higher non-flu
ARI level, in figure 2 the curve seemingly starts well below the level a2. That is why
if the outbreak start obtained from real data is the left end of visually distinguished
curve (yellow solid line) rather than the left end of automatically detected curve
(red solid line), the model curve has to be shifted both in horizontal and vertical
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direction to match the epidemic incidence data. Accordingly, small values of ∆
and kinc ≈ 1 correspond to the ‘clear’ cases, when it is easy to distinguish the flu
outbreak curve edges from the seasonal ARI level. On the contrary, the incidence
data with non-smooth edges (fig. 2) is fitted by the curve with big ∆ and small
kinc, indicating that the epidemic outbreak started earlier than it was detected by
the curve allocation algorithm.

Relying on conclusions made from earlier numerical experiments with the model
fitting [17], we have decided to fix the values of γ and δ, thus reducing the model
state space and possibly making the model less prone to overfitting.

The fitting algorithm for the continuous SEIR model was introduced for the
first time in [17]. The algorithm operations are performed as follows. For each
∆ ∈ 5, .., 54:

• For each fixed combination of values {α, β, γ, δ, kinc} generated by BFGS op-
timization procedure:

1. Find the numerical solution of the model (1) – (2) with the initial condi-
tions S(0) = α− I0, E(0) = 0, I(0) = I0, R(0) = 1− α.

2. Calculate the modeling flu incidence in relative numbers: y(mod,rel)(t) =
NE→I(t). Since from (1) – (2)

E(t) = E(t− 1) +NS→E(t)−NE→I(t)

and

NS→E(t) = S(t− 1)− S(t),

we achieve:

y(mod,rel)(t) = −∆S(t)−∆E(t), t = 1, 2, . . .

∆S(t) = S(t)− S(t− 1),

∆E(t) = E(t)− E(t− 1),

3. As we are working with disease incidence attributed only to influenza
outbreaks, excluding the non-epidemic cases of ARI infections, we need
to subtract the non-epidemic incidence from the overall ARI incidence
data. For that purpose we need to derive the baseline level for the mod-
eled outbreak start ybase from the value for higher ARI incidence level
a2, considering the relative bias kinc, and to subtract it from the data
incidence points:

ybase := kinc · a2,

y
(dat)
i := y

(dat)
i − ybase, i ∈ 0, T − 1

4. Consider that the data incidence points from the dataset are shifted by
∆ days from the model curve start. Thus we are to compare the distance
between the following datasets:

Y (dat) = {y(dat)
0 , y

(dat)
1 , . . . , y

(dat)
T−1 },

Y (mod) = {y(mod)(∆), y(mod)(∆ + 1), . . . , y(mod)(∆ + T − 1)}.

5. Convert the relative model incidence values to absolute values:

y
(mod)
i = y

(mod,rel)
i ·NL(m), (6)

where NL(m) is the total population of the city L in the year m equal to
the starting year of the epidemic season under consideration.



PREDICTION OF INFLUENZA PEAKS 217

6. Calculate the value of the fit function F (Y (mod), Y (dat)), F = F (∆).

In the described manner the BFGS algorithm finds the least distance F∆ for every
value of ∆. We define ∆min: F (∆min, . . . ) = minF (∆, . . . ), and the parameter set
{α, β, γ, δ, kinc}, corresponding to ∆min. These values are the final result of our
optimization procedure.

After the optimization algorithm has established the best fitting model parameter
values, the model can be used to estimate the dynamics of population groups S(t),
E(t), I(t) and R(t) over time. The group quantities are converted to absolute
format in the same way as it is done with influenza incidence in (6).

5.3. The Baroyan-Rvachev model fitting. The parameter description of the
fitting algorithm which corresponds to Baroyan-Rvachev model is given in Table 2.
In addition to the parameters taken from the model (3)–(4), a curve positioning
parameter ∆p is introduced. In the ideal case, the best fit of the model curve to
data should give the model curve peak occurring at the same day as the real peak
seen from the incidence data. In that case, ∆p is fixed and equals zero, so there is
no need to vary it. However, sometimes the best fit is achieved when the modeled
and the real peak moments differ by several days due to discrepancies between the
real outbreak process and its theoretical model, that is why we made this parameter
variable. Also the algorithm ability to vary ∆p will be used in Section 6 for the
sake of peak prediction.

Table 2. Parameters of the fitting algorithm for Baroyan-Rvachev model

Definition Description Value Unit

Model parameters

α Initial ratio of susceptible individuals
in the population

Estimated -

β Intensity of infection Estimated -
I0 Initial ratio of infected in the popula-

tion
Estimated -

T Duration of infection Fixed day
gτ A fraction of infectious individuals

among those who were infected τ days
before the current moment

Fixed -

ρ Population size Fixed persons

Curve positioning parameters

∆p Absolute horizontal bias of the mod-
eled incidence curve peak position com-
pared to the data

Estimated day

The important advantage of the Baroyan-Rvachev model fitting algorithm com-
pared to the continuous SEIR model fitting is that it has fewer parameters to be
varied. Moreover, it has been proven [1] that without the loss of fit quality we
can vary the sole auxiliary value s = αβ instead of variation α and β separately.
This fact results from the biologically plausible assumption that the virulence of
the current circulating influenza strain and the immunity level to this strain in the
population are interconnected [15]. Another idea of the algorithm is that s = s(k),
where k is a semi-empirical parameter which approximates the initial fraction of
infectious individuals in the first stage of the outbreak [1]. Finally we come to idea
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that it is k that should be varied, and s is consequently calculated as a function of
k (see the formula below).

Another benefit of the algorithm is that it relies on the peak day alignment rather
than starting day alignment, so it is not affected by incorrect outbreak starting day
detection and we do not need to add a vertical positioning parameter.

The description of the algorithm follows.

• For each fixed combination of values {k, I0} generated by BFGS optimization
procedure, and for every ∆p:

1. Derive the value of s from the current value of k using the following
formula:

s =
kT+1∑T

τ=0 k
T−τgτ

(7)

2. Set the preliminary model parameter values, α′ and β′, to make them
conform to the equation α′β′ = s, for instance:

α′ = 1, β′ = s

3. Find the preliminary numerical solution of the model (3) – (4) with the pa-
rameter values α = α′, β = β′ and the initial conditions y0 = I(0), y−1 =
· · · = y−T = 0.

4. Derive the preliminary number of newly infected each day from the model

output: z
(mod)′

i := yi, i ∈ 0, t1 − 1.
5. Derive the baseline level for the modeled outbreak start zbase from the

value for higher ARI incidence level a2 and subtract it from the data
incidence points:

z
(dat)
i := z

(dat)
i − a2, i ∈ 0, t1 − 1

6. According to the algorithm, we need to match in time the model peak
with the incidence data peak. For that purpose we find the shift δadj :

δadj = t
(mod)
peak − (t

(dat)
peak + ∆p), (8)

where t
(dat)
peak and t

(mod)
peak are peak days for the data incidence and the mod-

eled incidence correspondingly, ∆p is the difference between the modeled
peak and the data peak after the shift. After performing a shift, we are
to compare the distance between the following datasets:

Z(dat) = {z(dat)
0 , z

(dat)
1 , . . . , z

(dat)
N−1},

Z(mod)′ = {z(mod)′(δadj), z
(mod)′(δadj + 1), . . . , z(mod)′(δadj +N − 1)},

where N is the total number of incidence points.
7. Assigning optimal values to α, β. It was mathematically justified in [1]

that for α, β : αβ = s

min
α,β

F (Z(mod)(α, β,∆p), Z
(dat)) = F (Z(mod)(α̃, β̃,∆p), Z

(dat)),

maxZ(mod)(α̃, β̃,∆p) = maxZ(dat) + ∆p;

where α̃ = α′a, β̃ = β′

a , a is the correction coefficient calculated according
to the formula:

a =

∑t1
i=0 z

(dat)
i∑t1

i=0 (z
(mod)′

i )
2 .
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To avoid launching the simulation for the second time, now with the values

α = α̃, β = β̃, one may obtain the new model incidence values z
(mod)
i by

multiplying the corresponding preliminary values by a [15], that is:

z
(mod)
i = az

(mod)′

i , z
(mod)
i ∈ Z(mod)(α̃, β̃,∆p), z

(mod)′

i ∈ Z(mod)′ .

In that manner we find the optimal parameter values and the correspond-
ing model curve Z(mod).
It is worth mentioning that α has the sense of fraction, α ∈ [0; 1]. In the
case if α̃ > 1, we artificially set it to 1.

8. Calculate the value of the fit function F (Z(mod), Z(dat)) according to the
formula (5).

The BFGS algorithm finds the least distance F∆p
in the described manner for

every value of ∆p. We define ∆
(min)
p : F (∆

(min)
p , . . . ) = minF (∆p, . . . ), and the

parameter set {α, β, I0}, corresponding to ∆
(min)
p . These values are the final result

of our optimization procedure.
The described fitting algorithm for Baroyan-Rvachev model originates from [15],

with several modifications that were made to unify it with the same procedure for
the SEIR model. Particularly:

• The curve positioning parameter ∆p was introduced (the similar parameter
was mentioned in [15], but it was not explicitly included into the fitting pro-
cedure).

• The iteration over the values of variable k with a fixed step was replaced by
BFGS optimization algorithm.

• The value of I0 was changed from fixed to varied. This change was made due
to the ambiguity of flu epidemic outbreak start detection in seasonal incidence
data [17]. This allows the algorithm to fit the model to the early outbreak
stages more accurately.

The modifications described enhanced both the accuracy and the performance
of the algorithm and made it more suitable for our task of peak prediction.

6. Numerical experiments. Both algorithms are implemented as scripts col-
lection written in Python programming language (Python 3.x with numpy and
matplotlib libraries was used). The higher ARI level was assessed with the help of
scipy.optimize.curve fit procedure. The limited-memory BFGS optimization
method for curve fitting was performed via scipy.optimize.minimize routine.
The parameter value ranges used for the model fitting are given in Table 3. The
range for k used in the fitting procedure for the Baroyan-Rvachev model was em-

pirically found by the authors of the original model [1], the range for θ
(dat)
peak was

assessed based on the actual moments of epidemic peaks taken from the Russian
ARI incidence data, the ranges for I0 and ∆p were set somewhat arbitrary. The
values of g(τ) were set according to the statistics available from the Soviet health-
care units [1]: g(0) = g(1) = 0, g(3) = 0.9, g(3) = 0.9, g(4) = 0.55, g(5) = 0.3,
g(6) = 0.15, g(7) = 0.05, g(8) = g(9) = · · · = 0. According to [1], another set of
values for g(τ) was also tested, and the fitting algorithm showed low sensitivity to
the change of these values on the Soviet ARI incidence data of 1970–1980s. This
fact allowed us to use the same form of g(τ) in our experiments.

We have conducted the numerical experiments on weekly ARI incidence data for
three Russian cities (Moscow, Saint Petersburg, and Novosibirsk) from July 1986



220 VASILIY N. LEONENKO AND SERGEY V. IVANOV

1985 1990 1995 2000 2005 2010
Season starting year

0.5

0.6

0.7

0.8

0.9

1.0
R

2
 v

a
lu

e
s

The fitting quality of the continuous SEIR model

St Petersburg

Moscow

Novosibirsk

0 20 40 60
Point number

0.5

0.6

0.7

0.8

0.9

1.0

1985 1990 1995 2000 2005 2010
Season starting year

0.5

0.6

0.7

0.8

0.9

1.0

R
2

 v
a
lu

e
s

The fitting quality of Baroyan-Rvachev model

St Petersburg

Moscow

Novosibirsk

0 20 40 60
Point number

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3. The fitting quality of the algorithms in the case of com-
plete outbreak data.

to June 2014. By means of epidemic curve allocation algorithm, we extracted the
incidence data for the epidemic outbreaks, which gave us 67 epidemic outbreaks in
total (there were no epidemics during some seasons).

6.1. Retrospective fitting to complete data. To test the Baroyan-Rvachev fit-
ting algorithm, we applied it to the complete outbreak data and compared the
resulting accuracy of fit with the one achieved by the continuous SEIR model. The
values of R2 reflecting the quality of model fitting to the incidence data are demon-
strated in Figure 3. On average, both models tend to demonstrate satisfactory fit
quality. The exceptional cases correspond to a number of epidemic curves with
peculiar forms than cannot be fitted well by one-peak models [17].

6.2. Peak prediction on incomplete data. After comparing the two models and
the corresponding fitting algorithms on complete incidence data, we compared the
predictive force of the models for the outbreak peak forecasting. For this purpose
we reduced the incidence datasets for each epidemic season, reproducing the case of
incomplete incidence data (Figure 4). The sample sizes were varied starting from 5
incidence points (that corresponds to the attempt of peak prediction at the fifth day
of the outbreak, provided that the actual incidence data is provided by healthcare
units by the end of each day).

At that stage of the experiment an important issue of the Baroyan-Rvachev fitting
algorithm described in section 5.3 was revealed. Unlike the algorithm from section
5.2, it relies on the explicit knowledge of the day of outbreak peak. Obviously, during
the exploitation of Baroyan-Rvachev modeling framework, the local submodel was
calibrated on the ‘half-wave’ of flu incidence (i.e. on the data from the outbreak start
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Table 3. Varied model parameters

Definition Description Value Variation
type

Continuous SEIR model

α Initial ratio of susceptible individuals in the
population

[10−2; 1.0] BFGS opti-
mization

β Intensity of infection [10−7; 50.0] BFGS opti-
mization

kinc Relative vertical bias of the modeled inci-
dence curve position

[0.8; 1.0] BFGS opti-
mization

∆s Absolute horizontal bias of the modeled in-
cidence curve epidemic start position com-
pared to the data

5, . . . , 54 Iteration

Baroyan-Rvachev model

k The service parameter defining the product
of α and β

[1.02; 1.6] BFGS opti-
mization

I0 Initial ratio of infected in the population [10−1; 50.0] BFGS opti-
mization

∆p* Absolute horizontal bias of the modeled in-
cidence curve peak position compared to the
data

−3, . . . , 3 Iteration

θ
(dat)
peak ** Prospected incidence curve peak day 17, . . . , 83 Iteration

* For complete incidence data ** For incomplete incidence data
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Figure 4. An example of epidemic peak prediction by Baroyan-
Rvachev model

till its peak), thus the value of the outbreak peak day was always available. When
the fitting was made to complete data in the previous experiment, we knew this
value too. In the current experiment, on the contrary, the day of the outbreak peak
is meant to be the output parameter of the algorithm, along with the peak height.
Hence, we had to modify the initial algorithm to make it suitable for prediction
purposes. We modified the formula (8) in the following way:

δadj = t
(mod)
peak − θ

(dat)
peak .
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The varied parameter θ
(dat)
peak reflects our guess of when the future incidence peak

is likely to occur. Thus, instead of iterating through the set of possible values of
∆p, as in fitting to complete data, we have to iterate through the set of different

θ
(dat)
peak with a larger number of values. This fact influences significantly the algorithm

performance, making it 5 –10 times slower than the one for the continuous SEIR
model. On the contrary, in the previous experiment dedicated to model fitting to
complete data, the Baroyan-Rvachev algorithm worked sufficiently faster than the
latter.

Let n be the number of days taken from the beginning of epidemic outbreak,

while t
(dat)
peak is the day of the peak in the incidence data. For each n ∈ 5, tpeak − 1,

the models are fitted to the incidence data set Z(dat) = {z(dat)
i |i ∈ 1, n}, the model

curve peak is assessed and the following values are calculated:

• the prediction bias of the peak day dt,
• the ratio between the modeled and real outbreak peak heights dh.

To assess the accuracy of peak prediction results, we have used the 1970’s Soviet
flu outbreak prediction framework criteria [15] already applied by the authors in
[19]:

• ‘Square’. The prediction is thought to be accurate if dt ∈ −8..8 and dh ∈
(0.5; 2.0).

• ‘Vertical stripe’. The accurate prediction should have dt ∈ −7..7.
• ‘Horizontal stripe’. The accurate prediction should have dh ∈ (0.7; 1.5).

For every fixed outbreak, we have calculated the sample size l (or, which is the
same, the number of days since the outbreak start), which allows the algorithm to
comply with the chosen accuracy criteria for all consequent sample sizes starting
from l, i.e. l + 1, l + 2, . . . . The particular fitting algorithm is considered to be the
more accurate of the two if it tends to demonstrate lesser values of l. The example of
accuracy checking according to the vertical stripe criterion for the peak predictions
of the outbreaks in Moscow is shown in Figure 5.

The obtained values of l were accumulated to derive the overall statistics, partic-
ularly, what chance is for the algorithm studied to achieve the prediction accuracy
compliant to the fixed accuracy criterion for the fixed sample size (i.e. fixed num-
ber of days from the outbreak start). The overall results for the three cities are
demonstrated in Figure 6. The detailed results for each of the cities may be found
in Appendix (section 9).

As one can see, the accordance of the predictions to the ‘horizontal stripe’ crite-
rion, i.e. the quality of peak height prediction, may be named satisfactory for the
Baroyan-Rvachev model (98% of compliance for the predictions achieved one day
before the peak) and unsatisfactory for the continuous SEIR model (51% of com-
pliance). We believe that the Baroyan-Rvachev model, being more ‘rigid’, tends to
reproduce better the overall trend of incidence data, whereas the continuous SEIR
model is more prone to the reaction on the outliers in the data. Thus, the modeled
incidence curves tend to change their slope in a greater extent in the latter case,
resulting in bigger biases of the peak predictions.

The reason for the fact that the prediction compliance to accuracy criteria may
still be low near the peak is due to the peculiar shape of some outbreak incidence
curves which cannot be properly fitted by the one-peaked incidence model (see
Figure 3 and [17] for more details).
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Figure 5. An example of estimating forecast accuracies. The
height of the green bars corresponds to the duration of the out-
break before reaching the peak, the markers indicate the day when
the accuracy criterion was reached by the particular model. The
absent bars correspond to the years without an epidemic outbreak.

The accuracy percentage for the ‘vertical stripe’ and, consequently, ‘square’, is
generally unsatisfactory for the both models. The SEIR model gives slightly better
forecasts on the initial stages of the outbreak, whereas the Baroyan-Rvachev model
fits better to big samples (when we almost have the epidemic “half-wave”).

7. Discussion. The numerical experiments have shown that the prediction meth-
ods demonstrated in the paper may be applied to assess the height of the peak,
but are incapable to predict the peak time. (An interesting fact is that the same
issue, although caused by another reasons, also holds true for the last Baroyan and
Rvachev forecasts performed in early 1980s [15] and for our attempts to modify
their algorithm to be used without the transport data [19]). Apparently, we cannot
expect great accuracy from the prediction obtained in such a straightforward man-
ner, especially if the number of incidence points used to calibrate the model is not
large. In this case, an incidence point sample can be fitted by various model curves
with almost equal goodness of fit R2, which results in a big variety of peak predic-
tions. Obviously, the fact that a curve has the best value of R2 among the curves
with similar fit accuracy does not imply that it gives the best peak prediction. To
enhance the predictive ability of the model, we need to add more constraints on
the model curves, possibly based on some a priori knowledge on the past epidemic
outbreaks in the particular urban area. This may include preliminary assessment of
α and β by studying the dynamics of herd immunity over time and the peculiarities
of contact patterns within the area correspondingly.

Among the technical limitations that we face while applying the algorithms, the
most important was connected with the fitting algorithm performance. Because of
the long duration of algorithm execution on the amount of incidence data employed,
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Figure 6. The dependence of the percentage of accurate predic-
tions from the number of days before the peak, in overall for the
three cities
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we had to limit the number of runs with different initial values of input. In some
cases, that may lead to an unsatisfactory fit due to the fact that the optimization
function may have several local minima. We hope to increase the algorithm speed
and reach a higher fit accuracy by employing the parallel techniques, such as thread
distribution over the computer cores, in the same way as we made it in earlier works
for a number of epidemic model algorithms [20].

The drawback of this work, that was already mentioned in [17], is that we did
not consider the bias in data gained as a result of conversion of the weekly to daily
incidence data. Despite the fact that the “synthetic” daily data is surely more
“smooth” than the original one, we presume that our set of algorithms will be
suitable to handle the real daily incidence dataset. Our assumption is supported by
the fact that after filtering the fluctuations caused by the weekly cycle of individuals
the daily epidemic curves resemble the synthetic data we work with (see [1]).

8. Acknowledgments. The authors are thankful to the two anonymous referees
who helped to improve significantly the quality of the paper. This paper is finan-
cially supported by The Russian Scientific Foundation, Agreement #14-21-00137.

9. Appendix. The comparison of prediction methods accuracy for the
particular cities. Figures 7–9 demonstrate the prediction accuracy according to
three accuracy criteria for Saint Petersburg, Moscow, and Novosibirsk. For com-
parison purposes, we have added prospected prediction quality for the same cities
obtained by calibrating the models to the earlier occurred outbreaks of the same
epidemic season (see [19] for more details).

Figure 7 shows that the prediction accuracy of the peak height (‘horizontal stripe’
criterion) is better for the method employed in [19] than for the forecasting method
described in this article. At the same time, the former method may be employed in
a limited number of cases. Particularly, the employment of the method requires the
existence of the city with the climax of the epidemic outbreak reached, otherwise
we cannot calibrate the model to make a prediction. Thus, peak forecasting based
on the incomplete data is more versatile, although less accurate. Note that the
prediction accuracy of the method from [19] depends to large extent on the city
which was used to calibrate the model. For instance, the reader can see that the
predictions for Moscow obtained by calibrating the model to Novosibirsk data is
significantly worse than the prediction obtained by using the incidence data from
Saint Petersburg.

The prediction of peak days is unsatisfactory for the both methods, with the
accuracy percentage of incomplete data forecasting becoming higher than the one
of the method from [19] on average in the “day -3” (i.e. approximately three days
before the peak).

Comparing the forecasting methods, we have come to the following question:
may it be that the majority of the predictions is accurate due to the fact that the
peak data (day and height) has very limited variance over the years? For instance,
may we match the ‘vertical stripe’ accuracy criterion (a peak height prediction is 0.7
to 1.5 of the real peak height) by taking the average height of the previous epidemic
peaks in that city? To answer this question, we have utilized the two statistical
approaches:

• “Prediction by last peak data”. We “predict” that the peak in the current
season is likely to have exactly the same height and will happen after the same
number of days from the epidemic outbreak start, as in the previous one.
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• “Prediction by average peak data”. We “predict” that the peak height and
day are to coincide with the average height and average day calculated from
the peak data over all the previous years.

The accuracy of the predictions obtained in the described way was compared with
the modeling prediction obtained by the method from [19] (for each city we took the
best accuracy from the two predictions based on the models calibrated on two cities;
for instance, for Saint Petersburg we took the accuracy obtained on Moscow data,
etc.) and by the method described in this article (we took the accuracy obtained by
Baroyan-Rvachev model calibrated on the dataset correspondent to “day -1”, i.e.
the day before the actual peak). The comparison results are shown in Figure 10.

As one can see, in the case of the peak height prediction (“horizontal stripe”
criterion) the accuracy of the modeling methods is significantly higher than of the
primitive statistical approaches mentioned above. In case of peak day prediction,
the modeling method from [19] demonstrates the accuracy, which is equal or worse
than the one of the statistical approaches. This result supports our assumption
that we cannot use the described modeling methods to assess the peak days. The
fact that the Baroyan-Rvachev prediction accuracy is rather high for both “vertical
stripe” and “square” criteria, does not prove this assumption wrong, because, as we
can see on Figures 8–9, the accuracy of the method falls fast when we take fewer
incidence points for the model calibration.
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Figure 7. The dependence of the percentage of accurate predic-
tions from the number of days before the peak, horizontal stripe
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Figure 8. The dependence of the percentage of accurate predic-
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