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Abstract. In the present paper we propose a simple time-varying ODE model

to describe the evolution of HIV epidemic in Italy. The model considers a single
population of susceptibles, without distinction of high-risk groups within the
general population, and accounts for the presence of immigration and emigra-
tion, modelling their effects on both the general demography and the dynamics
of the infected subpopulations. To represent the intra-host disease progres-

sion, the untreated infected population is distributed over four compartments

in cascade according to the CD4 counts. A further compartment is added
to represent infected people under antiretroviral therapy. The per capita exit

rate from treatment, due to voluntary interruption or failure of therapy, is as-
sumed variable with time. The values of the model parameters not reported in
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the literature are assessed by fitting available epidemiological data over the
decade 2003 ÷ 2012. Predictions until year 2025 are computed, enlightening

the impact on the public health of the early initiation of the antiretroviral

therapy. The benefits of this change in the treatment eligibility consist in
reducing the HIV incidence rate, the rate of new AIDS cases, and the rate of

death from AIDS. Analytical results about properties of the model in its time-

invariant form are provided, in particular the global stability of the equilibrium
points is established either in the absence and in the presence of infected among

immigrants.

1. Introduction. The treatment of Human Immunodeficiency Virus-1 (HIV) in-
fection presently faces extraordinary opportunities and challenges in achieving
durable efficacy in previously untreated subjects. In fact, even though it does
not allow a complete elimination of the virus from several tissue and blood cell
reservoirs, antiretroviral treatment has been shown to decrease viral replication as
detected by HIV ribonucleic acid (RNA) in plasma [27, 35]. The virological control
obtained on treatment, documented by undetectable levels of HIV RNA in plasma,
has been shown to improve the immunological setting of patients, increasing the
number of CD4+ cells, the subset of lymphocytes mainly affected by the virus [23].

Since high rates of HIV RNA control have been shown on treatment both in recent
cohort studies and in clinical trials [36], this achievement has been associated with
a marked decrease in several opportunistic infections and clinical comorbidities [40,
12]. Besides, a successful virological control has also beneficial effects in reducing
the spread of HIV infection through sexual contacts, as documented by studies
evaluating antiretroviral treatment as a tool for the prevention of HIV transmission
to healthy partners [14].

The decrease in CD4 cell counts during HIV infection in the absence of therapy
has been used in the past to obtain a marker of immune depletion in order to advise
in favor or against the introduction of antiretroviral therapy. Since AIDS-related
opportunistic infections generally appear when CD4 are lower than 200 cells/µL,
previous guidelines suggested the initiation of antiretroviral treatment when CD4
decreased below 350 cells/µL [41]. On the contrary, recent clinical evidences suggest
that the early introduction of antiretroviral therapy at diagnosis, regardless of CD4
cell counts, may have benefits on clinical outcomes [37]. Indeed, it is expected that
this change in antiretroviral prescription, known as ‘test and treat’ strategy, will
also reduce the spread of HIV infection to the uninfected population [42].

According to estimates by the Italian National Institute of Health, about 120,000
individuals are living with HIV in Italy [7]. A recent investigation reports that
94,146 individuals were in care at public clinical centres at the end of 2012 and
82,501 were receiving antiretroviral treatments [6]. The proportion of patients in
therapeutic failure is precisely unknown, even if clinical trial data show that the
prevalence of HIV undetectability on treatment can reach 80-90%. The future
trends of HIV spread in the Italian population will be determined by the burden
of subjects with detectable HIV RNA, thus depending on several factors, such as
the appropriate use of treatment options and the effort to anticipate the initiation
of antiretroviral therapy. An appropriate prediction of the future trends in HIV
epidemics will likely help to enlighten the possible impact of different public health
and clinical strategies on the spread of the infection.

Since the seminal paper by May and Anderson [26], a large number of studies
have been devoted to mathematical models of HIV epidemic. We mention some
recent investigations [17, 16, 18] that establish global dynamics properties of classes
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of models of interest for the HIV epidemic. Other mathematical models have been
developed either to assess the impact of larger treatment availability on the spread of
HIV [21, 11], showing a beneficial impact on the reduction of the infection incidence
rate, and to assess the effects of virus mutation and of drug resistance onset [2, 34,
24].

Many papers aim at describing the epidemic evolution in single countries or in
single geografic regions (see e.g [33, 28, 44]). Concerning Italy, Arcà et al. built a
detailed multi-stage ODE model for the HIV transmission in Latium (the Italian
region around Rome), with eight groups differentiated by sex and routes of infection
[1]. With focus on the epidemic among drug users in Latium, Iannelli et al. [19]
proposed an age-structured model validated against data on the number of new
AIDS cases. Camoni et al. [7], by considering different high-risk subpopulations,
and gathering a number of different statistical information, gave an estimate of the
history of the epidemic in Italy, taking also into account the practice of therapy.
Nevertheless, no predictions are available about the possible impact of an early
antiretroviral treatment and ‘test and treat’ strategies on HIV epidemic in specific
European Countries, such as Italy.

In order to forecast the possible impact of new strategies in antiretroviral man-
agement, a differential equation model is developed in the present paper to describe
the evolution of HIV epidemic in Italy for the years 2003÷ 2025. Unlike the above
mentioned studies, we try to describe the HIV epidemic in Italy by considering a
single population of susceptibles, thus making no reference to high-risk groups. The
main motivation of our choice is that of keeping the model simple, also in view of fu-
ture developments about the effects of virus resistance to antiretroviral drugs. The
model presented here takes into account the extent of immigration and its effect,
on both the general demography and the dynamics of the infected subpopulations.

In Section 2, the ODE model is formulated, and in Section 3 the parameter
values are assessed, in part by means of best fitting of available data over the
decade 2003÷ 2012. Predictions until year 2025 are reported in Section 4, showing
the benefits of early initiation of the antiretroviral therapy. Section 5 reports some
results of the analysis of the model in its time-invariant version, in particular the
global stability of the equilibrium points is established either in the absence and in
the presence of HIV infection among immigrants. Some concluding remarks (Section
6) complete the work.

2. Model formulation. The present model describes the dynamics of HIV in-
fection in Italy by assuming that the heterosexual/homosexual activity and the
exchange of needles among drug users are the only significant modalities of HIV
transmission. Therefore, the mother-child transmission and the transmission by
blood transfusion are disregarded. This choice is supported by recent reports of
the Italian National Institute of Health [4, 5], indicating that the percentages of
new diagnoses in 2012 and 2013 related to transmission routes not involving inter-
individual contacts are less than 2%.

The HIV epidemic in Italy is still mainly concentrated in high risk subpopula-
tions (injected drug users, male homosexuals, female sex workers, multi-partners
heterosexual male). However, there are evidences of an important spreading of the
infection outside these groups. Indeed, 32% of infected people at the end of 2012
was estimated to belong to the remaining general population [7].

On the basis of this evidence and for the sake of simplicity, we assume in our
model that the population susceptible of infection, S(t), consists of all the uninfected
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Italians having age in the range 20 ÷ 70 years. We choose these age limits for
susceptibles since the 97.6% of the new diagnoses recorded in 2012 and 2013 falls
in that age range [4, 5]. Concerning the Italian demography, we will explicitly take
into account the presence of immigration, since immigration in the last years is
comparable with the birth rate of the resident population [31]. As a consequence,
the role of immigration in the dynamics of HIV infected population cannot be
disregarded a priori.

To represent the intra-host disease progression, the untreated infected population
is distributed over four compartments in cascade according to the CD4 counts. In
particular, according to [1, 34], we distinguish the infected population I(t) into the
following subpopulations:

• I1(t): number of individuals in the primary infection stage;
• I2(t): infected individuals with CD4 count > 350 cells/µL;
• I3(t): infected individuals with CD4 count in the range 200÷350 cells/µL;
• I4(t): infected individuals with CD4 count < 200 cells/µL.

Compartment I4 represents individuals in the AIDS stage. A further compart-
ment, I5(t), is added to account for infected people under HAART (highly active
antiretroviral therapy), introduced in Italy since 1996. Compartment I5 includes
both patients achieving complete and partial viral suppression [34].

Figure 1. Block diagram of the model.

Under the above assumptions, we can describe the dynamics of susceptible and
infected subpopulations by the following ODE system (see the block diagram of
Figure 1):
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Ṡ(t)=Λ(t) + (1− α)Φ(t)− µ(t)S(t)−

(
5∑

n=1

βnIn(t)

)
S(t)

İ1(t)=a1αΦ(t)+

(
5∑

n=1

βnIn(t)

)
S(t)− (θ1+µ(t))I1(t),

İ2(t)=a2αΦ(t)+θ1I1(t)− (θ2+µ(t)+δ2)I2(t),

İ3(t)=a3αΦ(t)+θ2I2(t)− (θ3+µ(t)+δ3)I3(t)+ξ(t)I5(t),

İ4(t)=θ3I3(t)− (θ4+µ(t)+δ4)I4(t),

İ5(t)=δ2I2(t)+δ3I3(t)+δ4I4(t)−(ξ(t)+µ(t))I5(t),

(1)

where Λ(t) is the net input rate in the susceptible population due to the balance
between the inflow and the outflow through the selected age boundaries; Φ(t) is
the rate of adult immigration; α is the HIV prevalence among immigrants; a1, a2,
a3 are the fractions subdividing the flow αΦ(t) into the compartments I1, I2, I3
respectively (a1 + a2 + a3 = 1); µ(t) is the per capita loss rate owing to causes not
related to the infection (namely, natural death plus emigration); βn, n = 1, . . . , 5,
is the infectivity of individuals in compartment In; θn, n = 1, 2, 3 is the per capita
disease progression rate from compartment In to compartment In+1; θ4 is the per
capita death rate from AIDS.

Note that, since immigration of people in AIDS stage appears rather unlikely,
no input from immigration is assumed into compartment I4. Precise data about
the presence of immigrants who are under HAART at their arrival in Italy are
lacking and official statistical data sources do not report this information. However,
observations deriving from clinical experience at the hospital “Luigi Sacco” in Milan
indicate a negligible percentage of treated immigrants at the arrival in Italy, mainly
concentrated among transexual males from South America. In addition, a survey
on a limited number of patients at a clinical centre in Bologna (Italy) evidences that
only 14.6% of immigrants were aware to be infected at their arrival and reports no
individuals under treatment [25]. Based on these indications, we suppose no input
from immigration into compartment I5. Concerning the fractions a1, a2, and a3,
we assume

an =
1/θn

1/θ1 + 1/θ2 + 1/θ3
, n = 1, 2, 3, (2)

that is an is taken proportional to the average transit time of the corresponding
stage.

The possibility of starting the treatment from different stages of the disease is
taken into account by the per capita treatment rates, δn, of infected individuals in
compartment In, n = 2, 3, 4. The possibility that treatment is initiated from the
primary infection stage is instead disregarded, since at present it is difficult to have
a diagnosis of HIV positivity at this stage. ξ(t) is the per capita exit rate from
compartment I5, and it represents voluntary interruptions or failures of treatment.
Although it may be questioned whether the disease in patients exiting from therapy
actually evolves as in naive infected individuals, we adopted this simpler view.
Therefore we assumed that people exiting from I5 return, for simplicity, into one
of the stages of the active disease progression. We identify this stage as the stage
I3, in view of some clinical observations on the time interval typically elapsed from
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interruption of successful therapy and the falling of CD4 counts below the level of
200 cells/µL (2 years in average, [29]).

We assumed in model 1 a bilinear form of the incidence rate, instead of the more
usual standard incidence where the infective population is normalized to the total
population size, which is N(t) = S(t) +

∑5
n=1 In(t) in our case. We note that N(t)

is well approximated by N[20,70](t), that is the Italian population in the age range
20 ÷ 70 years, since N counts in addition only the infected older than 70 years.
Thus, denoting by N̄[20,70] the average value of N[20,70](t) over the years 2003 ÷
2012, the coefficients βn, n = 1, . . . , 5, are of the order of the inverse of N̄[20,70],

i.e. βn = O(1/N̄[20,70]). The choice of a bilinear infection rate brings about some
advantages for the model analysis, as we will see later. Moreover, in our case, the
bilinear infection rate is a very good approximation of the standard incidence, and
then the dynamics under the two incidence forms are expected to be very similar.
In fact, the Italian population in the age range 20 ÷ 70 years was almost constant
from January 1st 2003 to December 31st 2012, changing of only 2% from 38.378 to
39.139 millions of individuals [31].

3. Parameter tuning and data fitting. The behaviour of the model has been
tested by comparison with epidemiological data over the years 2003 ÷ 2012. Pre-
cisely, we considered the following data:

• number of infected individuals over the years 2003 ÷ 2012, plus the number
of treated individuals at the end of 2012, estimated by the UNAIDS tool
EPP/Spectrum [7];

• number of treated individuals at the end of 2012 from data of public clinical
centres [6];

• number of new AIDS cases over the years 2003÷ 2012 [5];
• number of deaths from AIDS over the years 2003÷ 2011 [5].

Data reported by the National Institute of Statistics [31] were used to estimate
the time-course of the demographic quantities Λ, Φ, and µ. The rate of immigration
in Italy (per day) is shown in Figure 2 as a piecewise constant function. Although,
the age profile of immigrants as a function of time is actually unknown, a survey
conducted in 2001 suggests that a percentage of about 70% of immigrants was in the
age range 20 ÷ 70 years [3]. Thus, we adopted such a percentage to calculate Φ(t)
from the immigration rate of Figure 2. Since no reliable data about the prevalence
of HIV infection among immigrants were available, we kept for α the upper bound
of the prevalence values estimated in the Italian population at the end of 2012 [7].
The per capita loss rate µ(t), was taken as a piecewise constant function where the
generic constant µk represents the mean loss rate over the year k. The value µk
was estimated according to

µk =
Mk

N̄[20,70]k · 365
,

where Mk is the number of deaths (not caused by AIDS) plus the number of emi-
grants during the year k, in the age range of interest, and N̄[20,70]k is the average
number of inhabitants of the selected ages during year k. The function µ(t) is plot-
ted in Figure 3. It can be noted that µ(t) changes only slightly with time, thus we
assumed µ(t) constant and equal to its average value µ̄ = 1.1 · 10−5 day−1.
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Figure 2. Rate of immigration in Italy averaged over each year.
Each time label denotes January 1st of the reported year.

Figure 3. Per capita loss rate averaged over each year.

Since N[20,70](t) is the number of Italians, both non-infected and infected, in the
20÷ 70 age range, we can write the following approximate balance equation

dN[20,70](t)

dt
= Λ(t) + Φ(t)− µ(t)N[20,70](t). (3)

that does not include the loss due to the ageing of infected people beyond age 70
– which can be neglected with respect to the same loss of non-infected individuals
taken into account by Λ – and the deaths from AIDS, totally negligible compared
to the non-AIDS deaths.

Eq. 3 allows the estimation of Λ(t). For simplicity, we estimated the average
value, Λ̄, of Λ(t) over the decade, by a least square fitting of the solution of Equation
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3, with µ(t) = µ̄ and the calculated Φ(t), to the data on N[20,70](t). The estimated

Λ̄ is equal to −156.36 individuals per day and the obtained best fitting of N[20,70](t)

data is reported in Figure 4. The negative value of Λ̄ reflects the current scarce
natality in Italy and the progressive increase of the mean population age.

Figure 4. Evolution of the Italian population in the 20÷70 years
age range: data (number of inhabitants at the beginning of the
indicated year), circle; prediction by Equation 3, solid line.

Concerning the disease progression, the parameters θn, n = 1, . . . , 4, have been
chosen according to [45, 34] and are reported in Table 1. Note that

∑4
n=1 θ

−1
n ' 11

years, which is the typical duration of the disease for untreated individuals [45]. It is
well known that the infectivity depends on the viral load of the infectant [32, 22] and
then on the stage of the disease, with the largest infectivity occurring at the primary
stage. We fixed the ratios βn/β2, n = 1, 3, 4 following [34], according to the reported
viral loads of the different stages. As for the infectivity of treated subjects, different
estimates can be found in the literature (see e.g. [15, 34, 10]). Following again [34],
we assumed that patients with complete viral suppression have negligible infectivity.
The percentage of treated patients in Italy with viral suppression has been estimated
in [6] using CD4 count> 350 cells/µL as a proxy of therapy success, and it amounted
to 62.4% in 2012. From this percentage and the viral load range in treated patients
with incomplete viral suppression reported in [34], we could estimate for β5/β2 a
value of about 0.20. This ratio could obviously be lower provided that individuals
under therapy kept a behaviour safer than that of untreated people, but a positive
impact of ART on risky behaviours is not demonstrated so far [8, 20]. A ratio
β5/β2 = 0.20 was then assumed (see Table 1). However, it must be stressed that
this value could be an overestimated and then a precautionary value, particularly
when used for the predictions over the period 2013 ÷ 2025. Indeed, the percentage
of viral suppressed patients reported in [6] is probably a pessimistic estimate, in
view of the therapeutic achievements of the current clinical practice.

We remark here that the parameters θn reflect the intra-host natural history of
the disease and so they can reasonably be thought independent of the infection
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routes. Moreover, whereas the quantitative relationship between probability of
transmission per contact and viral load of the infectant can certainly depend on
the transmission modality, it is likely that the ratio between the probabilities of
transmission is related to the ratio of the viral load of the corresponding infectants
in a way that does not depend on the transmission route. Indeed, this independence
has been assumed, at least for the sexual transmission in [43, 34].

The exit rate from the treatment ξ(t) has been assumed variable in the interval
2003÷ 2013, with 1/ξ(t) ranging linearly from 15 to 30 years. The assumption of a
decreasing ξ(t) is in agreement with the observed reduction of resistance in Italy in
the reference decade [13]. The parameters characterizing 1/ξ(t), that is the mean
residence time in the compartment I5, were calibrated using clinical information
and a preliminary trial and error fitting of the number of new AIDS cases and of
deaths from AIDS.

The remaining parameters β2, δ2, δ3, δ4 were estimated from all the available
data by means of a weighted least squares procedure, using weights equal to the
inverse of the squared data. In order to reduce the effect of the transient response
on the fitting curves, the ODE system was integrated starting from year 1996 with
an initial condition for I5 equal to zero, according to the introduction of HAART in
that year. The number of deaths from AIDS in each year was fitted by the integral
of θ4I4(t) over the year of interest, whereas the number of new AIDS cases by the
integral of δ4I4(t). The quantity δ4I4(t) can be intended as the notification rate of
new AIDS cases since the usual practice consists in treating a patient as soon as
AIDS is diagnosed. Figures 5-6 show the fitting curves and Table 1 reports all the
values of the parameters.

The best fitting of the available data suggests that, in the decade 2003÷2012, the
per capita treatment rate of AIDS patients was the largest, followed by the treat-
ment rate of patients with CD4 count between 350 and 200 cells/µl. Early treatment
of patients with higher CD4 counts resulted negligible (δ2 ≈ 10−19 day−1).

4. Predictions for the years 2013-2025. We start by predicting the HIV epi-
demic evolution up to 2025, assuming that Λ(t), µ(t), Φ(t) and ξ(t) are constant
and equal to the corresponding values taken at the end of 2012. All the remaining
parameters are set to the values reported in Table 1. We denote as the reference
prediction the system evolution obtained under the mentioned parameter setting.

Next, to investigate the effect of changing the treatment eligibility criterion, we
hypothesize two scenarios: a) δ3 is increased to the estimated value of δ4 reported
in Table 1; b) both δ2 and δ3 are increased to the value of δ4. For both scenarios, we
can observe that anticipating the initiation of treatment results in a lower number
either of new AIDS cases and AIDS deaths (see Figure 7). Concerning the evolution
of infected people, only scenario b) shows a significant effect (see Figure 8). In
particular, it leads to a rapid increase in the number of treated individuals, whereas
the number of total infected grows with reduced slope. In scenario b), the model
predicts for the year 2025 a 46% reduction either in the new cases of AIDS and in
the number of AIDS deaths, compared to the values of the reference prediction, and
a 5% reduction in the total number of infected individuals. Figure 9 reports the
time course of the incidence rate from which we notice in case of scenario b) a 33%
decrease of newly infected subjects at year 2025. We can note that the decreasing
trend observed in the period 2003 ÷ 2012 for either the number of new AIDS cases
and the number of AIDS deaths, as well as for the incidence rate, is not maintained
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Figure 5. Time-course of the number of HIV infected individuals
and of HAART treated patients in Italy, over the years 2003 ÷
2013. Median values estimated by Camoni et al. [7], circles (bars
represent the difference between the 3rd and the 1st quartiles);
measurement of the number of treated patients at the end of 2012
[6], square. Model predictions: infected, black solid line; treated
patients, black dashed line. Estimate of patients under treatment
at year 2005, triangle (communicated by C. Balotta).

Figure 6. New cases of AIDS and number of deaths by AIDS in
Italy (per year). Data from [5], red triangles; model predictions,
black circles.

over the whole prediction period. This behaviour is likely due to the fact that ξ(t)
is assumed no longer decreasing after 2012.

Finally, we investigated the effect of changing the treatment exit rate and the
infectivity of treated subjects. In particular, we first assumed 1/ξ(t) linearly in-
creasing in 2013 ÷ 2025 with the same slope of the previous decade. This case, in
which ξ(t) is decreasing, represents a continuative improvement of the treatment
efficiency. Next, we assumed 1/ξ(t) decreasing in 2013 ÷ 2025, still linearly but
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Table 1. Baseline parameter values.

Parameters Value Source

Λ̄ −156.36 persons·day−1 [31]

Φ(t = 2013) 672.70 persons·day−1 [31]

µ̄ 1.1 · 10−5 day−1 [31]

α 3.2 · 10−3 [7]

1/ξ(t = 2003) 5, 475 days Assumed

1/ξ(t = 2013) 10, 950 days Assumed

θ1 2.86 · 10−2 day−1 [34]

θ2 4.57 · 10−4 day−1 [34]

θ3 7.83 · 10−4 day−1 [34, 45]

θ4 1.8 · 10−3 day−1 [34, 45]

β2 3.17 · 10−12 (persons·day)−1 Estimated

β1/β2 4.5 [34]

β3/β2 1.125 [34]

β4/β2 1.667 [34]

β5/β2 0.2 [34, 6]

δ2 1.10 · 10−19 day−1 Estimated

δ3 2.27 · 10−3 day−1 Estimated

δ4 3.2 · 10−3 day−1 Estimated

Figure 7. Predictions of new cases of AIDS and number of AIDS
deaths (per year). Parameters δ2, δ3, δ4 as in Table 1 (reference
prediction), black circles; δ2, δ4 unchanged and δ3 = δ4, magenta
squares; δ4 unchanged and δ2 = δ3 = δ4, cyan circles. Data from
[5], red triangles.
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Figure 8. Predictions of the number of infected individuals: total
infected, solid lines; infected under therapy, dashed lines. Reference
prediction, black; δ3 = δ4, magenta; δ2 = δ3 = δ4, cyan. Note that
solid lines are substantially overlapping. Red data markers as in
Figure 5.

Figure 9. Predictions of the incidence rate (persons·day−1). Ref-
erence prediction, black; δ3 = δ4, magenta; δ2 = δ3 = δ4, cyan.
Prediction with δ2 = δ3 = δ4 and β5/β2 = 0.1, cyan dashed line.

with opposite slope of the previous decade. This simulation, with increasing ξ(t), is
intended to mimic a relapse of resistance in the prediction period. The results are
reported in Figures 10, 11. No apparent effect can be noticed on the evolution of
the infected individuals, whereas, as expected, the number of treated individuals de-
creases when ξ(t) is supposed to increase. By contrast, either for decreasing and for
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increasing ξ(t), the number of new cases of AIDS and the number of AIDS deaths
are remarkably affected (see Figure 11). In particular, for both these quantities,
the decreasing trend established over 2003÷ 2013 is maintained if ξ(t) is decreasing
whereas it is dramatically reverted if ξ(t) is supposed to increase.

2014 2016 2018 2020 2022 20240.6

0.8

1

1.2

1.4

1.6x 105

time (year)

Infected individuals

Figure 10. Predictions of the number of infected individuals: to-
tal infected, solid lines; infected under therapy, dashed lines. Refer-
ence prediction, black; 1/ξ(t) linearly increasing, magenta; 1/ξ(t)
linearly decreasing, cyan. Note that solid lines are substantially
overlapping. Red data markers as in Figure 5.

Figure 11. Predictions of new cases of AIDS and number of AIDS
deaths (per year). δ2, δ3, δ4 as in Table 1 (reference prediction),
black circles; 1/ξ(t) linearly increasing, magenta squares; 1/ξ(t)
linearly decreasing, cyan circles. Data from [5], red triangles.

The effect of changing the infectivity of treated subjects is shown in Table 2. The
values of some significant quantities at January 1st 2025 are reported for ±50% vari-
ations of the baseline value of the ratio β5/β2, and keeping all the other parameters
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fixed to the values of Table 1. Note that with β5/β2 = 0.1, the HIV incidence
rate shows a 34% reduction compared to its reference value. The reduction of the
infectivity of treated subjects appears to work in synergy with the early treatment:
when β5/β2 = 0.1 and δ2 = δ3 = δ4, the incidence rate at 2025 is reduced indeed
by 63% (see also Figure 9, dashed line).

Table 2. Predictions for different values of β5/β2.

β5/β2
Values at January 1st 2025

0.1 0.2 0.3

Infected (persons) 1.303 · 105 1.368 · 105 1.435 · 105

Treated (persons) 1.117 · 105 1.144 · 105 1.172 · 105

HIV infection rate (persons·day−1) 3.85 5.794 7.816

New cases of AIDS (persons·year−1) 975.3 1062 1149

AIDS deaths (persons·year−1) 557.3 606.7 656.8

5. Analysis of asymptotic properties. In this section, we establish the stability
properties of the time-invariant version of the model described by Eqs. 1, where
the functions Λ(t), µ(t), Φ(t), ξ(t) are assumed constant. Namely, we will study
the ODE system:

Ṡ(t)=Λ + (1− α)Φ− µS(t)−

(
5∑

n=1

βnIn(t)

)
S(t)

İ1(t)=a1αΦ+

(
5∑

n=1

βnIn(t)

)
S(t)− (θ1+µ)I1(t),

İ2(t)=a2αΦ+θ1I1(t)− (θ2+µ+δ2)I2(t),

İ3(t)=a3αΦ+θ2I2(t)− (θ3+µ+δ3)I3(t)+ξI5(t),

İ4(t)=θ3I3(t)− (θ4+µ+δ4)I4(t),

İ5(t)=δ2I2(t)+δ3I3(t)+δ4I4(t)−(ξ+µ)I5(t),

(4)

with 0 ≤ α ≤ 1 and with the assumption

Λ + (1− α)Φ > 0. (5)

The above assumption prevents the susceptible population from the extinction.
Indeed, if S = 0, 5 implies Ṡ > 0. Note that 5 is satisfied with Λ = Λ̄, Φ = Φ(t =
2013) (see Table 1).

We observe that the set

Ω =

{
(S, I1, . . . , I5) ∈ IR6

+ |S +

5∑
n=1

In ≤
Λ + Φ

µ

}
, (6)

where IR6
+ denotes the non-negative orthant of IR6, is invariant for the system 4.

This property can be easily established by examining the directions of the vector
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field defined by 4 on the boundary of IR6
+ and taking into account that

Ṅ(t) = Ṡ(t) +

5∑
n=1

İn(t) = Λ + Φ− µN(t)− θ4I4(t)

≤ Λ + Φ− µN(t), (7)

for non-negative I4(t). The above inequality, in fact, implies

N(t) ≤ N(t0)e−µ(t−t0) +
Λ + Φ

µ

(
1− e−µ(t−t0)

)
, (8)

which in turn implies N(t) bounded by (Λ + Φ)/µ for any initial state in Ω.
Also, we remark that if an equilibrium point of system 4 exists in IR6

+, it neces-
sarily belongs to Ω. Let E be such an equilibrium, and N∗, I∗4 be the corresponding
values of the total population and of the number of individuals in the AIDS stage
respectively. Since E is an equilibrium, we have

Λ + Φ− µN∗ − θ4I∗4 = 0, (9)

whereas if E were such that N∗ > (Λ + Φ)/µ we would get the contradiction:

Λ + Φ− µN∗ − θ4I∗4 < 0.

5.1. Existence and stability of equilibria for α = 0 . Denoting by E = (S∗, I∗1 ,
. . . , I∗5 ) a generic equilibrium point of system 4 with α = 0, i.e. without infected
among immigrants, we have that E must satisfy the following algebraic system

Λ + Φ = µS∗ +

(
5∑

n=1

βnI
∗
n

)
S∗,

Q1I
∗
1 =

(
5∑

n=1

βnI
∗
n

)
S∗,

Q2I
∗
2 = θ1I

∗
1 ,

Q3I
∗
3 = θ2I

∗
2 + ξI∗5 ,

Q4I
∗
4 = θ3I

∗
3 ,

Q5I
∗
5 = δ2I

∗
2 + δ3I

∗
3 + δ4I

∗
4 ,

(10)

where
Q1 = θ1 + µ,
Q2 = θ2 + µ+ δ2,
Q3 = θ3 + µ+ δ3,
Q4 = θ4 + µ+ δ4,
Q5 = ξ + µ.

(11)

From the last four equations in 10 we obtain:

I∗n=mnI
∗
1 , n = 2, . . . , 5, (12)

where

m2 =
θ1
Q2

,

m3 =
θ2 + δ2(ξ/Q5)

Q3 − δ3(ξ/Q5)− θ3(δ4/Q4)(ξ/Q5)
m2,

m4 =
θ3
Q4

m3,

m5 =
δ2
Q5

m2 +
δ3
Q5

m3 +
δ4
Q5

m4.

(13)
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Introducing the notation

η = β1 + β2m2 + β3m3 + β4m4 + β5m5,

and taking into account 12, the first two equations of the system 10 can be rewritten
as

Λ + Φ− µS∗ − ηI∗1S∗ = 0,
I∗1 (ηS∗ −Q1) = 0.

(14)

System 14 admits two different solutions

S∗=
Λ + Φ

µ
, I∗1 =0 or S∗=

Q1

η
, I∗1 =

(
Λ + Φ

Q1
−µ
η

)
, (15)

meaning that system 4 has in Ω the disease-free equilibrium Edf

S∗=
Λ + Φ

µ
, I∗n=0, n = 1, . . . , 5, (16)

and, if and only if (Λ + Φ)η > µQ1, the positive endemic equilibrium Een

S∗=
Q1

η
, I∗n=mn

(
Λ + Φ

Q1
−µ
η

)
, n = 1, . . . , 5, (17)

where m1 = 1.
The stability analysis of the disease-free equilibrium has been performed by

means of the reproduction number R, computed exploiting the method proposed in
[38], after verifying that our dynamical model satisfies all the structural hypothesis
required. Then, let us define the vectors

f =



(
5∑

n=1

βnIn(t)

)
S(t)

0
0
0
0


, (18)

v =


Q1I1(t)

−θ1I1(t) +Q2I2(t)
−θ2I2(t)− ξI5(t) +Q3I3(t)
−θ3I3(t) +Q4I4(t)

−δ2I2(t)− δ3I3(t)− δ4I4(t) +Q5I5(t)

 , (19)

where the generic entry fi represents the rate of appearance of new infections in
compartment i while the entry vi represents the sum of the transfer rates of individ-
uals exiting from (positive sign) and entering (negative sign) compartment i. Let
us also compute the Jacobian matrices of vectors f , v at the equilibrium Edf

F = ∇f |Edf
=

Λ + Φ

µ


β1 β2 β3 β4 β5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (20)
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V = ∇v|Edf
=


Q1 0 0 0 0
−θ1 Q2 0 0 0

0 −θ2 Q3 0 −ξ
0 0 −θ3 Q4 0
0 −δ2 −δ3 −δ4 Q5

 . (21)

According to [9], the reproduction number is defined as the spectral radius of the
next generation matrix FV −1. So, taking into account the expression of the inverse
matrix of V ,

V −1 =
1

Q1


1 ∗ ∗ ∗ ∗
m2 ∗ ∗ ∗ ∗
m3 ∗ ∗ ∗ ∗
m4 ∗ ∗ ∗ ∗
m5 ∗ ∗ ∗ ∗

 , (22)

where only the first column of V −1 is needed for the computation of R, and recalling
the expression of F given by 20, we obtain

R = ρ
(
FV −1

)
=

Λ + Φ

µ

η

Q1
, (23)

where ρ(·) is the spectral radius operator. Note that condition 5 guarantees R > 0.
It is useful to rewrite the expression of the endemic equilibrium in terms of R,

given by 23, as

S∗=
Λ + Φ

µ

1

R
, I∗n=mn

Q1

µ(R− 1)
, n = 1, . . . , 5, (24)

showing that the endemic equilibrium exists if and only if R > 1.
Thanks to the bilinear form of the incidence rate, it can be verified that model

4 with α = 0 belongs to the class of models studied by Guo et al. in [18]. Then,
their stability analysis of the disease-free equilibrium and of the possible endemic
equilibrium applies to our model. We have the following results.

Theorem 5.1. When α = 0 and Λ + Φ > 0, R is positive and the disease-free
equilibrium Edf exists for any value of R. For R ≤ 1, Edf is globally asymptotically
stable in Ω, while for R > 1 is unstable.

Proof. See the proof of Theorem 4.1 in [18]. It can be easily verified that our model
satisfies all the basic assumptions (H1)-(H8), as well as the additional hypotheses
(A1), (A2) assumed by the Authors to prove the global stability of the disease-free
equilibrium for R ≤ 1 and its instability for R > 1 (see Appendix).

Theorem 5.2. When α = 0 and Λ + Φ > 0, the endemic equilibrium Een exists if
and only if R > 1, and it is globally asymptotically stable in Ω \ {Edf}.

Proof. The proof of the existence comes directly from Eq. 24. Indeed, vector 24 is
positive if and only if R > 1. For the global stability of the endemic equilibrium,
see the proof of Theorem 5.1 in [18]. The additional hypothesis assumed in [18]
hold in our case (see Appendix).

In view of the analysis of model 4 with α > 0, however, we report here how the
proof of the general result in [18] can be specialized in our case. The global stability
of Een can be indeed proved considering the following Lyapunov function

L(S, I1, . . . , I5) = c1

(
S − S∗ − S∗ ln

(
S

S∗

))
+

5∑
n=1

cn

(
In − I∗n − I∗n ln

(
In
I∗n

))
, (25)
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which, for positive coefficients cn, has the following properties:

L(S, I1, . . . , I5) = 0 ⇔ (S, I1, . . . , , I5) = (S∗, I∗1 , . . . , I
∗
5 ),

L(S, I1, . . . , I5) > 0, ∀(S, I1, . . . , I5) 6= (S∗, . . . , I∗5 ).
(26)

From Eq. 25 it follows

L̇(S, I1, . . . , I5) = c1

(
1− S∗

S

)
Ṡ +

5∑
n=1

cn

(
1− I∗n

In

)
İn. (27)

By exploiting either the equations of the dynamic system 4 and the equilibrium
equations in 10, and introducing also the compact notation s = S/S∗, in = In/I

∗
n,

n = 1, . . . , 5, we obtain

L̇(S, I1, . . . , I5)

= c1

(
µS∗

(
2− s− 1

s

)
+

5∑
n=1

βnS
∗I∗n

(
2− s in

i1
− 1

s
− i1 + in

))

+ c2

(
θ1I
∗
1

(
1− i1

i2
− i2 + i1

))
+ c3

(
θ2I
∗
2

(
1− i2

i3
− i3 + i2

)
+ ξI∗5

(
1− i5

i3
− i3 + i5

))
+ c4

(
θ3I
∗
3

(
1− i3

i4
− i4 + i3

))
+ c5

(
δ2I
∗
2

(
1− i2

i5
− i5 + i2

)
+δ3I

∗
3

(
1− i3

i5
− i5 + i3

)
+δ4I

∗
4

(
1− i4

i5
− i5 + i4

))
.

(28)

Such a function is non-positive in the interior of Ω by choosing the Lyapunov coef-
ficients c1, . . . , c5 according to the method proposed in [18] (see the Appendix for
details), namely

c1 = Θ1Θ3

(
Θ2

4∑
n=2

∆n+Ξ5∆2

)
,

c2 =

5∑
n=2

BnΘ3

(
Θ2

4∑
n=2

∆n+Ξ5∆2

)
,

c3 = Θ1Θ3

(
B3

4∑
n=2

∆n+B4

4∑
n=2

∆n+B5

4∑
n=3

∆n

)
,

c4 = Θ1

(
B3Ξ5∆4 +B4

(
Θ2

4∑
n=2

∆n+Ξ5

(
∆2 + ∆4

))
+B5∆4(Θ2 + Ξ5)

)
,

c5 = Θ1Θ3

(
Ξ5

5∑
n=3

Bn+Θ2B5

)
,

(29)

where
Θ1 = θ1I

∗
1 , Θ2 = θ2I

∗
2 , Θ3 = θ3I

∗
3 ,

∆2 = δ2I
∗
2 , ∆3 = δ3I

∗
3 , ∆4 = δ4I

∗
4 ,

Ξ5 = ξI∗5 , Bn = βnS
∗I∗n, n = 2, . . . , 5.

(30)

Therefore, we obtain L̇(S, I1, . . . , I5) ≤ 0, with L̇(S, I1, . . . , I5) = 0 only in {Een}
(see Appendix). This proves the asymptotic stability of Een in the interior of Ω.
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Since on the boundary of Ω out of the disease-free equilibrium the vector field
of our system points inwards, the basin of attraction of Een can be extended to
Ω \ {Edf}.

In order to illustrate the role of antiviral treatment, it may be of interest to
compute the reproduction number R for different treatment scenarios. With Λ = Λ̄,
Φ = Φ(t = 2013), α = 0, and setting the values of the other parameters as in Table
1, R is equal to 2.004. In the absence of treatment (δn = 0, n = 2, 3, 4), R decreases
to 0.678. So we notice that, in general, treatment is not necessarily accompanied
by a lower value of R, since treatment implies a longer average life-time of infected
individuals and then may imply a greater per capita number of infections. With
ξ = 0 and keeping the other parameter values of Table 1 (i.e. in case of life-long
therapy), R increases to 2.796.

5.2. Existence and stability of positive equilibria for α > 0 . In this section
we report the equilibrium analysis of model 4 when α > 0, i.e. in the presence of
infected among immigrants.

For the generic equilibrium point, the following algebraic system holds

Λ + (1− α)Φ = µS∗ +

(
5∑

n=1

βnI
∗
n

)
S∗,

Q1I
∗
1 =

(
5∑

n=1

βnI
∗
n

)
S∗ + a1αΦ,

Q2I
∗
2 = a2αΦ + θ1I

∗
1 ,

Q3I
∗
3 = a3αΦ + θ2I

∗
2 + ξI∗5 ,

Q4I
∗
4 = θ3I

∗
3 ,

Q5I
∗
5 = δ2I

∗
2 + δ3I

∗
3 + δ4I

∗
4 ,

(31)

where the quantities Qn, n = 1, . . . , 5, are given by 11. From the last four equations
in 31 we obtain:

I∗n=qn +mnI
∗
1 , n = 2, . . . , 5, (32)

where the coefficients mn are explicitly given in 13, while the terms qn are defined
as follows:

q2 =
a2αΦ

Q2
,

q3 =
a3αΦ

Q3−δ3(ξ/Q5)−θ3(δ4/Q4)(ξ/Q5)
+

θ2 + δ2(ξ/Q5)

Q3−δ3(ξ/Q5)−θ3(δ4/Q4)(ξ/Q5)
q2,

q4 =
θ3
Q4

q3,

q5 =
δ2
Q5

q2 +
δ3
Q5

q3 +
δ4
Q5

q4.

(33)

Theorem 5.3. When α > 0 and Λ + (1 − α)Φ > 0, a unique positive equilibrium
exists in Ω and it is globally asymptotically stable.

Proof. Recalling the definition of η given in Section 5.1 and introducing the notation

γ = β2q2 + β3q3 + β4q4 + β5q5,

from the first two equations of 31 and from equations 32 we obtain

S∗=
Λ + (1− α)Φ

γ + ηI∗1 + µ
, (34)
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and the quadratic equation in the variable I∗1

aI∗1
2 + bI∗1 + c = 0,

where
a = −Q1η,
b = (Λ + (1 + a1α− α)Φ)η −Q1(γ + µ),
c = a1αΦµ+ (Λ + (1 + a1α− α)Φ)γ.

From 5 we have c > 0, and then, since a < 0, there exists a unique positive solution
for I∗1 , that is

I∗1 = ζ +
√
ζ2 + ν,

ζ =
(Λ + (1 + a1α− α)Φ)η −Q1(γ + µ)

2Q1η
,

ν =
a1αΦµ+ (Λ + (1 + a1α− α)Φ)γ

Q1η
.

(35)

Note that if a positive equilibrium exists, Eq. 34 implies that 5 must hold. Thus,
5 is a necessary and sufficient condition for the existence of the unique positive
equilibrium defined by Eqs. 34, 35, and 32.

The stability of such an endemic equilibrium can be proved considering the same
Lyapunov function defined by 25. Indeed, from the derivative of L given by 27,
from system 4 with α > 0, and from the equilibrium equations 31, we obtain

L̇(S, I1, . . . , I5) = L̇′(S, I1, . . . , I5) + L̇′′(S, I1, . . . , I5), (36)

where

L̇′(S, I1, . . . , I5)=

3∑
n=1

cnanαΦ

(
2− in −

1

in

)
, (37)

while the term L̇′′(S, I1, . . . , I5) equals the r.h.s. of 28. Since in the proof of
Theorem 5.2 it has been demonstrated the non-positivity of the function 28, we
have L̇′′(S, I1, . . . , I5) ≤ 0 for the same choice of the coefficients cn given in 29,
30. Conversely, it is easy to see that for any (positive) choice of cn, it results

L̇′(S, I1, . . . , I5) ≤ 0 since it is (2−in−1/in) ≤ 0 for the arithmetic-mean/geometric-

mean inequality. Moreover, it is L̇(S, I1, . . . , I5) = 0 only in the set {(S∗, I∗1 , . . . , I∗5 )}.
Such a property can be easily verified by simultaneously equating to zero all the
polynomials in the brackets of Eq. 37, as well as of Eqs. 42, 44.

Note that if the weaker condition Λ + (1 − α)Φ ≥ 0 were required instead of 5,
when Λ + (1 − α)Φ = 0 a unique equilibrium would still exist with S∗ = 0 and
I∗1 , . . . , I

∗
5 > 0, namely with the whole population infected.

6. Concluding remarks. The present paper presents a mathematical model de-
veloped to assess the impact of early treatment strategies in Italy. If the treatment
is initiated regardless of CD4 cell counts at diagnosis, a significant impact over AIDS
incidence and mortality is predicted, provided that the trend of reduced resistance
to drug, observed in the decade 2003÷ 2012, is maintained in time. Moreover, the
model forecasts a significant decrease in the number of newly infected individuals,
thus suggesting, in agreement with other theoretical studies (see e.g [21]), that ben-
efits can derive from the implementation of a ‘test and treat’ strategy for the control
of HIV infection. The model also predicts that these benefits would be enhanced
if early treatments were accompanied by a decrease of the infectivity of treated
subjects.
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It must be recalled, however, that the knowledge about the HIV prevalence
among immigrants and the infectivity of treated subjects is rather uncertain up
to now. So, a better assessment of the value of these parameters would improve
the quantitative reliability of the model. Conversely, more subtle phenomena like
the possible dependence of some model parameters on the virus strain, as well as
the possible correlation between the transmission routes and the drug resistance
mutations of the transmitted virus [30], are expected to be of minor importance
owing to the large prevalence of wild type HIV infections in Europe (more than
90% at 2006 [39]). Moreover, we want to stress that the proposed model was
intentionally kept simple, postponing possible extensions to future investigations.

The formal analysis of the model has allowed to establish the existence of equi-
libria and their global stability, classifying them on the basis of the prevalence of
infected among immigrants. Only in the case in which the fraction of infected
among immigrants is zero, the disease-free equilibrium exists and a threshold pa-
rameter for its stability can be identified in the reproduction number. The value
of the reproduction number, moreover, has a non-trivial relationship with the pa-
rameters characterizing the dynamics of the compartment related to patients under
treatment.

However, the knowledge of equilibria and their stability is scarcely useful for
predicting the HIV epidemic over reasonable time horizons. Numerical simulations
have shown indeed a very slow convergence to the equilibrium point (> 100 years),
since the time from infection to death is quite long, even in untreated subjects
(
∑4
n=1 θ

−1
n ' 11 years, with the values of Table 1).

It may be questioned whether the disease progression in patients for whom ther-
apy is interrupted or is no longer effective can be equated with the progression
experienced by naive infected individuals. Thus, it would be worthy to design and
study a little more complex model in which different disease progressions for naive
and previously treated patients are considered. Finally, it cannot be guaranteed that
the trend of reduced drug resistance will continue over the next decade. Therefore,
a model of the evolution in Italy of the resistance to different classes of drugs is still
needed and it is the main goal of our future work.
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Appendix . It can be easily verified that the basic hypotheses (H1)-(H8) assumed
in [18] are satisfied by model 4 with α = 0.

Additional properties are required to prove the global asymptotic stability of the
disease-free equilibrium and the global asymptotic stability of the unique endemic
equilibrium. In this section, it is shown that all these additional properties are
satisfied by our model.

With this aim we introduce the following notation:

• χ(S) = Λ + Φ− µS, growth rate of model 4 with α = 0;
• gn(S, In) = βnSIn, n = 1, . . . , 5, bilinear incidence term for infections occur-

ring by contact of susceptibles with infected in stage n;
• ψn(In) = QnIn, n = 1, . . . , 5, removal rate from compartments In, including

natural death, disease progression, possibly treatment initiation/interruption
or death due to the disease (see the equations of Qn in 11);
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• ωj,n(In) = σj,nIn, 1 ≤ j, n ≤ 5, transfer rate from compartment In to com-
partment Ij , where σ2,1 = θ1, σ3,2 = θ2, σ4,3 = θ3, σ3,5 = ξ and σ5,n = δn,
n = 2, 3, 4, while σj,n = 0 for all the remaining pairs of indexes.

We also denote by S̃ the number of susceptible individuals at the disease-free equi-
librium (that is the value of S at which the growth rate vanishes, i.e. χ(S̃) = 0)
and with S∗, I∗n, n = 1, . . . , 5, the values of the state variables at the endemic equi-
librium. We also define the function ϕ(S) = S. On the basis of the above notation,
we rewrite hypotheses (A1), (A2) and (B1)-(B4) required in [18] showing that they
are satisfied by our rate functions and by the chosen ϕ(S):

(A1): For n = 1, . . . , 5, we have

gn(S, In)− gn(S̃, In) = βn(S − S̃)In ≤ 0, 0 ≤ S ≤ S̃, In ≥ 0,

gn(S, In)− gn(S̃, In) = βn(S − S̃)In = 0, In > 0, =⇒ S = S̃,

0 <
gn(S̃, In)

ψ(In)
=
βnS̃

Qn
<∞, In > 0;

(A2): For j, n ∈ {1, . . . , 5}, we have

0 ≤ ωj,n(In)

ψ(In)
=
σj,n
Qn

<∞, In > 0;

(B1): For S 6= S∗,

(χ(S)− χ(S∗))(ϕ(S)− ϕ(S∗)) = −µ(S − S∗)2 < 0;

(B2): For In > 0, n = 1, . . . , 5, and 0 ≤ S ≤ S̃,(
gn(S, In)

ϕ(S)
− gn(S∗, I∗n)

ϕ(S∗)

)(
gn(S, In)

ϕ(S)ψn(In)
− gn(S∗, I∗n)

ϕ(S∗)ψn(I∗n)

)
=

βn(In − I∗n)

(
βn
Qn
− βn
Qn

)
= 0;

(B3): For In > 0, n = 1, . . . , 5, and for each pair j, n ∈ {1, . . . , 5},

(ωj,n(In)− ωj,n(In)∗)

(
ωj,n(In)

ψn(In)
− ωj,n(In)∗)

ψn(I∗n)

)
=

σj,n(In − I∗n)

(
σj,n
Qn
− σj,n
Qn

)
= 0;

(B4): All the functions gn(S, In), ψn(In), ωj,n(In), with j, n = 1, . . . , 5, and σj,n 6= 0
are strictly monotone with respect to In.

Let us finally define the weight matrix M of the infection-transfer graph G of model
4 (see Fig. 12), as M = (mj,n), where m1,n = ω1,n(I∗n) + gn(S∗, I∗n), n = 1, . . . , 5,
while mj,n = ωj,n(I∗n), n = 1, . . . , 5, for j = 2, . . . , 5. Substituting the expressions
of the functions gn(S∗, I∗n), ωj,n(I∗n), j, n = 1, . . . , 5, we have

M =


β1S

∗I∗1 β2S
∗I∗2 β3S

∗I∗3 β4S
∗I∗4 β5S

∗I∗5
θ1I
∗
1 0 0 0 0

0 θ2I
∗
2 0 0 ξI∗5

0 0 θ3I
∗
3 0 0

0 δ2I
∗
2 δ3I

∗
3 δ4I

∗
4 0

 . (38)

As the the weighted graph (M,G) of the model 4 is strongly connected, the matrix
M results to be irreducible.
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On the basis of the properties given above, Theorems 4.1 and 5.1 in [18] hold in
our case, guaranteeing that the disease-free equilibrium is globally asymptotically
stable for R ≤ 1 and unstable for R > 1, while the endemic equilibrium is unique
and also asymptotically stable when R > 1 (R is the reproduction number defined
in Section 5.1).

However, for the completeness of our study, we report here some details of the
proof of Theorem 5.2 given in Section 5.1. As suggested in [18], we consider the
following general Lyapunov function

L(S, I1, . . . , I5) = c1

∫ S

S∗

ϕ(τ)− ϕ(S∗)

ϕ(τ)
dτ +

5∑
n=1

cn

∫ In

I∗n

ψ(τ)− ψ(I∗n)

ψ(τ)
dτ. (39)

Recalling that in our case the removal rates ψn(In) are equal to QnIn, n = 1, . . . , 5,
for the particular choice ϕ(S) = S the general function 39 becomes the function
given in 25. Then, we choose the coefficient cn as the cofactor of the n-th diagonal
entry of the algebraic Laplacian matrix of M defined as

L(M) = diag

(
5∑

n=1

m1,n, . . . ,

5∑
n=1

m5,n

)
−M

=



5∑
n=2

βnS
∗I∗n −β2S∗I∗2 −β3S∗I∗3 −β4S∗I∗4 −β5S∗I∗5

−θ1I∗1 θ1I
∗
1 0 0 0

0 −θ2I∗2 θ2I
∗
2 + ξI∗5 0 −ξI∗5

0 0 −θ3I∗3 θ3I
∗
3 0

0 −δ2I∗2 −δ3I∗3 −δ4I∗4
4∑

n=2

δnI
∗
n


.

(40)

It can be easily verified that the five cofactors of L(M) are given by 29, 30. By

inferring the relation c2 = (
∑5
n=2Bn/Θ1)c1 from equations 29, the function 28 can

be rewritten as

L̇(S, I1, . . . , I5) = T ′(S, I1, . . . , I5) + T ′′(S, I1, . . . , I5), (41)

Figure 12. Infection-transfer graph G of model 4. Transfers of
individuals between compartments, black arcs; infections, red arcs.
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where

T ′(S, I1, . . . , I5) = c1

(
(µS∗ +B1)

(
2− s− 1

s

)
+B2

(
3− si2

i1
− 1

s
− i1
i2

))
, (42)

and

T ′′(S, I1, . . . , I5)

= c1

5∑
n=3

Bn

(
3− sin

i1
− 1

s
− i1
i2
− i2 + in

)
+ c3

(
θ2I
∗
2

(
1− i2

i3
− i3 + i2

)
+ ξI∗5

(
1− i5

i3
− i3 + i5

))
+ c4

(
θ3I
∗
3

(
1− i3

i4
− i4 + i3

))
+ c5

(
δ2I
∗
2

(
1− i2

i5
− i5 + i2

)
+δ3I

∗
3

(
1− i3

i5
− i5 + i3

)
+δ4I

∗
4

(
1− i4

i5
− i5 + i4

))
.

(43)

Since from the arithmetic-mean/geometric-mean inequality we have (2−s−1/s) ≤ 0
and (3− si2/i1−1/s− i1/i2) ≤ 0, the function 42 is non-positive. In order to prove
the non-positiveness of the second term of the function 41, we directly substitute in
Eq. 43 the expressions of c1, c3, c4 and c5 given in 29. Then, collecting the terms
with respect to Bn, n = 3, 4, 5, we obtain

T ′′(S, I1, . . . , I5)

=B3

(
Θ1Θ3

(
Θ2

4∑
n=2

∆n

(
4− si3

i1
− 1

s
− i1
i2
− i2
i3

)
+ Ξ5∆2

(
5− si3

i1
− 1

s
− i1
i2
− i5
i3
− i2
i5

)
+ Ξ5∆3

(
2− i5

i3
− i3
i5

)
+Ξ5∆4

(
3− i5

i3
− i3
i4
− i4
i5

)))
+B4

(
Θ1Θ3

(
Θ2

4∑
n=2

∆n

(
5− si4

i1
− 1

s
− i1
i2
− i2
i3
− i3
i4

)
+ Ξ5∆2

(
6− si4

i1
− 1

s
− i1
i2
− i5
i3
− i3
i4
− i2
i5

)
+ Ξ5∆3

(
2− i5

i3
− i3
i5

)
+Ξ5∆4

(
3− i5

i3
− i3
i4
− i4
i5

)))
+B5

(
Θ1Θ3

(
Θ2∆2

(
4− si5

i1
− 1

s
− i1
i2
− i2
i5

)
+ Θ2∆3

(
5− si5

i1
− 1

s
− i1
i2
− i2
i3
− i3
i5

)
+ Θ2∆4

(
6− si5

i1
− 1

s
− i1
i2
− i2
i3
− i3
i4
− i4
i5

)
+ Ξ5∆2

(
4− si5

i1
− 1

s
− i1
i2
− i2
i5

)
+



A SIMPLE MODEL OF HIV EPIDEMIC IN ITALY 205

+ Ξ5∆3

(
2− i5

i3
− i3
i5

)
+Ξ5∆4

(
3− i5

i3
− i3
i4
− i4
i5

))
. (44)

From 44 it is easy to deduce that T ′′(S, I1, . . . , I5) ≤ 0 since, exploiting again
the arithmetic-mean/geometric-mean inequality, all the polynomials in the brackets
result to be actually non-positive. With this last statement we can conclude that
L̇(S, I1, . . . , I5) ≤ 0.

Finally, in order to prove the asymptotic stability of Een, we need to verify
that L̇(S, I1, . . . , I5) = 0 if and only if (S, I1, . . . , I5) ≡ (S∗, I∗1 , . . . , I

∗
5 ). Indeed, if

L̇(S, I1, . . . , I5) = 0 it follows that all the polynomials in the brackets of equations
42 and 44 are equal to zero. Then, it is easy to obtain that each point satisfying
L̇(S, I1, . . . , I5) = 0 is such that

S = S∗, in = λ, n = 1, . . . , 5, (45)

where λ is a positive constant. In other words, each solution satisfying L̇(S, I1, . . . ,
I5) = 0 is a time-invariant solution identified by S(t) = S∗, In(t) = λI∗n, n =

1, . . . , 5. Consequently, from the equation of Ṡ in 4 we obtain

0 = Λ− µS∗ − λ
5∑

n=1

βnI
∗
nS
∗. (46)

Since the same equation holds for the endemic equilibrium with λ = 1, we deduce
that Eq. 46 can be verified only for λ = 1, because of its linearity with respect to
λ. So, we can conclude L̇(S, I1, . . . , I5) = 0 ⇔ (S, I1, . . . , I5) ≡ (S∗, I∗1 , . . . , I

∗
5 ).
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