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ABSTRACT. Three deterministic Kermack-McKendrick-type models for study-
ing the transmission dynamics of an infection in a two-sex closed population
are analyzed here. In each model it is assumed that infection can be trans-
mitted through heterosexual contacts, and that there is a higher probability of
transmission from one sex to the other than vice versa. The study is focused
on understanding whether and how this bias in transmission reflects in sex
differences in final attack ratios (i.e. the fraction of individuals of each sex that
eventually gets infected). In the first model, where the other two transmis-
sion modes are not considered, the attack ratios (fractions of the population
of each sex that will eventually be infected) can be obtained as solutions of a
system of two nonlinear equations, that has a unique solution if the net repro-
duction number exceeds unity. It is also shown that the ratio of attack ratios
depends solely on the ratio of gender-specific susceptibilities and on the basic
reproductive number of the epidemic Rg, and that the gender-specific final
attack-ratio is biased in the same direction as the gender-specific susceptibil-
ities. The second model allows also for infection transmission through direct,
non-sexual, contacts. In this case too, an analytical expression is derived from
which the attack ratios can be obtained. The qualitative results are similar to
those obtained for the previous model, but another important parameter for
determining the value of the ratio between the attack ratios in the two sexes is
obtained, the relative weight of direct vs. heterosexual transmission (namely,
p). Quantitatively, the ratio of final attack ratios generally will not exceed 1.5,
if non-sexual transmission accounts for most transmission events (p > 0.6) and
the ratio of gender-specific susceptibilities is not too large (say, 5 at most).
The third model considers vector-borne, instead of direct transmission. In
this case, we were not able to find an analytical expression for the final attack
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ratios, but used instead numerical simulations. The results on final attack
ratios are actually quite similar to those obtained with the second model. It is
interesting to note that transient patterns can differ from final attack ratios,
as new cases will tend to occur more often in the more susceptible sex, while
later depletion of susceptibles may bias the ratio in the opposite direction.

The analysis of these simple models, despite their lack of realism, can help in
providing insight into, and assessment of, the potential role of gender-specific
transmission in infections with multiple modes of transmission, such as Zika
virus (ZIKV), by gauging what can be expected to be seen from epidemiological
reports of new cases, disease incidence and seroprevalence surveys.

1. Introduction. Infectious diseases of humans may be transmitted via several
modes, such as direct (e.g., influenza, measles, HIV/AIDS), indirect (e.g., gas-
trointestinal diseases such as cholera, rotavirus infection, cryptosporidiosis), vertical
(e.g., HIV/AIDS, HSV-2), vector-borne (e.g., malaria, Zika virus (ZIKV), dengue
fever). Multiple modes of transmission have been ascertained for some of those: for
instance Toxoplasma gondii can be transmitted through the environment or sexual
contacts [15]; hepatitis A can be transmitted through contaminated food or water,
or direct contacts including sexual contacts [4]. While the actual occurrence of a
particular transmission mode can be ascertained by isolating active virions (or more
generally pathogen agents) in a specific site, or occasionally by case reports that
unequivocally establish the path through which an individual has become infected,
it may be difficult to recognize the relative importance of different transmission
modes in sustaining an epidemic.

The transmission of the flavivirus Zika (ZIKV) was initially described as occur-
ring solely through the bite of infected adult female mosquitoes of the genus Aedes.
From its discovery in 1952 and the first confirmed human case in 1954 [19] until
2007, confirmed cases of ZIKV infection from Africa and Southeast Asia have been
rare [12]. The first widespread epidemic was in 2007 in the Micronesian island of
Yap, and there was no evidence of direct human-to-human transmission during this
outbreak [8] .

However, data collected during the 2015 ZIKV outbreaks in South America (the
largest in history) shows the presence of Zika virions in the semen of some infected
males, even several weeks after the likely time of disease exposure [17]. Moreover,
several cases of ZIKV infections were documented outside the epidemic area, espe-
cially in the United States, that could be explained only through sexual contacts
with partners that had travelled to Zika-infected areas [10]. Male-to-female sexual
transmission of ZIKV has been clearly established, even when the ZIKV-infected
male is asymptomatic [3], and there was a (single) well-documented case of female-
to-male sexual transmission in the USA [6].

Still, the general understanding in the epidemiological community is that trans-
mission through infected mosquitoes is dominant in sustaining the Zika epidemic
[1, 20]. Correspondingly, mathematical models being proposed for the Zika epi-
demics (see, for instance,[9, 14, 22]) generally do not incorporate sexual transmis-
sion, mostly for mathematical tractability and lack of reliable data (see however
18)).

However, recently, Coelho et al. [5] suggested instead that sexual transmission
may have a much greater role than previously envisaged. Their argument is based
on the much larger number of cases of ZIKV reported among women than among
men, even after correcting for the bias due to the systematic screening of pregnant
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women. They argue that the disproportionately large number of infected women
can be explained by the fact that male-to-female ZIKV transmission is much larger
than the female-to-male transmission in sexual contacts (thereby implying that sex-
ual transmission has, all along, been an important factor in the spread of the Zika
flavivirus).

It is quite possible that the significant gender disparity in reported cases is due
to a higher attention (of the public health agencies, and of the general public)
to ZIKV infection in women, including those that are not pregnant but of child-
bearing age. We do not intend to discuss this specific issue, as we have no data
or direct information source to assess it. Rather, we ask the question of what
can be theoretically inferred about the relevance of different transmission modes on
unequal prevalence amongst the sexes and how such relevance can be determined
from epidemic data, assuming that they have been collected without bias (or that
existing biases have been removed).

In the next section, we examine a simple Kermack-McKendrick type [13] deter-
ministic model for ZIKV dynamics that only accounts for heterosexual transmission.
In this simple context, we are able to derive a relation between sex-biased trans-
mission of the infection and sex-biased incidence. This model is further extended
to also allow for direct transmission of ZIKV (as a proxy for vector-borne transmis-
sion), to study how sex-biased incidence depends both on sex-biased infectiousness
and on the relative importance of heterosexual transmission. Finally, we consider a
model with vector transmission. Although this final model represents a major sim-
plification of the reality of vector-based transmission of ZIKV, it still poses major
challenges in deriving analytical expressions for theoretically measuring the impact
of such transmission mode. Thus, we perform some numerical simulations to see
whether the conclusions obtained in the case of direct transmission also hold in that
case.

2. The model with heterosexual transmission only. The simplest model for
heterosexual transmission of a disease takes the form of an SIR (susceptible-exposed-
infected) Kermack-McKendrick formulation [13]. As we are interested in the epi-
demic development over a short time-course, we neglect human demography.

It is assumed, for the sake of simplicity, that males and females have the same
population size Ny = IN,,, = N, and we neglect heterogeneities in sexual behavior.
Thus, any individual has, on average, ¢ new sexual partners per unit time. On
the other hand, we assume that the probability of ZIKV transmission from an
infected female to a susceptible male, denoted by %,, may be different from )y,
the probability of ZIKV transmission from an infected male to a susceptible female.
It should be noted that for many infectious diseases, it has been estimated that
Ym < Py [2]

Furthermore, we assume that the average duration of the infection may differ
between males and females. In other words, the recovery rates — =, for males and
vy for females — are not necessarily equal. This leads to the following model, where
Sy and Iy denote the density of susceptible and infected females (and similarly for
males), and the dot above a state variable denotes its derivative with respect to
time. It is worth mentioning that the equations for removed individuals, Ry and
R,,, are not written explicitly because Sy + Iy + Ry = N = S, + I, + Ry, is
assumed constant:
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where , and 8¢ = ¥¢c and B, = Ync are, respectively, the male-to-female and
female-to-male transmission rates.

To analyze the model (1), it is convenient to use a minor modification of the
conservation method used for the standard Kermack-McKendrick model, as follows

d
7 [”ym log(Sy) — %(Sm + Im)] =0,
; 5 (2)
il 1 - I =0.
& [porouts = Bese v 1p] - o0
It can be shown, following the same argument as for the standard model (see, e.g.,
[7]), that tlim If(t) = tlim I (t) = 0. Furthermore, letting S° = tlim S¢(t) and
—00 —»00 —00
S0 = tli)m Sm(t) (it is obvious that these limits exist and are positive), and applying
the conservation equations (2), it follows that
S2° Jé]
f ! 00 0 0
log| = | =—=(Sx-5,,—1,),
(F) -5 )
(3)
Sov Bm 0_ 70
We now analyze Equation (3) under the assumption that no individuals were already

removed at time ¢ = 0, and that only a small fraction were already infected. That
is SY + 10 = S? + 1% =N and I%/N = ¢, < 1, I]?/N = ¢y < 1. Finally, letting

00 S
Zm =1— S—'g and z; = 1— S—fo denote the final attack ratios for males and females,
m f
respectively, Equation (3) gives
B
log(1—zf) = - (1= zm) (L — &) — 1],
5 (4)
log (1 —2m) = % [(1—2p)(1—ep) —1].

By eliminating one unknown at a time in Equation (4), it can be shown that the
system has a unique solution z = (zf, z,,) € (0,1)? for each value of ¢, and e in
(0,1).

If we consider the limit of z as €, and € tend to 0, we see that it has to be
solution of H(z) = (Hi(z), H2(z)) = 0, where

Hy(z) zlog(1—22)+ﬂ%mzl,
¥ (5)
Hy(z) =log(l—=2z1)+ W—fzg.

m
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Concerning Equation (5), we have the following

Theorem 2.1. (0,0) is a solution of H(z) = 0 for all parameter values. The
equation H(z) = 0 has also exactly one positive solution if, and only if, Ry > 1

where
s Bm B
Ry ==L (6)
TYmYVf

Proof. Consider Equation (5); clearly, (0,0) is a solution of H(z) = 0 for any
parameter values. Further, any other solution must lie at the intersection of the
curves z3 = g1(21) and 29 = go(2z1), where

gi(x) =1—ePmrh,

g2(x) = —75—’; log(1 — z).

Both g1 and go are increasing functions, with ¢{(z) < 0 < g¢4(z) for z € (0,1),
and ¢1(1) < 1, while lim g¢o(z) = +o0o. Hence, there exists a unique solution
z—1—

5
z = (z1,22) of H(z) = 0 if, and only if, ¢7(0) > ¢g4(0). Computing g} (x) and g4(z),
one sees this is equivalent to Ry > 1. O

The threshold quantity R{ is the basic reproduction number for this model, and
can be obtained using the method of next-generation matrix [7]. The superscript
s on R§ is used to indicate that it corresponds to (hetero)sexual transmission. We
shall use other superscripts later to indicate other modes of transmission.

The parameter z; [2,,] represents the fraction of females [males] that has been
infected by the end of the epidemic; in epidemiology, this quantity is often termed
attack rate (see. e.g., [11]), but we shall use the name attack ratio, as it is a ratio
rather than a rate. The focus of our work will actually be z¢/z,, i.e. the sex ratio
of attack ratios.

We claim the following result
Theorem 2.2. Assume R > 1 and By/vm > Bm/7Vs; then, the positive solution of

the system (5) satisfies Zy > Zp. Conversely, if B¢/Ym < Bm/7f, then the positive
solution of the system (5) satisfies Zo > z1.

Proof. Obviously, we need only to prove the first assertion. Suppose, by contradic-
tion, that z; < Z;. Then,

B—mél < &EQ and log(l —2z2) <log(l—2z).
Yf TYm
Hence,
Hi(z) — = Bm _ = ﬁf 5 _ 7) —
1(2) =log (1 —22) + P <log(1—2)+ o Hy(z) =0,
! m
contradicting the assumption that H(z) = 0. O

In order to quantify the relative sizes of the attack ratios z; and Z3, we find
numerical solutions of H(z) = 0. We fix a value for R§ and vary the ratio of
susceptibilities of females to males, (877yr)/(BmYm), between 1 and 100 to see the
effect on z; and Zs. The results are shown in Fig. 1 for Ry = 1.25 on the left and
for R = 1.5 on the right. We note that, indeed, increasing the susceptibility of
females relative to that of males increases the attack ratio in females and decreases
the rate in males, with an overall modest decrease.
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FIGURE 1. attack ratios zj, zo obtained for model (1) with Ry =
1.25 (left panel) and 1.5 (right panel). The z-axis displays (in
logarithmic scale) the quantity % (which we called relative sus-
ceptibility of female to male, even though the recovery rates are
also included), and the y-axis displays the corresponding values

Z = (Z1, Z2) solving H(z) = 0, as well as their average (Z; + 22)/2.

3. Model with heterosexual and direct contact transmission. In this sec-
tion, we model the scenario where the disease can be transmitted both heterosex-
ually and through other direct modes. Although this is probably not realistic for
ZIKV, it may be of interest in other contexts, and is also useful as an approximation
for models with vector-borne transmission (see next Section). We further assume
that such contacts are independent of the individuals’ sex, and that the probabil-
ity of getting infected per contact is the same for all individuals. Specifically, we
assume that each susceptible individual can be infected through such contacts at
a rate B4(I; + I,,)/(2N), where 3, is an aggregate parameter depending on the
number of such contacts per unit time and on the probability of getting infected
per contact. The denominator is equal to 2N as this is the total population den-
sity, including females and males. Based on the above assumptions, we obtain the
following system:

. _ I ~ (If + Im)
Sp = —PrSipy —PaSi—55
. _ 1, ~ (If + Im)
Iy = BpSpoy +PaSs—55— — i,
I (If 4 Iy) ™
Y Iy 5o Uptim)
. _ If ~ (If + Im)
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It follows, by modifying the conservation equations (2), that

d (Bf + Ba) Ba

i [t = S s )= 55410 ®
. d (Bm + ﬂd) /Bd _
—% [IOg(Sm) - "/fN (Sf + If) - ,ymN(Sm + I7n):| =0,

having introduced, for ease of notation, the constant 84 = Ba /2.
Integrating (8) for ¢ from 0 to oo, and using the same notation as in the previous
section, gives

log (1— z5) = 0B 10 Ly ey 1]+ P20 pa—ep - 1)

Ym Vf
log (1 —zp) = W[(l —zp)(1—¢ey) — 1] + 5—2[(1 —zm)(l—en) — 1}.

(9)
By taking the limit as €, and €7 tend to 0, it follows that of z = (zy, z,) has to
be solution of H(z) = (Hi(z), Hz(z)) = 0, where, now,

Hl(z) = log(l - 22) + le + &227
bt B 1o
HQ(Z) = log(l — Zl) + uZQ + —dzl.
TYm vf

Clearly, z = (0,0) is a solution of H(z) = 0. In order to look for other solutions,
the first equation of (10) is solved for z; to get

Vs Ba
z1=g1(z2) = ———"—(log(1 —20) + — |, 11
1=g1(22) Bon + Ba < g ( 2) ’7m> (11)
while solving the second equation for zo gives
Tm Bd)
29 = ha(21) = — log(1—21)+—|. 12
2 = ha(21) 5, + Ba ( g(l—z) o (12)

Both ¢; and hg are convex functions on [0, 1) satisfying g1 (0) = h2(0) = 0 and

lim ¢1(z) = lim ho(z) = +o0.

rz—1- c—1—
Thus, if g1 (0) > 0, gy is invertible as a function from [0, 1) onto [0, 4+00). Moreover,
if ¢1(0) < 0, then there exists z,, > 0 such that g;(z,,) = 0 and g; is invertible as
a function from (z,,400) onto (0,400). In both cases, we can define an inverse
function of g1, hy : (0,00) — (0, 1) say, which is increasing, concave and satisfies
wli)rr;o hi(z) = 1. Furthermore, if ¢} (0) > 0, then ggli}rgl+ hi(xz) = 0 and, conversely, if

g71(0) < 0, then 1i%1+ hi(x) = zm > 0.
T—>
Note that positive solutions of H(z) = 0 correspond to points (21, z2) such that
z2 = hi(21) = ha(z1). (13)
It follows, from the properties of the functions h; and hg, that (13) has a unique

solution, unless lim h;(z) = 0 and A} (0) < h5(0). Because lim hj(z) = 0 implies
z—01 x—07t
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that hf(0) = 1/¢7(0), these conditions are equivalent to g1 (0) > 0 and h5(0)g7(0) >
1, that can be rewritten as

Ba Ba

Pd o, Pdog) (14)
Ym v
_ 2
Ba =y Wn;(ﬁm + Ba) 51 (15)
Ba — Ym gf(ﬂf + Ba)
Inequality (15) can be further simplified to give
1 1 m + + m
Vf Ym TYmYf

Since it is obvious that inequality (16) implies those in (14), the latter are superflu-
ous and we only need to avoid (16) in order to have a unique solution. Therefore,
we have proved the following result.

Theorem 3.1. The system H(z) = 0, defined by (10), admits a unique solution if,
and only if,

1) 4 BB+ By) + BunbBy (17)

1
Ba < +
¥ Tm TYmYf
We shall see that inequality (17) is equivalent to R§™ > 1, where R§", defined

below, is the reproduction number corresponding to both sexual and non-sexual
modes of transmission.

Theorem 3.2. The system H(z) =0, defined by (10), admits a unique solution if,
and only if, R§™ > 1.

Proof. We shall use the approach of the next-generation matrix. The next-generation
matrix associated with model (7) is given by

Ba  Bs+Ba
v Tm
K= . (18)
ﬁm + 5d &
'Yf TYm
Indeed, one can easily see that k;; = (K');; represents the expected number of

secondary infections produced in class ¢ = 1 (females) or ¢ = 2 (males) by an average
infected female over her infectious period, assuming that the whole population is
suceptible, and similarly for k;o.

Then,

RSN — (K)_& <1+1) + @ (1+1>2+ﬂd(ﬁm+ﬁf)+ﬁmﬁf
R A 4\ vm YmVf (' |
19

It follows that

2 2
R <1 <= \/%(1+1> +ﬁd(ﬁm+ﬂf)+6’”6f <15d<1+1>,
4 i Tm TYmYVf 2 Vf Tm
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which is equivalent to

ﬂd 1 1
? W‘Fﬁyfm <1,

ﬁ§<1+1)2+6d(6m+ﬂf)+ﬁmﬂf < (1_6d<1+1>>2'
4 ’Yf Tm TmYf 2 V¥ Ym

It should now be noted that the inequalities in (14) imply the first inequality in
(20). Expanding the second inequality in (20), it can be seen that it is equivalent
to (16). This implies (14), as we have already seen. Hence, (20) is equivalent to
(16), so that we can say that a unique solution of H(z) = 0 (corresponding to an
epidemic outbreak) exists if, and only if, R§" > 1. O

(20)

Finally, as in the case of Theorem 2.2, the following result can be proven.

Theorem 3.3. Assume R§" > 1 and S5 /vm > Bm/7Vs; then, the positive solution of
the system (10) satisfies zZ1 > Za. Conversely, if Bf/Ym < Bm/7Vf, then the positive
solution of the system (10) satisfies Zo > Z1.

Proof. We prove the first assertion. Assume, by contradiction, that z; < Zs. Then,

Bm_ ﬁf

—Z1 < —Z and log(l—2)<log(l—7%).
Yf TYm
Hence,
. 1 1
Hy(z) =log (1 —2) + 5751 + Ba ( + )
0% v Tm
1 1
<log(1—2z1)+ &52 + B4 ( + > = Hy(Z),
TYm vf TYm
contradicting the assumption that H(Z) = 0. O

This Theorem states that if there exists a bias in heterosexual transmission, such
bias is always reflected in the expression for the final attack ratio, even when there
is another form of direct transmission that is independent of sex. However, we wish
to understand how the ratio of final attack ratios zy/z,, changes, depending on the
relative importance of non-sexual (direct) vs. (hetero)sexual disease transmission.
The relative weight of direct transmission is henceforth defined as

RE o Baf1 1 11
PRy ROT (“Yf i %n) e (w i m) S
It can be seen that R§" > R§ + R§. Thus, p cannot be exactly considered as the
contribution of direct transmission to the overall R§", but is simply based on the
proportions of reproduction numbers relative to the two modes.

Fig. 2 shows the effect of the differences in male-female susceptibility in het-
erosexual transmission on the ratio of the sex-specific attack ratios, depending on
whether direct transmission also occurs. It can be seen from this figure that with
only heterosexual transmission, the final attack ratios can be rather different for the
two sexes, although not as much as the differences in susceptibility. For instance,
if females were 10 times more susceptible than males, the final attack ratio in fe-
males would less than 3 times higher than the final attack ratio in males. If the
direct transmission route is responsible for a sizeable portion of all transmission,
then the difference becomes quite smaller. For instance, if direct and heterosexual
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FIGUrRE 2. Ratio between the sex-specific final attack ratios,
Zs/Zm, as a function of relative susceptibility g—i for different values
of Ry. The black curves are obtained using the model (1) includ-
ing heterosexual transmission only and Ry is given by (6); the red
curves using the model (7) that includes both types of transmis-
sion, where Ry is given by (19) and p defined in (21) equal to 50%.
Here, for the sake of simplicity, we have set 7y,, = vy¢.

transmission are equal in transmission potential, the ratio of final attack ratios is
always smaller than 3, even assuming a 50-fold difference in susceptibility.

An alternative way to assess the joint impact of p (relative importance of direct
transmission) and ff/8,, (ratio of susceptibilities) can be seen in Fig. 3, where a
contour plot of the ratio Z;/Z,,, as a function of p and 8/, is depicted.

In summary, the analyses in this section show that the final attack ratios can be
obtained as the unique solution of H(z) = 0, when the reproduction number R§",
defined in (19), exceeds unity. The ratio between female and male attack ratios
always exceeds 1 when male-to-female transmission is higher than female-to-male
transmission. Its numerical value depends, as illustrated in Figures 2 and 3, on
three parameters: ¢ (the ratio between female and male susceptiblity), Ro (the
basic reproduction number) and p (the relative importance of direct vs. heterosex-
ual transmission). In principle, this allows for a retrospective estimate of p from
the sex-ratio of reported cases, if ¢ and p are known, assuming that the model is
approximately correct, and that there is no bias in reporting.

4. The model including vector-borne transmission. We assume now that
infection can also be transmitted by effective contact with the disease vector (adult



SEX-BIASED PREVALENCE IN INFECTION MODELS 135

1.25 —
15 —
[se]
©
0 —
©
©
o 2'5/
<
o 3/
N
il
A(/
T T T T T T
0 10 20 30 40 50

Bflﬁm

F1Gure 3. Contour plot of ratios of sex-specific final attack ratios,
Zf/Zm, as a function of relative susceptibility g—f and p defined in

(21). Here Ry™ = 1.5.

female Aedes mosquitoes in the case of ZIKV). We modify the system (1) by adding
terms corresponding to infection from mosquito bites, as well as an equation for the
dynamics of the infected mosquito population whose size we shall denote by V; =
Vi(t). For mathematical tractability, we shall consider a constant total mosquito
population of size V; we are implicitly assuming a source of mosquitoes to balance
the loss due to natural mortality. We shall not model that source explicitly, since
it is not needed here.

The mortality rate of adult mosquitos is denoted by py; the effective transmission
rate of infection per human from mosquito to human, By, is the product of the
average number of bites a human receives per unit time and the probability that
the bite from an infected mosquito results in the infection of the susceptible human.
Similarly, the effective transmission rate of infection per mosquito from an infected
human, Sz, is the product of the average number of bites a mosquito makes per unit
time and the probability that the bite from an uninfected mosquito to an infected
human actually infects the mosquito.

Sy = —stf%—ﬂvsf;%v

Iy = ﬁfo%‘i‘ﬂVSf%_'yfva

Sy = —ﬁmsm%—ﬁvsm%, (22)
fn = BuSnih+BvSnst —mln,

Vi = 3H(V—VI)If;_NIm — puv Vi,
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For the model (22), it is not possible to obtain analytical expressions for the final
attack ratios (similar to those obtained for the previous models). Hence, we resort to
estimating the attack ratios numerically. The following parameter values, reported
in the ZIKV study in Latin America by Ferguson et al. [9], are used: Sy = 0.035,
By = 0.05, v = v, = 1/6 and py = 0.2 using 1 day as the time unit. It is worth
mentioning that Ferguson et al. [9] also give estimates for R varying in time, but
with an average slightly above 2. Furthermore, their model does not consider sexual
transmission, so that Ry can be obtained (as in Ross-Mac Donald [16, 21]) as

v [BupvV
Ry =, /Tw 4 (23)

Model (22) includes infection transmission both through mosquito bites and het-
erosexual contacts. To obtain the associated reproduction number, the infected
compartments in the Equation (22) (that is, the second, fourth and fifth equa-
tions), will be used. At the disease-free equilibrium, (0,0, 0), the Jacobian of the
aforementioned system, containing just the infected compartments, is

-y By  Bv/2
5m —TYm BV /2 ’
B2HNV ﬂzHNV —Hv

where we have used Sy = S, = N. The associated next generation matrix is given
by

0 Br Bv
Ym 2py 0 b a
— @ Bv —
K = > 0 v | = | ¢ 0 al,
BV BuaV 0 d d 0

29N 2ym N

with b = B¢/v, a = By /(2uv), ¢ = Bm /v, d = BaV/(2yN), also having assumed,
for the sake of simplicity, v, = 7.

Hence, it follows that, the basic reproduction number, R§", is the spectral radius
of K. Computing the determinant of K — A\I, one sees that

(Rg")” = Rg(2ad + be) + ad(b+ c). (24)

An analytical solution to this equation is very cumbersome, so that R§" has to
be computed numerically. Moreover, the relation between Ry and the final attack
ratios is different for models (22) and (7).

Thus, in order to compare the results obtained using model (7) (and illustrated in
Figures 2 and 3) to those obtained with model (22), we concentrated on final attack
ratios rather than on Ry (given by either (19) or (24)). Model (22) was simulated,
choosing as initial values I,,(0)/N = I;(0)/N = ¢ <« 1, S¢(0)/N = 5,,(0)/N =
1—¢, V1(0) = 0; the final attack ratios were computed as zy =1 —.S¢(T")/S;(0) (in
females) and 2z, =1 — S,,,(T")/Sm(0) (in males) where T is a large enough value so
that I,,(¢t) and I;(t) ~ 0 for ¢t > T.

In Fig. 4 we show how the sex-ratio zs/z,, of final attack ratios changes with
average final attack ratio (2 + Z,)/2, for fixed

_ b

q= Ko
/BTIL

d -
an P~ RE+R;
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FIGURE 4. Ratio of sex-specific final attack ratios, Zy/Zp,, as a
function of average attack ratio (Zy + Z,,)/2 for models (7) (lines)
and (22) for different values of ¢ (see legend). Here p = 1/2 and
parameters are varied to keep ¢ and p at these values.

More specifically, we varied (,, and adjusted the other parameters so as to keep ¢
and p at the set values. This is compared to what is obtained by solving (10) for
the same values of ¢ and p (given by (21) in that case).

We remark that the ratio of final attack ratios obtained by simulating (22) depend
on the values chosen for b = 8¢/v, ¢ = B /7 and ad = (R8)2, but do not depend
on individual parameters while keeping those quantities fixed. It should be noted
that the results from model (22) show a very similar pattern to those obtained
from model (7) for each value of ¢, both qualitatively and quantitatively. Thus,
the results obtained in the analysis of the model with direct transmission are quite
useful also in providing insight into the model with vector-based transmission.

Finally, we note that examining the transient phase of the epidemic may yield a
different picture. Indeed, initially, the sex-ratio in new cases is closer to the value ¢
representing the ratio of susceptibilities, but then drops because fewer susceptibles
are left in that class. In Fig. 5, we show one simulation in time, illustrating this
phenomenon. Even if the sex-ratio of final attack ratios is 1.25, the sex-ratio in new
cases during the growing phase of the epidemic is around 2.

5. Conclusions. Three Kermack-Mckendrick type deterministic models have been
developed and used to gain insight into the transmission dynamics of a disease
within a two-sex closed population. The first model, which considers heterosexual
contact as the sole mode of transmission, enables us to theoretically assess whether
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FIGURE 5. One simulation of model (22). Long-dashed line rep-
resents infected females, dotted line infected males; solid line is
ratio If(t)/In(t). Parameter values are fy = 0.442, f3,,, = 0.0442,
By = 0.05, By = 0.035, v = 1/6, uy = 1/5, N = 1 x 10%,
V = 5.35x 10°, so that Ro = 1.8 using (24), while R§ = RY = 0.7,
and final attack ratios are z,, = 0.76, zy = 0.96.

the frequently observed disparity in transmission rates per contact between male-
to-female and female-to-male (usually the former being quite larger than the latter)
necessarily leads to similar differences in the final attack ratios between the gen-
ders. The attack ratios can be obtained as solutions of a system of two nonlinear
equations; we proved that the system has a unique solution if the net reproduction
number exceeds unity, extending the classical result by Kermack and McKendrick
[13] for an SIR model in a closed homogeneous popualtion. It is further shown, as
intuitively expected, that the gender-specific final attack-ratios are biased in the
same direction as the gender-specific susceptibilities. We have also shown that the
ratio of attack ratios depends solely on the ratio of gender-specific susceptibilities
and on the basic reproductive number of the epidemic, Rg.

The second model extends the first by also allowing for infection transmission
through direct contact in a gender-independent way. Here, too, we derived ana-
lytical expressions to obtain those attack ratios and proved that the attack ratios
are non-zero if the net reproduction number exceeds unity; furthermore, the gen-
der specific final attack ratios in that case are biased in the same direction as the
gender-specific susceptibilities. Through some numerical examples, we show how
the ratio of the gender-specific final attack ratios varies, depending on the relative
importance of the two transmission pathways and on Ro (Figure 2). In principle,
the relative importance p of the two transmission pathways could be ascertained
retrospectively, if we knew the ratio of gender-specific susceptibilities, the ratio of
final attack ratios and the value of Rg (see Figure 3) and, of course, if this simple
model were correct. Qualitatively, one can say that the ratio of final attack ratios
will not exceed 1.5 if non-sexual transmission accounts for most transmission events
(p > 0.6) and the ratio of gender-specific susceptibilities is not too large (say, 5 at
most).
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The third model, which also has two modes of transmission (namely, heterosexual
contact and through a vector (mosquito bites)), can be considered a model for ZIKV
that is very simplified in several respects; for instance, we assumed that the total
vector population is constant, which implicitly requires a source for new unifected
mosquitos to replace the ones that die. We derived, following standard methods
[7], an expression for the net reproduction number as solution of a cubic equation,
but were not able to find a simple equation that allows to obtain the final attack
ratios. We showed, via numerical simulations, that results are quite similar to those
obtained with second model, that allows for heterosexual and direct transmission.
Thus, it seems that Figure 3 can be used to estimate the sex-ratio of final attack
ratios for a given value of ¢ (ratio of male-to-female vs. female-to-male transmission
probability) and p (relative weight of vector-borne vs. heterosexual transmission).

It should, finally, be remarked that transient patterns can differ from final attack
ratios. Indeed, it is quite intuitive that, if one sex succumbs to most of the infections
during the early stages (as perhaps [5] was the case with females during the 2015
ZIKV outbreaks in the Americas) due to their larger susceptibility, there will be
fewer susceptibles of that sex later in the epidemic and this will bias new infections
towards the opposite sex. Clearly, this effect is partiuclarly strong when final attack
ratios are relatively large, so that depletion of susceptibles is relevant. An example of
such a pattern is provided by the simulation shown in Fig.5. Thus, data showing no
gender-bias in final attack ratios (as in the analysis of Zika epidemics in Zap island
[8]) are not necessarily in contradiction with gender-bias in reported new cases
during the expanding phase of an epidemic (as suspected by some for Brazil [5]),
even without assuming virus evolution, or behavioral differences in the populations.

We think that these models, while certainly overly simplistic, can help in assessing
the potential role of gender-specific transmission in infections with multiple modes
of transmission, by gauging what can be expected to be seen from reports of new
cases, or seroprevalence surveys. Certainly, investigations of specific cases of sexual
transmission remain essential for obtaining empirical information about the role of
sexual transmission for Zika [1].
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