
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2017082
AND ENGINEERING
Volume 14, Number 5&6, October & December 2017 pp. 1585–1604

MODELING AND ANALYZING THE TRANSMISSION

DYNAMICS OF VISCERAL LEISHMANIASIS

Lan Zou∗

Department of Mathematics
Sichuan University

Chengdu, Sichuan 610064, China

Jing Chen and Shigui Ruan

Department of Mathematics

University of Miami

Coral Gables, FL 33146, USA

Abstract. In this paper, we develop a mathematical model to study the trans-

mission dynamics of visceral leishmaniasis. Three populations: dogs, sandflies

and humans, are considered in the model. Based on recent studies, we include
vertical transmission of dogs in the spread of the disease. We also investigate

the impact of asymptomatic humans and dogs as secondary reservoirs of the
parasites. The basic reproduction number and sensitivity analysis show that

the control of dog-sandfly transmission is more important for the elimination

of the disease. Vaccination of susceptible dogs, treatment of infective dogs,
as well as control of vertical transmission in dogs are effective prevention and

control measures for visceral leishmaniasis.

1. Introduction. Leishmaniasis is a vector-borne disease that is transmitted by
sandflies and caused by obligate intracellular protozoans of the genus Leishmani-
a.There are three main forms of the disease:Visceral leishmaniasis (VL), Cutaneous
leishmaniasis (CL) and Mucocutaneous leishmaniasis (ML). Among these forms,
VL is fatal if left untreated in over 95% of cases. It is a chronic and systemic
disease caused by Leishmania infantum whose characteristics include irregular long
term fever, weight loss, asthenia, adynamia, anemia with visible cutaneous and
mucosal pallor, splenomegaly, hepatomegaly, leucopenia, thrombocytopenia, and
complications of bacterial infections. VL is maintained in a cycle between sandflies
and animal hosts, in which domestic dogs and humans are predominant reservoir
hosts. L. infantum infection often does not equate with clinical disease since some
people may have a silent infection without any symptoms or signs. Typical clinical
signs of VL include fever, weight loss, anemia, lymphadenopathy, and hepato- and
splenomegaly ([3]).

A total of 98 countries and three territories reported endemic VL transmissions.
The map in Figure 1 given by WHO shows the status of endemicity of VL worldwide
in 2013. From the available data, WHO estimated that 90% of global VL cases
occurred in six countries: Bangladesh, Brazil, Ethiopia, India, South Sudan, and
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Figure 1. Status of endemicity of VL worldwide in 2013 ([31]).

Sudan. Brazil is the only country with a high burden of both VL and CL among
the 25 countries with burden of leishmaniasis ([32]). In the last 20 years, Brazil
registered a marked increase in the incidence of VL (Figure 2).
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Figure 2. The reported cases of VL in Brazil from 1984 to 2013
([30, 31]).

Prior to the initiation of a national control program in 1951, VL was one of the
major parasitic diseases in China, endemic in 17 provinces, cities and autonomous
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regions. About 530,000 VL cases were estimated in China in 1951 ([28]). Though it
was virtually under control through active detection of human infections for treat-
ment and vector control since the 1960s, VL currently occurs in more than 50
counties in six provinces and autonomous regions in western China, including Xin-
jiang, Gansu, Sichuan, Shaanxi, Shanxi, and Inner Mongolia ([27]). More than 90%
of the new infections are found in Xinjiang, Gansu and Sichuan. The data report-
ed by Chinese Center for Disease Control and Prevention (China CDC) revealed
that human VL cases did not decrease in these endemic areas during the past years
(Figure 3).
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Figure 3. The reported cases of VL in the most serious provinces
(Xinjiang, Gansu, Sichuan) in China ([5]).

Domestic dogs are considered as the predominant reservoir of Leishmania infan-
tum chagasi (L. infantum) in hyperendemic foci, with canine seroprevalence between
8% and 40% ([24]). Both subclinically infected and diseased dogs can be infectious
to phlebotomine vectors, but infectiousness is higher in dogs with overt clinical signs
([6, 10]). Recent research indicates that mother-to-child transmission, also called
vertical (transplacental or transmammary) transmission, may be an additional im-
portant mechanism maintaing the canine reservoir ([2, 11, 21]). It has been reported
that both symptomatic and asymptomatic Leishmania-infected dogs act as a source
of parasites for VL transmission ([17, 18]).

Mathematical models have been proposed to describe the transmission dynamics
of visceral leishmaniasis. Hasibeder et al. ([13]) and Dye ([7]) proposed models of
canine and zoonotic VL, respectively. Burrattini et al. [4] developed a transmission
dynamics model of leishmaniasis including vector, human and canine populations.
Reithinger [23] developed a mathematical model to investigate whether widespread
provision of deltamethrin-impregnated colars in Brazil is likely to lead to greater
zoonotic VL control than the current dog culling program. ELmojitaba et al. [8]
used a mathematical model to study the transmission of VL in Sudan. Zhao et al.
[33] proposed a model and calculated optimal control strategies. However, there
has been very little research on modeling the vertical transmission of VL.

In this paper, we propose a model for the transmission of visceral leishmaniasis
which describes the transmission between canine reservoirs and sandflies as well
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as the transmission from sandflies to humans. To investigate the role of vertical
transmission in the spread and control of VL, we take into consideration the canine
vertical transmission in this model. The structure of this paper is as follows: a
mathematical model for VL is constructed in Section 2. The basic reproduction
number of the model is calculated in Section 3. The sub-system of blocking dog-
sandfly transmission is discussed in Section 4 and the sub-system of blocking human-
sandfly transmission is discussed in Section 5. Sensitivity analysis and simulations
are performed in Section 6. Some conclusions and discussions are presented in
Section 7.

2. Mathematical modeling. We assume that humans and dogs are the hosts,
with the biological vector sandflies transmitting the infection within and between
the two host populations. We take the asymptomatic dog and human reservoirs
as crucial roles in the transmission and persistence of VL. Moreover, we take these
into account: (i) vertical transmission in dog reservoir; (ii) vaccination of susceptible
dogs, culling of exposed and infective dogs, and treatment of infective dogs.
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Figure 4. Flowchart of Leishmaniasis transmission, where ΛD =
βFDIFaD, ΛF = (β′DFED + βDF ID)aD + (β′HFEH + βHF IH)aH
and ΛH = βFHIFaH .

The total populations of dogs ND and humans NH are divided into the following
epidemiological compartments: susceptible (SD and SH), exposed (ED and EH),
infectious (ID and IH), recovered or vaccinated (RD and RH), respectively. The
total population of sandflies NF is also divided into three compartments: suscep-
tible SF , exposed EF and infectious IF . Newborn exposed dogs are described as
pλDED + qλDID, which reflects the vertical transmission of VL in dogs. Following
the transmission diagram shown in Figure 4, we adapt a SEIRS structure for dogs,
a SEI structure for sandflies and a SEIR structure for humans, and the VL model
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takes the following form:

dSD
dt

= λD − pλDED − qλDID − βFDaDIF
SD
ND

− (δD + ν)SD + ωRD,

dED
dt

= βFDaDIF
SD
ND

+ pλDED + qλDID − (δD + γD + c)ED,

dID
dt

= γDED − (δD + νD + c)ID,

dRD
dt

= νSD + νDID − (δD + ω)RD,

dSF
dt

= λF − (β′DFED + βDF ID)aD
SF
NF

− (β′HFEH + βHF IH)aH
SF
NF

− δFSF ,

dEF
dt

= (β′DFED + βDF ID)aD
SF
NF

+ (β′HFEH + βHF IH)aH
SF
NF

− (δF + γF )EF ,

dIF
dt

= γFEF − δF IF ,

dSH
dt

= λH − βFHaHIF
SH
NH

− δHSH ,

dEH
dt

= βFHaHIF
SH
NH

− (δH + γH)EH ,

dIH
dt

= γHEH − (δH + νH)IH ,

dRH
dt

= νHIH − δHRH

(1)

with nonnegative initial conditions. Parameters used in system (1) are nonnegative
and listed in Table 1.

Table 1. Model parameters and their descriptions

Parameters Interpretations
λD Recruitment rate of susceptible dogs
λF Recruitment rate of susceptible sandflies
λH Recruitment rate of susceptible humans
1/δD Average lifespan of dogs
1/δF Average lifespan of sandflies
1/δH Average lifespan of humans
βFD Prob. of transmission from infectious sandflies to dogs
β′DF Prob. of transmission from exposed dogs to sandflies
βDF Prob. of transmission from infectious dogs to sandflies
βFH Prob. of transmission from infectious sandflies to humans
β′HF Prob. of transmission from exposed humans to sandflies
βHF Prob. of transmission from infectious humans to sandflies
p Fraction of offspring of exposed dogs born to be exposed
q Fraction of offspring of infectious dogs born to be exposed
aD Rate of biting on dogs by sandflies
aH Rate of biting on humans by sandflies
1/γD Incubation period in dogs
1/γF Incubation period in sandflies
1/γH Incubation period in humans
c Culling rate of exposed and infective dogs
ν Vaccination rate of dogs
ω Loss rate of vaccination in dogs
νD Recovery rate of dogs
νH Recovery rate of humans
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3. Basic reproduction number. The equilibria of system (1) satisfy

λD − pλDED − qλDID − βFDaDIF
SD
ND

− (δD + ν)SD + ωRD = 0,

βFDaDIF
SD
ND

+ pλDED + qλDID − (δD + γD + c)ED = 0,

γDED − (δD + νD + c)ID = 0,
νSD + νDID − (δD + ω)RD = 0,

λF − (β′DFED + βDF ID)aD
SF
NF

− (β′HFEH + βHF IH)aH
SF
NF

− δFSF = 0,

(β′DFED + βDF ID)aD
SF
NF

+ (β′HFEH + βHF IH)aH
SF
NF

− (δF + γF )EF = 0,

γFEF − δF IF = 0,

λH − βFHaHIF
SH
NH

− δHSH = 0,

βFHaHIF
SH
NH

− (δH + γH)EH = 0,

γHEH − (δH + νH)IH = 0,
νHIH − δHRH = 0.

(2)

We obtain a unique disease-free equilibrium E0 = (S0
D, 0, 0, R

0
D, S

0
F , 0, 0, S

0
H , 0, 0, 0),

where

S0
D =

(δD + ω)λD
δD(δD + ω + ν)

, R0
D =

νλD
δD(δD + ω + ν)

, S0
F =

λF
δF
, S0

H =
λH
δH

.

Rewrite system (1) as the form

ẋ = F(x)− V(x), (3)

where x = (ED, ID, EF , IF , EH , IH , SD, RD, SF , SH , RH),

F =



βFDaDIF
SD

ND
+ pλDED + qλDID

0
(β′DFED + βDF ID)aD

SF

NF
+ (β′HFEH + βHF IH)aH

SF

NF

0
βFHaHIF

SH

NH

0
0
0
0
0
0


,

and

V =



(δD + γD + c)ED
−γDED + (δD + νD + c)ID

(δF + γF )EF
−γFEF + δF IF
(δH + γH)EH

−γHEH + (δH + νH)IH
−λD + pλDED + qλDID + βFDaDIF

SD

ND
+ (δD + ν)SD − ωRD

−νSD − νDID + (δD + ω)RD
−λF + (β′DFED + βDF ID)aD

SF

NF
+ (β′HFEH + βHF IH)aH

SF

NF
+ δFSF

−λH + βFHaHIF
SH

NH
+ δHSH

−νHIH + δHRH


.

Then, the derivatives of F and V at the disease-free equilibrium E0 are given by

DF(E0) =

(
F 0
0 0

)
, DV(E0) =

(
V 0
J3 J4

)
, (4)
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where

F =


pλD qλD 0 (δD+ω)βFDaD

δD+ω+ν 0 0

0 0 0 0 0 0
β′DFaD βDFaD 0 0 β′FHaH βFHaH

0 0 0 0 0 0
0 0 0 βFHaH 0 0
0 0 0 0 0 0

 ,

V =


δD + γD + c 0 0 0 0 0

γD δD + νD + c 0 0 0 0
0 0 δF + γF 0 0 0
0 0 −γF δF 0 0
0 0 0 0 δH + γH 0
0 0 0 0 −γH δH + νH

 ,

and all eigenvalues of J4 have positive real parts.
Since F is non-negative and V is a non-singular M-matrix, it follows from [26]

that the maximum real part of all eigenvalues of the matrix F −V is negative if and
only if the spectral radius of the next generation matrix ρ(FV −1) < 1. Moreover,

V −1 =



1
δD+γD+c

0 0 0 0 0
γD

(δD+γD+c)(δD+νD+c)
1

δD+νD+c
0 0 0 0

0 0 1
δF+γF

0 0 0

0 0 γF
(δF+γF )δF

1
δF

0 0

0 0 0 0 1
δH+γH

0

0 0 0 0 γH
(δH+γH )(δH+νH )

1
δH+νH


.

The eigenvalues of the matrix FV −1 for system (1) satisfy the following equation:

H(λ) := λ3(λ3 − a1λ2 − (c3b5 + b1a3)λ+ a1b5c3) = 0, (5)

where

a1 =
λD(p(c+ δD + νD) + qγD)

(δD + γD + c)(δD + νD + c)
, a3 =

βFDaDγF (δD + ω)

δF (δD + ω + ν)(δF + γF )
,

b1 =
aD(β′DF (c+ δD + νD) + βDF γD)

(δD + γD + c)(δD + νD + c)
, b5 =

aH(β′HF (δH + νH) + βHF γH)

(δH + γH)(δH + νH)
,

c3 =
βFHaHγF
δF (δF + γF )

.

The basic reproduction number R0, defined as the average number of secondary
cases arising from an average primary case in an entirely susceptible population, is
the spectral radius of FV −1 ([26]). Let A2 = a1, A2 = c3b5+a3b1, A0 = a1b5c3, B =

81A2
0−12A3

1−3A2
1A

2
2−54A0A1A2−12A0A

3
2, andD = 36A1A2−108A0+8A3

2+12
√
B.

The basic reproduction number is

R0 =
2A1

D
+

2A2
2

3D
+
D

6
+
A1

3
.

Then we obtain that

R0 > R− :=
1

3
(a1 +

√
a21 + 3(c3b5 + a3b1)).

In fact, R− is the positive real root of equation H ′(λ) = 3λ2−2a1λ−(c3b5+b1a3) =
0. Furthermore, the disease-free equilibrium is unstable if R0 > 1. It leads to the
following result:
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Theorem 3.1. If R− ≥ 1, the disease-free equilibrium E0 is unstable.

To further analyze the basic reproduction number, we make the following as-
sumption:

Assumption 1. p = q = 0, that is, no offsprings are born to be exposed.

We obtain the basic reproduction number under Assumption 1 as follows

R̃0 =
√
RH +RD,

where

RH :=
γFβFHa

2
H(β′HF δH + β′HF νH + βHF γH)

(δF + γF )δF (δH + γH)(δH + νH)
,

RD :=
γFβFDa

2
D(β′DF c+ β′DF δD + β′DF νD + βDF γD)(δD + ω)

(δD + γD + c)(δD + νD + c)(δD + ω + ν)
.

Remark 1. Since R̃0 = R0|p=q=0, it follows that R0 ≥ R̃0. That is, the basic
reproduction number with vertical transmission in dogs is greater than that without
vertical transmission in dogs.

Moreover, we obtain the following result.

Theorem 3.2. Under Assumption 1, the disease-free equilibrium is locally stable if
R̃0 < 1 and unstable if R̃0 > 1.

When Assumption 1 does not hold, we further discuss the basic reproduction
number and equilibria in two cases: (i) blocking the transmission between dogs and
sandflies and (ii) blocking the transmission between human and sandflies. In the
next two sections, we will study not only the transmission between one host and
sandfly, but also the transmission in the host without sandflies.

4. Blocking dog-sandfly transmission. For the case of blocking the transmis-
sion between dogs and sandflies, we make the following assumption.

Assumption 2. aD = 0.

Under this assumption, the eigenvalues of the matrix FV −1 satisfy the equation

x3[δF (γH + δH)(γF + δF )(δH + νH))x2 − a2HβFHγF (β′HF νH + β′HF δH + βHF γH)]

[(γD + δD + c)(δD + νD + c)x− λD(qγD + pδD + pνD + pc)] = 0.

Thus, the basic reproduction number is

RH0 := max{RHD0 , RHH0 },
where

RHD0 :=
λD(qγD + p(δD + νD + c))

(γD + δD + c)(δD + νD + c)
,

RHH0 := aH

√
βFHγF (β′HF νH + β′HF δH + βHF γH)

δF (γH + δH)(γF + δF )(δH + νH)
.

To discuss the existence of the endemic equilibria of system (1), we first consider
the dog-only system

dSD

dt = λD − pλDED − qλDID − (δD + ν)SD + ωRD,
dED

dt = pλDED + qλDID − (δD + γD + c)ED,
dID
dt = γDED − (δD + νD + c)ID,
dRD

dt = νSD + νDID − (δD + ω)RD

(6)
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and then the sandfly-human system

dSF

dt = λF − (β′HFEH + βHF IH)aH
SF

NF
− δFSF ,

dEF

dt = (β′HFEH + βHF IH)aH
SF

NF
− (δF + γF )EF ,

dIF
dt = γFEF − δF IF ,
dSH

dt = λH − βFHaHIF SH

NH
− δHSH ,

dEH

dt = βFHaHIF
SH

NH
− (δH + γH)EH ,

dIH
dt = γHEH − (δH + νH)IH ,
dRH

dt = νHIH − δHRH .

(7)

If RHD0 6= 1, the disease-free equilibrium (S0
D, 0, 0, R

0
D) is the unique equilibrium of

the sandfly-human system (6). It is stable if RHD0 < 1 and unstable if RHD0 > 1. If
RHD0 = 1, the equilibrium (S∗D, E

∗
D, I

∗
D, R

∗
D) lies on a singular line, where I∗D > 0

and

S∗D =
1

γDδD(δD + ω + ν)
[−δDI∗DλD(pνD + pc+ pδD + qγD) − ωλDI

∗
D(pδD

+pνD + pc+ qγD) + λDγD(δD + ω) + ωI∗D(c2 + νDγD + cδD + cνD + cγD)],

E∗D =
(δD + νD + c)

γD
I∗D,

R∗D =
1

γDδD(δD + ω + ν)
[νλDγD − νλDI

∗
D(pδD + pνD + pc+ qγD)

+δDI
∗
D(cγD + cδD + νDγD + c2) + νDI

∗
D(νγD + c2 + cδD)

+νcI∗D(δD + νD + γD)].

Particularly, when p = q = 0, RHD0 ≡ 0, the disease will be eliminated within dogs
in this case.

For the sandfly-human system, we obtain the following result for the endemic
equilibrium.

Theorem 4.1. The disease-free equilibrium (S0
F , 0, 0, S

0
H , 0, 0, 0) of system (7) is

stable if RHH0 < 1 and unstable if RHH0 > 1. Moreover, if RHH0 > 1, a unique
disease endemic equilibrium E∗FH = (S∗F , E

∗
F , I

∗
F , S

∗
H , I

∗
H , E

∗
H , R

∗
H) exists, where

S∗F = λF (γH + δH)(δH + νH)(λHδF γF + βFHaHγFλF + λHδ
2
F )

/δFβFHaHγF [δHλF (δH + γH + νH) + aHλH(β′HF δH + β′HF νH + βHF γH)

+νHλF γH ],

E∗F =
λ− δFS

∗
F

δF + γF
, I∗F =

γF (λ− δFS
∗
F )

δF (δF + γF )
,

S∗H =
δFλ

2
H(δF + γF )

δH [βFHaHγF (λF − δFS∗F ) + λHδF (δF + γF )]
,

E∗H =
λF γH(λF − δFS

∗
F )(δH + νH)

aHγHS∗F δF (β′HF δH + β′HF νH + βHF γH)
,

I∗H =
λF γH(λF − δFS

∗
F )

aHS∗F δF (β′HF δH + β′HF νH + βHF γH)
,

R∗H =
νHλF γH(λF − δFS

∗
F )

aHS∗F δF δH(β′HF δH + β′HF νH + βHF γH)
.

Proof. For the sandfly-human system (7), when RHH0 < 1 the disease-free equilib-
rium (S0

F , 0, 0, S
0
H , 0, 0, 0) is the unique equilibrium. It is stable if RHH0 < 1 and

unstable if RHH0 > 1.
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For the endemic equilibrium of sandfly-human system (7), from dSF

dt = dEF

dt =
dIF
dt = dIH

dt = 0, the equilibrium (S∗F , E
∗
F , I

∗
F , S

∗
H , E

∗
H , I

∗
H , R

∗
H) satisfies

I∗F =
γF
δF
E∗F , E

∗
F =

λF − δFS∗F
δF + γF

, E∗H =
δH + νH
γH

I∗H ,

I∗H =
λF γH(λF − δFS∗F )

aHS∗F δF (β′HF δH + β′HF νH + βHF γH)
. (8)

On the other hand, from dSH

dt = dEH

dt = dIH
dt = dRH

dt = 0, we have

E∗H =
δH + νH
γH

I∗H , R
∗
H =

νH
δH

I∗H , E
∗
F =

λHδF (λH − δHS∗H)

βFHaHγF δHS∗H
,

I∗H =
γH(λH − δHS∗H)

δH(δH + γH + νH) + νHγH
. (9)

Because E∗F and I∗H in (8) are equivalent to those in (9), the following equations for
S∗H and S∗F hold:

λF − δFS
∗
F

δF + γF
=
λHδF (λH − δHS

∗
H)

βFHaHγF δHS∗H
,

λF γH(λF − δFS
∗
F )

aHS∗F δF (β′HF δH + β′HF νH + βHF γH)
=

γH(λH − δHS
∗
H)

δH(δH + γH + νH) + νHγH
, (10)

which have solutions

S∗F1 =
λF
δF

, S∗H1 =
λH
δH

,

and

S∗F2 = λF (γH + δH)(δH + νH)(λHδF γF + βFHaHγFλF + λHδ
2
F )/δFβFHaHγF

[δHλF (δH + γH + νH) + aHλH(β′HF δH + β′HF νH + βHF γH) + νHλF γH ],

S∗H2 =
δFλ

2
H(δF + γF )

δH [βFHaHγF (λF − δFS∗F ) + λHδF (δF + γF )]
.

Note that for the endemic equilibrium, E∗F , I
∗
F , E

∗
H , I

∗
H > 0. Therefore, the solution

(S∗F1, S
∗
F2) is ignored. Moreover, if RHH0 > 1, we have

λ− δFS
∗
F

=
λFλH [a2HβFHγF (β′HF δH + β′HF νH + βHF γH) − δF (γH + δH)(δF + γF )(δH + νH)]

βFHaHγF [δHλF (δH + γH + νH) + aHλH(β′HF δH + β′HF νH + βHF γH) + νHλF γH ]

> 0.

Then, the sandfly-human system (7) always has a unique endemic equilibrium
(S∗F , E

∗
F , I

∗
F , S

∗
H , E

∗
H , I

∗
H , R

∗
H) .

Therefore, we can conclude the following results under Assumption 2 for the full
system (1).

Theorem 4.2. Assume that Assumption 2 holds.

(i) If RH0 < 1, the disease-free equilibrium E0 = (S0
D, 0, 0, R

0
D, S

0
F , 0, 0, S

0
H , 0, 0, 0)

is the unique equilibrium of system (1), and it is locally stable; if RH0 > 1, E0

is unstable.
(ii) If RHH0 > 1, the disease-endemic equilibrium of system (1) exists. Moreover,

if RHH0 > 1 and RHD0 6= 1, there is only one diseaseendemic equilibrium
E∗ = (S0

D, 0, 0, R
0
D, S

∗
F , E

∗
F , I

∗
F , S

∗
H , I

∗
H , E

∗
H , R

∗
H) (only sandfly-human disease

endemic); if RHH0 > 1 and RHD0 = 1, there is a disease-endemic singular line
(S∗D, E

∗
D, I

∗
D, R

∗
D, S

∗
F , E

∗
F , I

∗
F , S

∗
H , I

∗
H , E

∗
H , R

∗
H). Here S0

D, R0
D, S0

F , S0
H , S∗D,
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E∗D, I∗D, R∗D, S∗F , E∗F , I∗F , S∗H , I∗H , E∗H and R∗H are the same as the above
statement.

Remark 2. When vertical transmission of dogs exists, VL is still able to be endemic
in dogs even if the transmission between sandflies and dogs is blocked.

5. Blocking human-sandfly transmission. To discuss the case that the human-
sandfly transmission is blocked, we make the following assumption.

Assumption 3. aH = 0.

Under this assumption, the eigenvalues of the matrix FV −1 satisfy the equation

λ4[δF (γF + δF )(γD + δD + c)(δD + νD + c)(ν + ω + δD)λ2

−δFλD(γF + δF )(ν + ω + δD)(qγD + p(δD + νD + c))λ

−a2DβFDγF (δD + ω)(β′DF δD + β′DF c+ β′DF νD + βDF γD] = 0.

Thus, the basic reproduction number is

RD0 :=
λD(qγD + p(δD + νD + c))

2(γD + δD + c)(δD + νD + c)
+
√

∆,

where

∆ =
λ2
D(qγD + p(δD + νD + c))2

4(γD + δD + c)2(δD + νD + c)2

+
a2DβFDγF (δD + ω)(β′DF (δD + c+ νD) + βDF γD)

δ2F (γF + δF )2(γD + δD + c)2(δD + νD + c)2(ν + ω + δD)2
.

Similar to Theorem 4.2(i), we have the following result:

Theorem 5.1. Under Assumption 3, the disease-free equilibrium of system (1) is
locally stable if RD0 < 1 and unstable if RD0 > 1.

We further analyze the human-only system
dSH

dt = λH − δHSH ,
dEH

dt = −(δH + γH)EH ,
dIH
dt = γHEH − (δH + νH)IH ,
dRH

dt = νHIH − δHRH .

(11)

It follows that the disease-free equilibrium (S0
H , 0, 0, 0) is the unique equilibrium of

system (11) and it is always stable. This presents an ideal situation that we can
protect humans from the sandflies and thus eliminate the disease in humans.

6. Sensitivity analysis. In this section, we present our sensitivity analysis to show
how the basic reproduction number changes in terms of various values of parameters
and to find out which parameters have more influence on the transmission of VL.
The parameter values we use in the simulations are given in Table 2.

Firstly, we analyze the change of R̃0 with respect to the parameters, shown in
Figures 6 - 9. From the figures, we can see that if we ignore the vertical transmission
from mother dogs to newborn dogs, that is, under Assumption 1, the transmission
between humans and sandflies is more important than that between dogs and sand-
flies. R̃0 decreases as the biting rates decrease, or probabilities of transmissions
decrease. Increasing vaccination rate of dogs ν or culling rate of exposed and infec-
tive dogs c can also reduce R̃0.
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Figure 5. The relationship between the basic reproduction num-
ber R̃0 without vertical transmission and (a) recovery rate of hu-
mans νH ; (b) recovery rate of dogs νD.
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Figure 6. The relationship between the basic reproduction num-
ber R̃0 without vertical transmission and (a) bitting rate by sand-
flies on humans aH ; (b) bitting rate by sandflies on dogs aD.
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Figure 7. The relationship between the basic reproduction num-
ber R̃0 without vertical transmission and (a) probability of trans-
mission from sandflies to humans βFH ; (b) probability of transmis-
sion from sandflies to dogs βFD.
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Figure 8. The relationship between the basic reproduction num-
ber R̃0 without vertical transmission and (a) probability of trans-
mission from infectious humans to sandflies βHF ; (b) probability
of transmission from exposed humans to sandfliesβ′HF ; (c) prob-
ability of transmission from infectious dogs to sandflies βDF ; (d)
probability of transmission from exposed dogs to sandflies β′DF .
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Figure 9. The relationship between the basic reproduction num-
ber R̃0 without vertical transmission and (a) the loss rate of vac-
cination in dogs ω; (b) vaccination rate of dogs ν; and (c) culling
rate of exposed and infective dogs c.
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Table 2. Parameter values

Parameter values References Parameter values References

λD 8 [9, 22] λH 2 million [29]

1/δD 599 days [7] 1/δF 14 days [14]

1/δH 73 years [31] βFD 50% [12]
β′DF 0 ∼ 70% assumed βDF 70% [12]

βFH 50% [12] β′HF 0 ∼ 70% assumed

βHF 70% [12] p 32% [3]
q 32% [3] aD 0.1 per day [12]

aH 0.1 per day [12] 1/γD 10 days [25]
1/γF 6 days [25] 1/γH 60 days [25]

c 0.69 [15] ν 0.165 [22]

ω 1/1095 assumed νD 0.083 [15]
νH 0.12 [12]

Then we compare the situations under Assumption 3 and Assumption 2. From
Figures 10(a), 11(a) and 12(a), RHH0 increases as any of β′HF , βHF and βFH in-
creases. Figures 10(b), 11(b) and 12(b) show that RHH0 changes in terms of β′HF ,
βHF and βFH with various pλD and qλD. The simulation results show that even
the transmission between dogs and sandflies is blocked, the parameters of dogs af-
fect the basic reproduction number when pλD and qλD are sufficiently large. Note
that in Figures 10(b) and 11(b), when pλD = qλD = 0.03, RH0 changes slightly even
when β′HF and βHF change from 0 to 1. Thus, when the vertical transmission of
dogs is large, the influence of the change of transmission has no distinction between
humans and sandflies on the basic reproduction number is not obvious.

Furthermore, comparing sub-figure (b) and (c) from Figure 10 to Figure 12, we
can observe that the basic reproduction number increases faster in (c) than in (b).
Thus, when we consider the vertical transmission from mother dogs to newborn
dogs, the transmission between dogs and sandflies are more important than the
transmission between humans and flies. This is totally different from the case under
Assumption 1.

Finally, we focus on the parameters for dogs. From Figure 13, the basic repro-
duction number increases as the birth rate for dogs λD increases, which decreases
as any of culling rate c, vaccination rate ν, and recovery rate νD increases. RD0
decreases most quickly in Figure 13(b). Thus, if Leishmaniasis is suddenly endemic
in dogs, the most effective method to control the disease is culling infected dogs.
However, based on humanitarianism, we suggest to cure infectious dogs and vaccine
susceptible dogs, which also help to control the disease. The observations from
Figure 13(c) and (d) showed that the vaccination plays a more important role than
cure from the perspective of disease spread.

We choose the sample size n = 1500. In Figure 14, we give the partial rank
correlation coefficient (PRCC) of the basic reproduction number with blocking dog-
sandfly transmission RH0 with respect to our parameter ranges. We first note the
effect of death rate of dogs δD, death rate of sandflies δF , recovery rate of humans
νH and culling rate of exposed and infectious dogs c: as they increase, we obtain
a smaller RH0 . To increase δF , the DDT was the first insecticide used against
phlebotomine sandflies in many countries including Brazil. To increase νH , more
effective treatments on infective humans are needed. Increasing δD and c is not
commendatory because it remains highly questionable. On the other hand, as λD,
aHβFH , aHβHF , aHβ

′
HF , p and q increase, we have a larger RH0 . It is interesting
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Figure 10. The relationship between (a) the basic reproduction
numbers RHH0 of human-sandfly transmission for sub-system (7)
and the probability of transmission from exposed humans to sand-
flies β′HF ; (b) the basic reproduction number RH0 with blocking
dog-sandfly transmission and the probability of transmission from
exposed humans to sandflies β′HF ; (c) the basic reproduction num-
ber RD0 and probability of transmission from exposed dogs to sand-
flies β′DF .

0 0.2 0.4 0.6 0.8 1
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

R
0H

H

β
HF

(a)

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
0H

β
HF

pλ
D

=qλ
D

=0.03

pλ
D

=qλ
D

=0.02

pλ
D

=qλ
D

=0.03

pλ
D

=qλ
D

=0.02

(b)

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

R
0D

β
DF

(c)

Figure 11. The relationship between (a) the basic reproduction
number RHH0 of human-sandfly transmission for sub-system (7)
and ((a) and (b)) probability of transmission from infectious hu-
mans to sandflies βHF ; (b) the basic reproduction number RH0 with
blocking dog-sandfly transmission and probability of transmission
from infectious humans to sandflies βHF ; (c) the basic reproduction
number RD0 and probability of transmission from infectious dogs to
sandflies βDF .

that compared with q, p has more influences on RH0 . Compared with aHβHF ,
aHβ

′
HF influences more on RH0 . It reminds us that the transmission from exposed

humans and exposed dogs is more important.
In Figure 15, we present the PRCC for the basic reproduction number with

blocking human-sandfly transmission RD0 . The results of λD, δD, δF , p, q and c are
similar to Figure 14. However, aDβFD, aDβDF , aDβ

′
DF and ν are absent in Figure

14. As aDβFD, aDβDF and aDβ
′
DF increase, RD0 increases. As ν increases, RD0

decreases, while it has no effect on RH0 . Thus, when transmission between dogs and
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Figure 12. The relationship between (a) the basic reproduction
number RHH0 of human-sandfly transmission for sub-system (7)
and probability of transmission from infectious sandflies to human-
s βFH ; (b) the basic reproduction number RH0 with blocking dog-
sandfly transmissionRH0 and probability of transmission from infec-
tious sandflies to humans βFH ; (c) the basic reproduction number
RD0 and probability of transmission from infectious sandflies to dogs
βFD.
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Figure 13. The relationship between the basic reproduction num-
ber with blocking the human-sandfly transmission RD0 and (a) re-
cruitment rate of susceptible dogs λD; (b) culling rate of exposed
and infective dogs c; (c) vaccination rate of dogs ν (c), recovery
rate of dogs νD.
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sandflies exists, more vaccination on dogs helps to control VL. However, vaccination
on dogs does not help to control VL if there is only transmission within dogs.

7. Discussion. Dogs infected with L. infantum have a long asymptomatic period
during which they are parasitic and able to transmit to sandflies ([3]). We hypoth-
esize that this period of latency remarks conversion from a low transmission to a
high transmission state, influenced by factors that comprise the health status of
dogs, including morbid infections, nutritional status, and pregnancy. Similar fac-
tors are involved in human susceptibility to clinical diseases ([19]). Understanding
the interplay between comorbidities and immune control of visceral leishmaniasis is
critical for modeling parasitemia and transmission of VL, to either vector or vertical
transmission, with dog reservoir populations. Moreover, within the United States,
there is no evidence of vector-borne transmission of VL, vertical transmission has
maintained L. infantm infection within a subset of dogs for at least three decades
([2]).

A mathematical model for visceral leishmaniasis transmission with dogs, sandflies
and humans was developed in this paper to investigate how to prevent the disease
transmission. We did not try to use our model to simulates the VL data in Brazil
and China mentioned in Section 1. Instead, we tried to understand the transmission
dynamics of VL and to seek effective prevention and control measures by analyzing
the model. The calculation and sensitivity analysis of the basic reproduction number
indicates that the vertical transmission of dogs affects the spread of VL. The analysis
in Section 3 shows that the basic reproduction number with vertical transmission
within dogs is obviously greater than that without vertical transmission. When the
dog-sandfly transmission is blocked, VL could still become endemic among dogs
even without the vectors. Furthermore, it is shown in the sensitivity analysis that
when the vertical transmission of dogs is large, the change of transmission between
humans and sandflies (β′HF and βHF ) does not have a distinct influence on the basic
reproduction number. Note that the partial rank correlation coefficient shows that
the vertical transmission from exposed dogs affects the basic reproduction number
greater than that from infective dogs. It suggests that we must pay enough attention
to the asymptomatic dog populations.

Our sensitivity analysis shows that increasing either aDβHF , aDβ
′
HF , aDβFH ,

aDβDF , aDβ
′
DF or aDβFD will increase the basic production number. It accords

with the fact that prevention of leishmaniasis requires blocking a step in the para-
site’s life cycle. Insecticide-impregnated dog collars, for example, can protect dogs
from the bites of the vectors for several weeks. However, these are more expensive.

The model developed by Dye in [7] indicates that a canine vaccine would be a po-
tent tool for decreasing both the human and canine incidence of leishmaniasis. Our
sensitivity analysis also shows that increasing canine vaccination rate can reduce
the basic reproduction number. There are two vaccines commercially available for
prevention of canine leishmaniasis, with unclear efficacy. Although the basic repro-
duction number may decrease as a result of increasing c, the culling of seropositive
dogs is not recommended. One fact is that the true number of dogs that need to be
killed in order to decrease the incidence of VL in humans is unknown. Moreover,
it is not only expensive but also difficult to implement the selective elimination of
seropositive dogs, particularly in developing countries.

In conclusion, to control the visceral leishmaniasis, it is better to control the ver-
tical transmission in dogs especially in the asymptomatic dogs, increase vaccination
rate in dogs, and give more treatments to infective dogs.
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L. infantum/HIV co-infection is another challenge for public health in many
countries. It has been proven that L. infantum/HIV co-infected patients might be
highly infectious to phlebotomine sandflies ([20]). There is also evidence for sexual
transmission of VL ([21]). These complicate the transmission dynamics of LV and
deserve further investigations.
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