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Abstract. In this paper, a reaction-diffusion-advection SIR model for the

transmission of the infectious disease is proposed and analyzed. The free

boundaries are introduced to describe the spreading fronts of the disease. By
exhibiting the basic reproduction number RDA0 for an associated model with

Dirichlet boundary condition, we introduce the risk index RF0 (t) for the free

boundary problem, which depends on the advection coefficient and time. Suf-
ficient conditions for the disease to prevail or not are obtained. Our results

suggest that the disease must spread if RF0 (t0) ≥ 1 for some t0 and the disease

is vanishing if RF0 (∞) < 1, while if RF0 (0) < 1, the spreading or vanishing of
the disease depends on the initial state of infected individuals as well as the

expanding capability of the free boundary. We also illustrate the impacts of

the expanding capability on the spreading fronts via the numerical simulations.

1. Introduction. The 20th century is the period that human has made most bril-
liant achievements in the conquest of infectious diseases: raging smallpox for about
a thousand years was finally eradicated; the day that people get rid of leprosy and
poliomyelitis will be not far off; the occurrence rate of diphtheria, measles, whoop-
ing cough and tetanus has been reducing in numerous countries; the advent of many
antibiotics has made the “plague”, which once caused great calamity to human, no
longer harm the world [16]. However, the World Health Report published by World
Health Organization (WHO) has shown that infectious disease is still the greatest
threat to mankind [39]. For example, the most widespread epidemic of Ebola virus
in history began in Guinea in December 2013 and has continued for over two years.
As of 17 March 2016, WHO and respective governments have reported over 28,000
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suspected cases and about 11,000 deaths [17]. In 2014, dengue fever broke out in
Guangdong, China and it was reported that there were more than 30,000 infected
cases [18]. There are about 20,000 people died of dengue fever worldwide each year
[33]. The latest threat is from Zika [13] and there is no vaccine or medicine for it.
The Zika virus has now been detected in more than 50 countries and the epidemic
situation it caused is declared by WHO a public health emergency of international
concern.

The earliest differential equation model, concerning malaria transmission, was
probably introduced by Dr. Ross. He showed from this mathematical model that
if the number of malaria-carrying mosquitoes reduced below a critical value, the
prevalence of malaria would be controlled. In 1927, Kermack and Mckendrick con-
structed the famous SIR compartment model to study the transmission dynamics
of the Black Death in London from 1665 to 1666 and those of plague in Mumbai
in 1906 [20]. They also proposed the SIS compartment model [21], and presented a
“threshold value” which would determine the extinction and persistence of diseases
based on the analysis of the established model.

Over the past 30 years, the research on epidemic dynamics has made much
progress, and a large number of mathematical models are used to describe and
analyze various infectious diseases. Most of mathematical models are governed by
ordinary differential systems ([11, 12, 19, 26, 37]). Considering the spatial diffusion,
the reaction-diffusion systems are used to describe spatial transmission of infectious
diseases [1, 5, 22, 23]. These models usually assume that the effective contact rate
and recovery rate are constants ([1, 23]). However, this assumption may hold only
for a short time and for the homogeneous environment. To capture the impact of
spatial heterogeneity of environment on the dynamics of disease transmission, Allen
et al. proposed in [2] an epidemic model as follows,

St − dS∆S = −β(x)SI
S+I

+ γ(x)I, x ∈ Ω, t > 0,

It − dI∆I = β(x)SI
S+I

− γ(x)I, x ∈ Ω, t > 0,
∂S
∂η

= ∂I
∂η

= 0, x ∈ ∂Ω, t > 0,

(1)

where S and I represent the density of susceptible and infected individuals, re-
spectively. β(x) and γ(x) account for spatial dependent rates of disease contact
transmission and disease recovery at x, respectively.

Infectious disease often starts at a source location and gradually spreads over
places where contact transmission occurs. For example, West Nile virus (WNv) is
endemic in Africa, the Middle East and other regions. This virus was first detected
in New York in 1999 [6], but it reached New Jersey and Connecticut in the second
year and till 2002, it has spread across almost the whole America continent. This
implies that the disease gradually spreads and the infected environment is changing
with time t. Hence, for infectious diseases such as WNv, it is natural to understand
the changing of the infected environment. Considering the moving front of the
infected environment, the following epidemic model with the free boundary was
recently studied in [23],

St − d1∆S = b− βSI − µ1S, r > 0, t > 0,
It − d2∆I = βSI − µ2I − αI, 0 < r < h(t), t > 0,
Rt − d3∆R = αI − µ3R, 0 < r < h(t), t > 0,
Sr(0, t) = Ir(0, t) = Rr(0, t) = 0, t > 0,
I(r, t) = R(r, t) = 0, r ≥ h(t), t > 0,
h′(t) = −µIr(h(t), t), h(0) = h0 > 0, t > 0,
S(r, 0) = S0(r), I(r, 0) = I0(r), R(r, 0) = R0(r), r ≥ 0,

(2)
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where r = |x| and x ∈ Rn. The governed equation for the moving front r = h(t)
is the well-known Stefan condition, which was established in [28] for an invasive
species. Stefan condition can be found in research of many applied areas, such
as ice melting in contact with water [32], image processing [3], vapor infiltration
of pyrolytic carbon in chemistry [31], tumor cure [35] and wound healing [7] in
medicine, and spreading of invasive species [8, 9, 10, 15, 25, 36, 38, 40]. Recently,
it has been used to describe the moving front of diseases [1, 14, 23, 29].

In addition, the spread of disease is different from the “random walk” of particle,
which follows the Fick’s law. The disease tends to move towards the feasible envi-
ronment and spread along the human’s movement. For instance, in the second year
after WNv was detected, the wave front traveled 1100 km to the warmer South and
187 km to the colder North [30]. In 2008, according to reports from the Division
of Disease Control, Public Health Department (DPH) of Indonesia, dengue cases
(about 217-668 cases) were found in some more prosperous and densely-populated c-
ities such as Makassar and Gowa, but no case was found in other sparsely-populated
cities such as Jeneponto and Selayar [34]. To consider the impact of advection on
transmission of disease, the authors in [14] proposed the following simplified SIS
epidemic model,

It − dIIxx + αIx = (β(x)− γ(x))I − β(x)
N∗ I

2, g(t) < x < h(t), t > 0,

I(g(t), t) = 0, g′(t) = −µIx(g(t), t), t > 0,

I(h(t), t) = 0, h′(t) = −µIx(h(t), t), t > 0,

g(0) = −h0, h(0) = h0, I(x, 0) = I0(x), −h0 ≤ x ≤ h0,

(3)

in which they presented the sufficient conditions for the disease to spread or vanish,
and discussed the impacts of the advection and the expanding capability on the
spreading fronts.

Motivated by the above research, we will study the general SIR epidemic model
with moving fronts and spatial advection,

St − Sxx + αSx = b− β(x)SI − µ1S, −∞ < x <∞, t > 0,
It − Ixx + αIx = β(x)SI − γ(x)I − µ2I, g(t) < x < h(t), t > 0,
Rt −Rxx + αRx = γ(x)I − µ3R, g(t) < x < h(t), t > 0,
I(x, t) = R(x, t) = 0, x ≤ g(t) orx ≥ h(t), t > 0,
g′(t) = −µIx(g(t), t), g(0) = −h0 < 0, t > 0,
h′(t) = −µIx(h(t), t), h(0) = h0 > 0, t > 0,
S(x, 0) = S0(x), I(x, 0) = I0(x), R(x, 0) = R0(x), −∞ < x <∞,

(4)
where x = g(t) and x = h(t) are the moving left and right boundaries to be
determined, the governing equations g′(t) = −µIx(g(t), t) and h′(t) = −µIx(h(t), t)
are the special Stefan conditions. The death rates for the S, I and R classes are
given by µ1, µ2 and µ3, respectively. The influx of the S class comes from a constant
recruitment rate b, and h0, µ, α are all positive constants, where µ and α represent
the expanding capability and advection rate, respectively. The functions β(x) and
γ(x) are positive Hölder continuous and satisfy

(H1) lim
x→±∞

β(x) = β∞ > 0 and lim
x→±∞

γ(x) = γ∞ > 0.

Epidemiologically, it means that the far sites are similar.
As in [2], if the disease transmission rate β(x) at the site x is greater than the

recovery rate γ(x), we call the location x a high-risk site, we say it is low-risk if
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the disease transmission rate β(x) is less than the recovery rate γ(x). If the spatial
average value 1

|Ω|
∫

Ω
β(x)dx of transmission rate is greater than (or less than) the

spatial average value 1
|Ω|
∫

Ω
γ(x)dx of the recovery rate, we call the habitat Ω a

high-risk (or low-risk) domain.
Furthermore, we only consider the case of the small advection in a habitat with

high-risk far sites for problem (4) and assume that

(H2)
b

µ1
β∞ − γ∞ − µ2 > 0 and α < 2

√
b

µ1
β∞ − γ∞ − µ2 .

It is well-known that the basic reproduction number for the system
Ṡ(t) = b− β∞SI − µ1S,

İ(t) = β∞SI − γ∞I − µ2I,

Ṙ(t) = γ∞I − µ3R.

is R0 = bβ∞
µ1(r∞+µ2) , R0 is the number of secondary cases which one case would pro-

duce on average over the course of its infectious period, in a completely susceptible
population. The first inequality in (H2) means that R0 > 1 and the far sites are

high-risk. The constant 2
√

b
µ1
β∞ − γ∞ − µ2 in (H2) is the minimal speed of the

traveling waves to the Cauchy problem

It − Ixx = I
( b

µ1
β∞ − γ∞ − µ2 − dI

)
with any d > 0.

The initial functions S0, I0 and R0 are nonnegative and satisfy
S0 ∈ C2(−∞,∞)

⋂
L∞(−∞,+∞), I0, R0 ∈ C2([−h0, h0]);

I0(x) = R0(x) = 0, x ∈ (−∞,−h0]
⋃

[h0,∞),

I0(x) > 0, R0(x) > 0, x ∈ (−h0, h0),

(5)

here (5) indicates that the infected individuals exist in the area x ∈ (−h0, h0) at
the beginning, and no infection happens in the area |x| ≥ h0. For model (4), one
can see that there are no infected or recovered individuals beyond the left boundary
x = g(t) and the right x = h(t).

We are interested in the impacts of environmental heterogeneity and small ad-
vection on the persistence of the disease, and the paper is organized as follows.
Firstly, we present the global existence and uniqueness of the solution to problem
(4) by the contraction mapping theorem in section 2. In section 3, we first present
the definition and exhibit properties of the basic reproduction number for the cor-
responding model with Dirichlet boundary conditions, and then give the definition
and properties of the spatio-temporal risk index RF0 (t) for problem (4). Section 4
deals with the sufficient conditions for the disease to vanish and Section 5 is devoted
to the sufficient conditions for the disease to spread. The paper closes with some
numerical simulations and a brief discussion.

2. Preliminaries. The contraction mapping theorem will be first used to prove the
local existence and uniqueness of the solution to (4). Then suitable estimates will
be exhibited to show that the solution is defined for all t > 0, and the comparison
principle will also be presented.
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Theorem 2.1. Given any ν ∈ (0, 1) and (S0, I0, R0) satisfying (5), there is a T > 0
such that problem (4) admits a unique bounded solution

(S, I,R; g, h) ∈ C1+ν, 1+ν2 (D∞T )× [C1+ν, 1+ν2 (D
(g,h)

T )]2 × [C1+ ν
2 ([0, T ])]2,

and
‖S‖

C1+ν, 1+ν
2 (D∞T )

+ ‖I‖
C1+ν, 1+ν

2 (D
(g,h)
T )

+ ‖R‖
C1+ν, 1+ν

2 (D
(g,h)
T )

≤ C,

‖g‖
C1+ ν

2 ([0,T ])
+ ‖h‖

C1+ ν
2 ([0,T ])

≤ C,
where

D∞T = {(x, t) ∈ R2 : x ∈ (−∞,∞), t ∈ [0, T ]},

D
(g,h)
T = {(x, t) ∈ R2 : x ∈ (g(t), h(t)), t ∈ (0, T ]}.

(6)

Here C and T only depend on h0, ν, ‖S0‖C2((−∞,∞)), ‖S0‖L∞((−∞,∞)), ‖I0‖C2([−h0,h0])

and ‖R0‖C2([−h0,h0])
.

Proof. The idea of this proof is to straighten the free boundaries to circumvent the
difficulty caused by the unknown boundaries, and then to construct a mapping. The
conclusions of this theorem follow from the contraction mapping theorem together
with Lp theory and Sobolev’s imbedding theorem [24], we omit it here since it is
similar to that of Theorem 2.1 in [23] with obvious modifications, see also [7, 8] and
references therein.

We derive the following estimates, which will be used to show that the local
solution obtained in Theorem 2.1 can be extended to all t > 0.

Lemma 2.2. Let T0 ∈ (0,+∞) and (S, I,R; g, h) be a solution to problem (4)
defined for t ∈ [0, T0]. Then there exist the constants C1 and C2, independent of
T0, such that

0 < S(x, t) ≤ C1, −∞ < x < +∞, 0 < t ≤ T0,

0 < I(x, t), R(x, t) ≤ C2, g(t) < x < h(t), 0 < t ≤ T0.

Proof. It is easy to see that S ≥ 0, I ≥ 0 and R ≥ 0 in (−∞,+∞)× [0, T0] as long
as the solution exists. Moreover, using the strong maximum principle to the first
equation of (4) in [g(t), h(t)]× [0, T0] gives that

S(x, t) > 0, −∞ < x <∞, 0 < t ≤ T0,

I(x, t), R(x, t) > 0, g(t) < x < h(t), 0 < t ≤ T0.

It is easily verified that any constant C is an upper solution of S in (−∞,+∞) ×
[0, T0) if C > b

µ1
and C ≥ S0(x). Hence,

0 < S(x, t) ≤ max
{ b

µ1
, ‖S0‖L∞

}
:= C1, −∞ < x <∞, 0 < t < T0.

Furthermore, adding the first three equations of (4) leads to

(S + I +R)t − (S + I +R)xx + α(S + I +R)x

= b− µ1S − µ2I − µ3R ≤ b− µ0(S + I +R)

for g(t) < x < h(t) and 0 < t ≤ T0, where µ0 = min{µ1, µ2, µ3}. Therefore, we
have

S + I +R ≤ max
{ b

µ0
, ‖S0 + I0 +R0‖L∞

}
:= C2.
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The next lemma displays the monotonicity of free boundaries for problem (4).
The proof is similar as that of Lemma 2.3 in [23] for an SIR epidemic model without
advection, or that of Lemma 2.3 in [27] for a mutualistic model with advection, we
omit it here.

Lemma 2.3. Let T0 ∈ (0,+∞) and (S, I,R; g, h) be a solution to problem (4)
defined for t ∈ (0, T0]. Then there exists a constant C3 independent of T0 such that

−C3 ≤ g′(t) < 0 and 0 < h′(t) ≤ C3 for t ∈ (0, T0].

With the above bounds independent of T0, we can extend the solution. The
following theorem guarantees the global existence of the solution to problem (4),
and the reader can refer to [23] for a similar standard proof.

Theorem 2.4. Problem (4) admits a unique solution (S, I,R; g, h), which exists
globally in [0,∞) with respect to t.

In what follows, we exhibit the comparison principle for convenience of later
analysis, which are similar to Lemma 3.5 in [9].

Lemma 2.5. (Comparison principle) Assume that T ∈ (0,∞), g, g, h, h ∈ C1([0,

T ]), S(x, t), S(x, t) ∈ C(D∞T )
⋂
C2,1(D∞T ), I(x, t) ∈ C(D

(g,h)
T )

⋂
C2,1(D

(g,h)
T ),

I(x, t) ∈ C(D
(g,h)

T )
⋂
C2,1(D

(g,h)

T ), here the definitions of D∞T , D
(g,h)
T and D

(g,h)

T
are the same as those in (6). Moreover, assume

St − Sxx + αSx ≥ b− µ1SI − µ1S, −∞ < x <∞, 0 < t ≤ T,

St − Sxx + αSx ≤ b− µ1SI − µ1S, −∞ < x <∞, 0 < t ≤ T,

It − Ixx + αIx ≥ (β(x)S − γ(x)− µ2)I, g(t) < x < h(t), 0 < t ≤ T,

It − Ixx + αIx ≤ (β(x)S − γ(x)− µ2)I, g(t) < x < h(t), 0 < t ≤ T,

I(x, t) = 0, g′(t) ≤ −µIx(g(t), t), x ≤ g(t), 0 < t ≤ T,

I(x, t) = 0, g′(t) ≥ −µIx(g(t), t), x ≤ g(t), 0 < t ≤ T,

I(x, t) = 0, h
′
(t) ≥ −µIx(h(t), t), x ≥ h(t), 0 < t ≤ T,

I(x, t) = 0, h′(t) ≤ −µIx(h(t), t), x ≥ h(t), 0 < t ≤ T,

g(0) ≤ −h0 ≤ g(0) < h(0) ≤ h0 ≤ h(0),

I(x, 0) ≤ I0(x) ≤ I(x, 0), −h0 ≤ x ≤ h0,

S(x, 0) ≤ S0(x) ≤ S(x, 0), −∞ < x <∞.

Then the solution (S, I,R; g, h) of problem (4) satisfies

g(t) ≤ g(t) ≤ g(t), h(t) ≤ h(t) ≤ h(t), 0 < t ≤ T,

S(x, t) ≤ S(x, t) ≤ S(x, t), −∞ < x <∞, 0 < t ≤ T,

I(x, t) ≤ I(x, t) ≤ I(x, t), g(t) ≤ x ≤ h(t), 0 < t ≤ T.

3. The risk index. The objective of this section is to discuss the risk index for the
free boundary problem (4), we first present the basic reproduction number of the
following reaction-diffusion-advection problem with Dirichlet boundary condition,{

It − Ixx + αIx = b
µ1
β(x)I − γ(x)I − µ2I, x ∈ (p, q), t > 0,

I(x, t) = 0, x = p or q, t > 0,
(7)
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where p < q. Now the basic reproduction number of (7) is defined by

RDA0 = RDA0 ((p, q), β(x), γ(x)) = sup
φ∈H1

0 ((p,q))φ6=0

∫ q
p

b
µ1
β(x)φ2dx∫ q

p

(
φ2
x + (α

2

4 + γ(x) + µ2)φ2
)
dx

(8)
and the following lemma was given in [14].

Lemma 3.1. sign(1 − RDA0 ) = sign(λ0), where λ0 is the principal eigenvalue for
the reaction-diffusion-advection problem{

−ψxx + αψx = b
µ1
β(x)ψ − γ(x)ψ − µ2ψ + λ0ψ, x ∈ (p, q),

ψ(x) = 0, x = p or q,

here ψ(x) is the corresponding eigenfunction and ψ(x) > 0 in (p, q).

With the above definition of RDA0 , we have some properties for it.

Theorem 3.2. The following assertions hold.
(i) If Ω1 ⊆ Ω2 ⊆ R1, then RDA0 (Ω1) ≤ RDA0 (Ω2), and the strict inequality holds

if Ω2 \ Ω1 is a nonempty open set. Moreover, lim
(q−p)→+∞

RDA0 ((p, q)) ≥ β∞
α2

4 +γ∞+µ2

provided by (H1) holds;
(ii) If β(x) ≡ β∞ and γ(x) ≡ γ∞, then

RDA0 =

b
µ1
β∞

( π
q−p )2 + α2

4 + γ∞ + µ2

.

Proof. The proof of the monotonicity in assertion (i) is similar as that of Corollary
2.3 in [5], and the limit in assertion (ii) can be calculated directly.

We now turn to the limit in (i). Since lim
x→∞

β(x) = β∞, lim
x→∞

γ(x) = γ∞, we

deduce that for any ε > 0, there exists L > 0 such that for |x| ≥ L,
β∞ − ε ≤ β(x) ≤ β∞ + ε, γ∞ − ε ≤ γ(x) ≤ γ∞ + ε.

If q ≥ 2L, according to (8) and the monotonicity in assertion (i), we can get

RDA0

(
(p, q), β(x), γ(x)

)
≥ RDA0 ((L, 2L), β(x), γ(x))

≥ RDA0 ((L, 2L), β∞ − ε, γ∞ + ε)

= sup
φ∈H1

0 (L,2L)φ6=0

∫ 2L
L

b
µ1

(β∞−ε)φ2dx∫ 2L
L

(
φ2
x+(α

2

4 +γ∞+ε+µ2)φ2
)
dx
.

(9)

At the same time, λ = ( πL )2 is the principal eigenvalue for the following problem{
−φxx = λφ, x ∈ (L, 2L),
φ(L) = φ(2L) = 0

with the corresponding eigenfunction φ = sin(π(x−L)
L ). Plugging such φ into (9),

one easily obtains

RDA0

(
(p, q), β(x), γ(x)

)
≥

b
µ1

(β∞ − ε)
( πL )2 + (α

2

4 + γ∞ + ε+ µ2)
. (10)

Similarly, if p ≤ −2L, we can also obtain (10) by replacing (L, 2L) by (−2L,−L).
Hence, if (q − p) ≥ 4L, the inequality (10) holds. Letting L→∞ gives

lim
(q−p)→+∞

RDA0 ≥
b
µ1

(β∞ − ε)
α2

4 + γ∞ + ε+ µ2

.
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Because of the arbitrariness of ε, it follows that

lim
(q−p)→+∞

RDA0 ≥
b
µ1
β∞

α2

4 + γ∞ + µ2

.

For the free boundary problem (4), the infected interval (g(t), h(t)) is changing
with t, so the basic reproduction number is not a constant and should be a function
of t. Now we define it as the risk index RF0 (t), whose expression is given by

RF0 (t) : = RDA0

(
(g(t), h(t)), β(x), γ(x)

)
= sup

φ∈H1
0 ((g(t),h(t)))φ 6=0

∫ h(t)
g(t)

b
µ1
β(x)φ2dx∫ h(t)

g(t)

(
φ2
x+(α

2

4 +γ(x)+µ2)φ2
)
dx
.

(11)

Owing to the monotonicity of g(t) and h(t) in Lemma 2.3, we have the limits
g∞ ∈ [−∞,−h0] and h∞ ∈ [h0,+∞] such that lim

t→−∞
g(t) = g∞ and lim

t→∞
h(t) = h∞.

Moreover, (g(t), h(t)) is expanding and then RF0 (t) is increasing, we then denote

RF0 (∞) := lim
t→∞

RF0 (t) = RDA0

(
(g∞, h∞), β(x), γ(x)

)
. (12)

Using the above notations, Lemma 2.3 and Theorem 3.2 lead to the following result.

Theorem 3.3. RF0 (t) is a strictly monotone increasing function of t, that is RF0 (t1)
< RF0 (t2) if t1 < t2. Additionally, under the assumption of (H1), if h∞ − g∞ =∞,

then RF0 (∞) ≥
b
µ1
β∞

α2

4 +γ∞+µ2

.

Remark 1. Epidemiologically, the monotonicity in Theorem 3.3 implies that the
risk of the disease increases with time. By Theorem 3.3, we further obtain that
RF0 (∞) > 1 if (H2) holds and h∞ − g∞ =∞.

4. The vanishing of disease. Usually, if the infected domain no longer expands
and the infected individuals eventually disappear, we say the epidemic has been
controlled. Mathematically, we say the disease vanishes and have the following
definition.

Definition 4.1. The disease is vanishing if h∞−g∞ <∞ and lim
t→∞

‖I(·, t)‖C([g(t),h(t)])

= 0, while the disease is spreading if h∞−g∞ =∞ and lim sup
t→∞

‖I(·, t)‖C([g(t),h(t)])

> 0.

Thus, our natural question is: What conditions can make the disease vanish?

Theorem 4.2. Assume that (H2) holds. If RF0 (∞) < 1, then h∞ − g∞ <∞ and

lim
t→∞

‖I(·, t)‖C([g(t),h(t)]) = 0.

Moreover, we have lim
t→∞

‖R(·, t)‖C([g(t),h(t)]) = 0 and lim
t→∞

S(x, t) = b
µ1

uniformly for

x ∈ (−∞,∞).

Proof. On the contrary we assume that h∞ − g∞ → +∞ as t → ∞. Together

with assumption (H2) and Remark 1, we can get RF0 (∞) ≥
b
µ1
β∞

α2

4 +γ∞+µ2

> 1. This

contradicts to RF0 (∞) < 1.
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Now it follows from Lemma 2.5 that S(x, t) ≤ S(t) for (x, t) ∈ (−∞,∞)× [0,∞),
where

S(t) =
b

µ1
+
(
‖S0‖L∞ −

b

µ1

)
e−µ1t,

which satisfies {
dS
dt = b− µ1S, t ∈ [0,∞),

S(0) = ‖S0‖L∞ .

Since lim
t→∞

S(t) = b
µ1

, we deduce that

lim sup
t→∞

S(x, t) ≤ lim
t→∞

S(t) = b
µ1

uniformly for x ∈ (−∞,∞). (13)

Next we claim that lim
t→∞

‖I(·, t)‖C([g(t),h(t)]) = 0. Noting

RF0 (∞) = RDA0 ((g∞, h∞), β(x), γ(x)) < 1

and h∞ − g∞ < +∞, it follows from the continuity that RDA0 ((g∞, h∞), β(x)( b
µ1

+

δ), γ(x)) < 1 for some small δ > 0. Then, due to Lemma 3.1, there are λδ0 > 0 and
ψ(x) > 0 in (g∞, h∞) such that{

−ψxx + αψx =
(
β(x)( b

µ1
+ δ)− γ(x)− µ2

)
ψ + λδ0ψ, x ∈ (g∞, h∞),

ψ(x) = 0, x = g∞ or h∞.

For δ given above, there exists Tδ > 0 such that S(x, t) ≤ b
µ1

+ δ for t ≥ Tδ and

x ∈ (−∞,∞). Let I(x, t) be the unique solution of the problem
It − Ixx + αIx =

(
β(x)( b

µ1
+ δ)− γ(x)− µ2

)
I, g∞ < x < h∞, t > Tδ,

I(g∞, t) = 0, I(h∞, t) = 0, t > Tδ,
I(x, Tδ) = I0(x, Tδ), g∞ < x < h∞.

Using the comparison principle (Lemma 2.5) with S = b
µ1

+ δ yields

0 ≤ I(x, t) ≤ I(x, t) ≤Me−
λδ0
2 (t−Tδ)ψ(x), g(t) ≤ x ≤ h(t), t ≥ Tδ,

for some large M > 0. Therefore,

lim
t→∞

‖I(·, t)‖C([g(t),h(t)]) = 0 (14)

due to Me−
λδ0
2 (t−Tδ)ψ(x) → 0 as t → ∞. It then follows from the third equations

of (4) that

lim
t→∞

‖R(·, t)‖C([g(t),h(t)]) = 0.

It remains to show the limit of S. Owing to (14), for any ε > 0, there exists
Tε > 0 such that

0 ≤ β(x)SI ≤ ‖β‖L∞C1I(x, t) ≤ ε, (x, t) ∈ (−∞,+∞)× [Tε,∞),

here C1 is the upper bound of S defined in Lemma 2.2. Thus, we have S(x, t) ≥ S(t)
in (−∞,+∞)× [Tε,∞), where S(t) satisfies{

dS
dt = b− ε− µ1S, t > Tε,
S(T ) = inf

(−∞,+∞)
S(x, Tε) ≥ 0.
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It is easy to see that S(t)→ b−ε
µ1

as t→∞. Therefore,

lim inf
t→+∞

S(x, t) ≥ b− ε
µ1

, x ∈ (−∞,+∞).

Since ε is arbitrary, we get

lim inf
t→+∞

S(x, t) ≥ b

µ1
uniformly for x ∈ (−∞,+∞),

which together with (13) gives

lim
t→∞

S(x, t) =
b

µ1
uniformly for x ∈ (−∞,+∞).

This completes the proof.

Theorem 4.3. Suppose RF0 (0) < 1. Then h∞ − g∞ <∞ and

lim
t→∞

‖I(·, t)‖C([g(t),h(t)]) = 0

provided that S0 ≤ b
µ1

in (−∞,+∞) and ‖I0‖C([−h0,h0]) is sufficiently small.

Proof. Since RF0 (0) = RDA0 ((−h0, h0)) < 1, it follows from Lemma 3.1 that there
exist λ0

0 > 0 and ψ(x) > 0 in (−h0, h0) such that{
−ψxx + αψx =

(
β(x) b

µ1
− γ(x)− µ2

)
ψ + λ0

0ψ, −h0 < x < h0,

ψ(x) = 0, x = ±h0.
(15)

We first assert that there exists some constant M0 > 0 such that

xψ′(x) ≤M0ψ(x), −h0 ≤ x ≤ h0. (16)

In fact, let x1 be the first stationary point of ψ(x) (i. e. ψ′(x1) = 0) when x moves to
the right from −h0 to h0, and oppositely x2 the first one from h0 to −h0. It is easy
to see that −h0 < x1 ≤ x2 < h0. Denoting y1 = min{x1, 0} and y2 = max{x2, 0},
we have −h0 < y1 ≤ 0 ≤ y2 < h0, which divides the interval [−h0, h0] into three
subintervals [−h0, y1), [y1, y2] and (y2, h0].

Noting that for x ∈ [−h0, y1), x < 0 and ψ′(x) > 0, we have xψ′(x) < 0.
Similarly, for x ∈ (y2, h0], ψ′(x) > 0 and xψ′(x) < 0.

Since that ψ(x) > 0 for x ∈ [y1, y2], we can choose some large M0 > 0 such that

xψ′(x) ≤ h0‖ψ′‖L∞ ≤M0 min
[y1,y2]

ψ(x) ≤M0ψ(x), x ∈ [y1, y2],

therefore (16) holds for M0 ≥ (h0‖ψ′‖L∞)/ min
[y1,y2]

ψ(x).

Now we prove that the vanishing happens. Owing to λ0
0 > 0, we can choose some

small δ > 0 such that

δ(1 + δ)2 + αh0

4 δ2 + M0

2 (1 + δ)δ2 + ‖β‖L∞ b
µ1

((1 + δ)2 − 1) ≤ λ0
0. (17)

Next we define

σ(t) = h0

(
1 + δ − δ

2e
−δt), t > 0, (18)

and

U(x, t) = εe
αx
2 −

α
2
xh0
σ(t) e−δtψ

( xh0

σ(t)

)
, −σ(t) ≤ x ≤ σ(t), t > 0.

Direct calculations show that

σ′(t) + µUx(σ(t), t) = h0

2 δ
2e−δt + µεe−δte

α
2 (σ(t)−h0)ψ′(h0) h0

σ(t)

≥ h0e
−δt( δ2

2 + µε
h0
e
α
2 h0δψ′(h0)

)
.
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Similarly,

−σ′(t) + µUx(−σ(t), t) ≤ h0e
−δt
(
− δ2

2
+
µε

h0
e
α
2 h0δψ′(−h0)

)
.

Selecting ε = δ2h0

2µe
α
2
h0δ

min{ −1
ψ′(h0) ,

1
ψ′(−h0)} leads to

σ′(t) ≥ −µUx(σ(t), t) and − σ′(t) ≤ −µUx(−σ(t), t).

By (16), (17) and (18), a routine computation gives rise to the inequality as follows

Ut − Uxx + αUx−
(
β(x) b

µ1
− γ(x)− µ2

)
U

= U
[
− δ + α

2
xh0
σ2(t)

σ′(t)− σ′(t)
σ(t)
· xh0
σ(t)

ψ′ψ−1 + α2

4

(
1− h2

0
σ2(t)

)
+

h2
0

σ2(t)
(−ψ′′ + αψ′)ψ−1−

(
β(x) b

µ1
− γ(x)− µ2

)]
= U

[
− δ + α

2
xh0
σ2(t)

σ′(t)− σ′(t)
σ(t)

xh0
σ(t)

ψ′ψ−1−
(
1− h2

0
σ2(t)

)(
β(x) b

µ1
− γ(x)− µ2 − α2

4

)
+

h2
0

σ2(t)
λ0
0

]
≥ U

[
− δ − α

2

h2
0

σ2(t)
σ′(t)− σ′(t)

σ(t)
M0−

(
1− h2

0
σ2(t)

)
‖β‖L∞ b

µ1
+

h2
0

σ2(t)
λ0
0

]
≥ U

h2
0

σ2(t)

[
− δ(1 + δ)2 − αh0

4
δ2 − M0

2
(1 + δ)δ2 − ‖β‖L∞ b

µ1
((1 + δ)2 − 1) + λ0

0

]
≥ 0.

(19)

Because of the assumption that S0 ≤ b
µ1

for x ∈ (−∞,+∞), we derive S(x, t) ≤ b
µ1

for −∞ < x < +∞, t ≥ 0. Therefore, if ‖I0‖L∞ ≤ U(x, 0) = εe
αx
2 −

αx
2

h0
σ(0)ψ( xh0

σ(0) )

for x ∈ [−h0, h0], we can apply the comparison principle (Lemma 2.5) with S = b
µ1

to conclude that g(t) ≥ −σ(t), h(t) ≤ σ(t) and I(x, t) ≤ U(x, t) for g(t) ≤ x ≤
h(t), t > 0. It follows that h∞ ≤ lim

t→∞
σ(t) = h0(1 + δ) < ∞, g∞ ≥ −σ(t) > −∞

and then lim
t→∞

‖I(·, t)‖C([g(t),h(t)]) = 0.

Theorem 4.4. Suppose RF0 (0) < 1. Then h∞ − g∞ <∞ and

lim
t→∞

‖I(·, t)‖C([g(t),h(t)]) = 0

provided that S0 ≤ b
µ1

in (−∞,+∞) and µ is sufficiently small.

Proof. Similar to Theorem 4.3, we define

W (x, t) = Me
αx
2 −

α
2
xh0
σ(t) e−δtψ

( xh0

σ(t)

)
, −σ(t) ≤ x ≤ σ(t), t > 0,

where M > 0 is large enough such that ‖I0‖L∞ ≤ W (x, 0) = Me
αx
2 −

αx
2

h0
σ(0)ψ( xh0

σ(0) )

for x ∈ [−h0, h0]. Using the same calculation as (19) yields

Wt −Wxx + αWx−
(
β(x)

b

µ1
− γ(x)− µ2

)
W ≥ 0.

Additionally, straightforward calculations tell us that

σ′(t) ≥ −µWx(σ(t), t) and − σ′(t) ≤ −µWx(−σ(t), t)

if µ is sufficiently small. The result for vanishing is a direct application of Lemma
2.5.
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5. The spreading of disease. In this section, our aim is to present the sufficient
conditions for the spreading. First of all, we give a lemma for the following initial-
boundary value problem

ut − uxx + αux = f(x, t)u, g(t) < x < h(t), t > 0,
u(x, t) = 0, x ≤ g(t) or x ≥ h(t), t > 0,
g′(t) = −µux(g(t), t), g(0) = −h0 < 0, t > 0,
h′(t) = −µux(h(t), t), h(0) = h0 > 0, t > 0,
u(x, 0) = u0(x), −h0 < x < h0,

(20)

where α > 0 is a constant, f(x, t) is a continuous function, u0(x) ∈ C2[−h0, h0],
u0(±h0) = 0 and u0(x) > 0, x ∈ (−h0, h0).

Lemma 5.1. Suppose the following conditions hold.
(i) There exists a constant M1 > 0 such that |f(x, t)| ≤ M1 for −∞ < x < ∞,
t > 0;
(ii) u(x, t), g(t) and h(t) are bounded.
Then the unique solution (u; g(t), h(t)) of problem (20) satisfies

lim
t→∞

‖u(·, t)‖C([g(t),h(t)]) = 0. (21)

Proof. Since f(x, t) is bounded, it is well-known that problem (20) admits a u-
nique global solution (u(x, t); g(t), h(t)) and g(t) is decreasing, h(t) is increasing.
Furthermore, straightening the free boundaries as follows

y =
2h0x

h(t)− g(t)
− h0(h(t) + g(t))

h(t)− g(t)
, w(y, t) = u(x, t)

leads to a related problem with the fixed boundaries. Similarly as Lemma 3.2
in [1], it follows that for 0 < ν < 1, there exists a constant Ĉ that depends on
ν, h0, g0, ‖u0‖C2[−h0,h0] and g∞, h∞ such that

‖w‖
C1+ν, 1+ν

2 ([−h0,h0]×[τ,τ+1])
≤ Ĉ,

for any τ ≥ 1. Noting that τ is arbitrary and Ĉ is independent of τ , we can obtain

‖u(·, t)‖C1([g(t),h(t)]) ≤ C̃, t ≥ 1, (22)

which together with the free boundary conditions in (20) yields

‖h′‖
C
ν
2 ([1,∞))

, ‖g′‖
C
ν
2 ([1,∞))

≤ C̃, t ≥ 1, (23)

for some positive constant C̃.
Next, we prove (21). Arguing by contradiction, we assume that

lim sup
t→∞

‖u(·, t)‖C([g(t),h(t)]) = δ > 0. (24)

Thus, there exists a sequence {(xk, tk) : g(tk) < xk < h(tk), tk > 0} with tk → ∞
as k → ∞ such that u(xk, tk) ≥ δ

2 for all k ∈ N. Owing to −∞ < g∞ < g(tk) <
xk < h(tk) < h∞ < ∞, we can extract a subsequence of {xk}, still denoted by it,
converges to x0 ∈ [g∞, h∞]. Moreover, it follows from (22) that x0 ∈ (g∞, h∞).
Define

uk(x, t) = u(x, t+ tk), x ∈ (g(t+ tk), h(t+ tk)), t ∈ (−tk,∞).

From condition (i), (22) and the standard parabolic regularity, it follows that {uk}
has a subsequence {uki} such that uki → ũ(i→∞) and ũ satisfies

ũt − ũxx + αũx = f(x, t)ũ ≥ −M1ũ, (x, t) ∈ (g∞, h∞)× (−∞,∞),
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which together with

ũ(x0, 0) = lim
ki→∞

uki(xki , 0) = lim
ki→∞

u(xki , tki) ≥
δ

2
, ũ(h∞, 0) = 0

gives that ũ > 0 in (g∞, h∞)×(−∞,∞) via the maximum principle. Hence, applying
the Hopf boundary lemma at the point (h∞, 0) leads to

ũx(h∞, 0) ≤ −σ < 0

for some σ > 0. From (22) and the above fact, we conclude

ux(h(tki), tki) =
∂

∂x
uki(h(tki), 0) ≤ −σ

2
< 0

for all large ki, which together with the Stefan condition implies that

h′(tki) ≥
µσ

2
> 0. (25)

On the other hand, (23) and the assumption that h∞ − g∞ < 0 give rise to

h′(t)→ 0 and g′(t)→ 0. (26)

Comparing (25) and (26), it yields a contradiction so that (24) doesn’t hold, that
is, we arrive at (21).

Theorem 5.2. If there exists t0 ≥ 0 such that RF0 (t0) ≥ 1, then h∞−g∞ =∞ and

lim sup
t→∞

‖I(·, t)‖C([g(t),h(t)]) > 0, (27)

namely, spreading happens.

Proof. Since S is bounded, from the second equation in (4), we conclude

It − Ixx + αIx ≥ −M1I

by M1 := ‖β‖L∞ ·max{ bµ1
, ‖S0‖L∞}+ ‖γ‖L∞ + µ2. Assuming that h∞ − g∞ <∞

by contradiction, it follows from Lemma 5.1 that

lim
t→∞

‖I(·, t)‖C([g(t),h(t)]) = 0, (28)

which together with the first equation in (4) gives

lim
t→∞

S(x, t) =
b

µ1
uniformly for x ∈ (−∞,∞). (29)

Additionally, we know that there exists T0 > t0 such that

RF0 (T0) = RDA0

(
(g(T0), h(T0)),

b

µ1
β(x), γ(x)

)
> 1 (30)

based on the hypothesis RF0 (t0) ≥ 1 and the monotonicity of RF0 (t) with respect to
t. By continuity, there exists ε0 > 0 sufficiently small (ε0 <

b
µ1

) such that

RF0 (T0, ε0) := RDA0

(
(g(T0), h(T0)), β(x)(

b

µ1
− ε0), γ(x)

)
> 1. (31)

For ε0 given above, it follows from (29) that there is T ∗ > T0 such that

S(x, t) ≥ b

µ1
− ε0, x ∈ (g∞, h∞), t ≥ T ∗,

and the monotonicity of RF0 (t) implies that

RF0 (T ∗, ε0) = RDA0

(
(g(T ∗), h(T ∗)), β(x)(

b

µ1
− ε0), γ(x)

)
> 1, (32)
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which together with Lemma 3.1 shows that the principal eigenvalue λ∗0 < 0 for the
following problem{

−ψxx + αψx =
(
β(x)( b

µ1
− ε0)− γ(x)− µ2

)
ψ + λ∗0ψ, x ∈ (g(T ∗), h(T ∗)),

ψ(x) = 0, x = g(T ∗) or h(T ∗),
(33)

and ψ(x) > 0 in (g(T ∗), h(T ∗)). Now we set

u(x, t) = δe−λ
∗
0(t−T∗)ψ(x), x ∈ (g(T ∗), h(T ∗)), t ≥ T ∗,

where δ is sufficiently small such that u(x, T ∗) = δψ(x) ≤ I(x, T ∗), and in light of
(33), we get

ut − uxx + αux =
(
β(x)(

b

µ1
− ε0)− γ(x)− µ2

)
u. (34)

Employing the comparison principle with S = b
µ1
− ε0 in [g(T ∗), h(T ∗)] × [T ∗,∞)

deduces that

‖I(·, t)‖C([g(t),h(t)]) ≥ δe−λ
∗
0(t−T∗)ψ(0)→ +∞ as t→∞.

This is a contradiction to (28), which concludes that h∞ − g∞ =∞.
Now, we turn to prove (27). If not, then

lim sup
t→∞

‖I(·, t)‖C([g(t),h(t)]) = 0, (35)

thus, we can obtain (29) again. Following the same procedure, we can prove that
(31) and (32) hold for given ε0, T0, T

∗. Therefore I admits a lower solution u, which
is unbounded. This leads to a contradiction to (35), which completes the proof.

Recalling Theorem 4.4, we know that if the expanding capability µ is sufficiently
small, accompanied with other conditions, the disease will vanish. However, another
question arises: if µ is large, what will happen? To answer this question, we need
the following lemma. Meanwhile, in order to stress the dependence of the solutions
on µ for problem (4) and (20), we substitute (Iµ; gµ, hµ) and (uµ; gµ, hµ) for (I; g, h)
and (u; g, h) respectively in the following lemma and theorem.

Lemma 5.3. Assume that in problem (20), there exists a constant M2 > 0 such
that f(x, t) ≥ −M2. Then for any given constant H > 0, there exists µH > 0 such
that when µ > µH , the unique solution (uµ; gµ(t), hµ(t)) satisfies

lim sup
t→∞

gµ(t) < −H, and lim inf
t→∞

hµ(t) > H. (36)

Proof. This can be proved in a similar way as shown in [38, Lemma 3.2]. It is clear
that

uµ(x, t) ≥ vµ(x, t), pµ(t) ≤ x ≤ qµ(t), t > 0.

gµ(t) ≤ pµ(t), hµ(t) ≥ qµ(t), t > 0.
(37)

where (vµ; pµ(t), qµ(t)) satisfies
vt − vxx + αvx = −M2v, p(t) < x < q(t), t > 0,
v(x, t) = 0, x ≤ p(t) or x ≥ q(t), t > 0,
p′(t) = −µvx(p(t), t), p(0) = −h0 < 0, t > 0,
q′(t) = −µvx(q(t), t), q(0) = h0 > 0, t > 0,
v(x, 0) = u0(x), −h0 < x < h0,

(38)

and (pµ)′(t) < 0, (qµ)′(t) > 0 for t > 0.
We are in a position to prove that for all large µ,

pµ(2) ≤ −H and qµ(2) ≥ H. (39)
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To this end, we first choose smooth functions p(t) and q(t) with

p(0) = −h0

2
, p′(t) < 0, p(2) = −H, and q(0) =

h0

2
, q′(t) > 0, q(2) = H.

We then invoke the following initial-boundary value problem
vt − vxx + αvx = −M2v, p(t) < x < q(t), t > 0,
v(x, t) = 0, x ≤ p(t) or x ≥ q(t), t > 0,

v(x, 0) = v0(x), −h0

2 ≤ x ≤
h0

2 ,

(40)

where the smooth initial value v0(x) satisfies{
0 < v0(x) < u0(x), −h0

2 ≤ x ≤
h0

2 ,

v0(−h0

2 ) = v0(h0

2 ) = 0, v′0(−h0

2 ) > 0, v′0(h0

2 ) < 0.
(41)

Thus, the standard theory for parabolic equations ensures that (40) admits a u-
nique solution v, and the Hopf boundary lemma shows that vx(p(t), t) > 0 and
vx(q(t), t) < 0 for t ∈ [0, 2].

According to our choice of v0(x), p(t) and q(t), there exists a constant µH such
that for all µ > µH ,

p′(t) ≥ −µvx(p(t), t) and q′(t) ≤ −µvx(q(t), t), 0 ≤ t ≤ 2. (42)

Obviously,

p(0) = −h0

2
> −h0 = pµ(0), q(0) =

h0

2
< h0 = qµ(0).

The comparison principle together with (38), (40), (41) and (42) gives rise to

vµ(x, t) ≥ v(x, t), pµ(t) ≤ p(t), qµ(t) ≥ q(t), for p(t) ≤ x ≤ q(t), 0 ≤ t ≤ 2,

which implies (39) hold. Hence, owing to (37) and (39), we obtain

lim sup
t→∞

g(t) ≤ lim
t→∞

pµ(t) < pµ(2) ≤ −H,

lim inf
t→∞

h(t) ≥ lim
t→∞

qµ(t) > qµ(2) ≥ H.

Theorem 5.4. Suppose RF0 (0) < 1. Then h∞ − g∞ =∞ and

lim sup
t→∞

‖I(·, t)‖C([g(t),h(t)]) > 0 (43)

if µ is sufficiently large, that is, spreading happens.

Proof. It has been proven successfully for the similar result, which adopts the
method of constructing a lower solution and can be found in [36, Lemma 3.13].
To more simple, we will apply Lemma 5.3 to prove here. Clearly,

It − Ixx + αIx ≥ −M2I, (44)

where M2 is the same as M1 defined in Theorem 5.2 and independent of µ.
Recalling assertion (i) of Theorem 3.2, we can select some H > 0 such that

RDA0 ((−H,H)) > 1. For H chosen above, it follows from (44) and Lemma 5.3 that
there exists a µH such that when µ > µH ,

lim sup
t→∞

gµ(t) < −H and lim inf
t→∞

hµ(t) > H.
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Combining with the monotonicity of gµ(t) and hµ(t) gives that there is T0 > 0 such
that gµ(T0) < −H, hµ(T0) > H, thus,

RF0 (T0) = RDA0 ((gµ(T0), hµ(T0))) > RDA0 ((−H,H)) > 1.

Therefore, for µ > µH , we can use Theorem 5.2 to conclude that h∞ − g∞ = ∞
and lim sup

t→∞
‖I(·, t)‖C([g(t),h(t)]) > 0.

The following result follows directly from the comparison principle (Lemma 2.5),
Theorems 4.4 and 5.4, see also the similar proof of Theorem 5.5 in [14].

Theorem 5.5. (Sharp threshold) For fixed h0, I0 and S0 (S0 ≤ b
µ1

), there exists

µ∗ ∈ [0,∞) such that vanishing occurs when 0 < µ ≤ µ∗, and spreading occurs when
µ > µ∗ .

6. Numerical simulation and discussion. In this section, we first carry out
numerical simulations to illustrate the impact of expanding capability µ. Fixing
some coefficients and functions as follows:

α = 1.5, b = 1, µ1 = 0.5, µ2 = 0.6, h0 = 1,

S0(x) = 1 + 1
2 sinx, I0(x) = cos(π2x),

β(x) = 1 + 2
1+x2 (sin π

2x+ 1), γ(x) = 0.5 + 20
1+x2 (cos π2x+ 1),

we can see that β∞ = 1, γ∞ = 0.5, S0(x) ≤ b
µ1

and (H2) holds. Further, we have

by (11) that

RF0 (0) ≤

∫ 1
−1

b
µ1
β(x)φ2dx∫ 1

−1

(
α2

4
+ γ(x) + µ2

)
φ2dx

≤

b
µ1

max
x∈[−1,1]

β(x)
∫ 1
−1 φ

2dx

(α
2

4
+ min
x∈[−1,1]

γ(x) + µ2)
∫ 1
−1 φ

2dx
≤

8

11
< 1.

Thus, the asymptotic behaviors of the solution to problem (4) and the changing of
free boundaries are illustrated by choosing different expanding capabilities.
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Figure 1. µ = 20. The left graph shows that the solution I de-
cays to zero quickly. The right graph is the corresponding contour
graph, which shows the free boundaries expand slowly and will be
limited in a long run.

Example 6.1. Fix small µ = 20. Theorem 4.4 gives that the solution is vanishing
for small µ. We can see from Figure 1 that the disease I tends to extinction quickly,
and the free boundaries don’t expand.
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Figure 2. µ = 40. The solution I in the left graph keeps positive
and stabilizes to an equilibrium . The right contour graph shows
that the free boundaries expand fast.

Example 6.2. Fix big µ = 40. Theorem 5.4 tells us that the spreading of solution
happens if µ is sufficiently large. Comparing with Figure 1, it is easy to see from
Figure 2 that a spatially inhomogeneous stationary endemic state appears and is
globally asymptotically stable for bigger µ. The two fronts expand quickly.

In this paper, we consider a reaction-diffusion-advection SIR model (4) with
double free boundaries, which describes the left and right fronts of the infected
habitat. The model extends the existing models such as (2) for a model without
advection and (3) for a simplified SIS model.

We introduce the basic reproduction number RDA0 for system (7) with Dirichlet
boundary and the risk index RF0 (t) for model (4), respectively. Based on the risk
index RF0 (t), we exhibit some sufficient conditions to ensure spreading or vanishing
of the disease. Specifically, our results reveal that if RF0 (t0) ≥ 1 for some t0,
spreading always happens, namely, the disease will become endemic (Theorem 5.2),
and if RF0 (∞) < 1, vanishing always happens, namely, the disease will be controlled
(Theorem 4.2). But if RF0 (0) < 1, vanishing will happen for the small initial value I0
of infected individuals (Theorem 4.3) or the small expanding capability µ (Theorem
4.4), however, spreading can also happen for the large µ (Theorem 5.4).

In our work, three basic reproduction numbers are introduced, one is R0 (:=
bβ

µ1(µ2+α) ) for SIR model (2) without advection, one is RDA0 defined by (8) for SIR

model with fixed boundaries, another one is RF0 (t) defined by (11) for SIR model
(4) with free boundaries. Their differences and correlations have been discussed in
[14, Section 7].

It is worthwhile to point out that our risk index RF0 (t) is related not only with
the advection α, but also with the contact transmission rate β(x) and recovery
rate γ(x). In detail, RF0 (t) increases with β(x), and decreases with γ(x). These
facts suggest that all epidemiological parameters affect the transmission dynamics
of disease. Specially, decreasing of β(x) or increasing of γ(x) can lower the risk
index and prevent the further spreading of the disease. For instance, in the control
of infectious diseases such as the Ebola epidemics in West Africa ([17]), applying
some proper isolation facilities, which can reduce the contact rate, was shown to be a
crucial factor in preventing the spread to neighboring countries. Another alternative
way is improving medical technical level, which can increase the recovery rate and
thus become a vital factor in controlling the spread.

We close this paper by recalling the advection coefficient α. To avoid complex-
ity, we begin with a small advection. But big advection, we believe, will cause
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more complex dynamical behaviors, and interested readers can refer to [4]. We will
continue to focus on the dynamics induced by big advection.
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