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Abstract. In this paper, a time periodic and two–group reaction–diffusion
epidemic model with distributed delay is proposed and investigated. We firstly

introduce the basic reproduction number R0 for the model via the next genera-

tion operator method. We then establish the threshold dynamics of the model
in terms of R0, that is, the disease is uniformly persistent if R0 > 1, while the

disease goes to extinction if R0 < 1. Finally, we study the global dynamics

for the model in a special case when all the coefficients are independent of
spatio–temporal variables.

1. Introduction. Mathematical modeling is a basic but efficient tool to study the
spread mechanism of diseases, by which the future course of an outbreak can be
predicted and then be controlled. In order to establish a theoretical framework for
mathematical analysis of transmission of malaria, Ross [44] firstly proposed a system
of ordinary differential equations which is the origin of the modern susceptible–
infected–recovered (SIR) compartmental model. Since then the SIR compartmental
model and many of its extensions, which are independent of the spatial variables,
have been well investigated by many scholars [2, 8, 20, 40, 36]. At the same time,
the heterogeneity of living environment and mobility of the host individuals play
a crucial role in the geographic spread of infectious disease. In fact, there have
been many articles which have analyzed mathematically the spatial dynamics of
epidemic models, see [3, 16, 42, 45, 43, 46, 61, 59, 64, 65, 66] and the references
therein. As reported by [29], multi–group epidemic models have been proposed to
describe the spread of various infectious diseases in heterogeneous populations, such
as measles, mumps, gonorrhea, and HIV/AIDS. In such models, a heterogeneous
host population can be divided into several homogeneous groups according to the
modes of transmission, contact patterns, or geographic distributions, so that within–
group and inter–group interactions could be modeled separately. The works involved
with multi-group models with or without spread diffusion can be found in [7, 13,
14, 15, 17, 21, 23, 32, 34, 50, 60, 70, 68].

Many infectious diseases, such as measles, chicken pox, cholera, influenza, HIV,
SARS, etc., exhibit a latent period, namely, the infected individuals do not infect
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other susceptible individuals until some time later. Meanwhile, the infected indi-
viduals may move from one spatial location to another spatial location with time,
which give rise to spatial nonlocal effect. Generally, such nonlocal infection may
effect the outbreak and transmission of the diseases (see, e.g. Li and Zou [27], Lou
and Zhao [32], Wang and Zhao [58]). Li and Zou [28] proposed a time–delayed
SIR epidemic model with nonlocal terms among n–patches in a fixed latent period,
where a demographic structure is incorporated by adding recruitment (including
births) and natural deaths. They found that nonlocal terms can enhance the basic
reproduction number R0, and thus, may leads to an otherwise dying–out disease
to persist. When the habitat is a continuous domian, Guo et al. [18] derived
a reaction–diffusion epidemic model with time–delay and non–locality in a fixed
latent period and investigated the threshold dynamics of the epidemic model by
means of the basic reproduction number R0. In addition, there have been other
papers studying diffusion–reaction epidemic models with fixed latent period, see
[27, 32, 58, 63, 67] and the references therein.

However, it is common that the length of the latent period differs from disease
to disease; even for the same disease, the length of the latent period is also different
from individuals to individuals. Based on this point, instead of using the discrete
(fixed) delay, we employ distributed delay to characterize the variable latency (see,
e.g., van den Driessche et al. [53]). The distributed delay allows infectivity to be a
function of the duration since infection, up to some maximum duration (see [38]).
To characterize the distributed delay, a distribution function p(u) : [0,∞)→ [0,∞)
which accounts for the variance that the infected individuals become infectious and
is assumed to have compact support, p(u) ≥ 0 and

∫∞
0
p(u)du = 1 can be used.

Epidemic models with distributed delay independent of the spatial variables have
been studied, see [6, 10, 22, 29, 49, 56] and the references therein.

It is well known that seasonality can impact host–pathogen interactions, includ-
ing seasonal changes in host social behaviour and contact rates, variation in en-
counters with infective stages in the environment, annual pulses of host births and
deaths and changes in host immune defences (see [1]). For an infectious disease, it is
crucial and more realistic to take into account temporal heterogeneity, which gives
rise to non–autonomous evolution equations. Bacaër and Guernaoui [5] defined
the basic reproduction number R0 in a periodic environment. For further devel-
opments, we refer to Bacaër et al. [4] and Inaba [24] and the references therein.
Wang and Zhao [57] developed the basic reproduction number R0 of a large class of
compartmental epidemic models in periodic environments and studied the impact
of periodic contacts or periodic migrations on the disease transmission by analyzing
the global dynamics of a periodic epidemic model with patch structure. Peng and
Zhao [41] studied the threshold dynamics of a time–periodic reaction–diffusion SIS
model and showed that the persistence of the infectious disease can be enhanced
by incorporating the spatial heterogeneity and temporal periodicity into the model.
Recently, the theory of the basic reproduction number on the periodic and time–
delayed compartmental models is established by Zhao [71] and can be applied to
periodic SEIR models with incubation period. Zhang et al. [67] proposed a time–
periodic reaction–diffusion epidemic model which incorporates simple demographic
structure and a fixed latent period of the infectious disease, introduced the ba-
sic reproduction number R0 via a next generation operator, and investigated the
threshold dynamics of the epidemic model in terms of R0. Some other studies on the
dynamics of time heterogeneous epidemic models can be found in [33, 54, 55, 65, 68]
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and the references therein. However, for such non-autonomous (even autonomous)
diffusion–reaction epidemic models with distributed delays, much less is done. The
purpose of this paper is to incorporate spatial diffusion, distributed latency of the
disease and temporal heterogeneity into a multi–group SIR disease model and to
investigate the threshold dynamics of the derived model.

The rest of this paper is organized as follows. In the next section, we derive
a two–group reaction–diffusion epidemic model with seasonality and distributed
delay. In section 3, we introduce the basic reproduction number R0 for the system
via the next generation operator method and then establish the threshold dynamics
for the system in term of R0, namely, the disease is uniformly persistent if R0 > 1,
while the disease goes to extinction if R0 < 1. Section 4 is devoted to the global
dynamics for the model in a special case where all the coefficients are independent
of spatio–temporal variables.

2. Model formulation. Assume that an infectious disease spreads in two popula-
tions or sub–populations living in a bounded domain Ω ∈ Rn with smooth boundary
∂Ω. We always define two populations or sub–populations by the subscript 1 and
2. Without loss of generality, we divide each population/sub–population into four
compartments: the susceptible compartment, the latent compartment, the infec-
tious compartment and the removed compartment. Then we denote the densities of
four compartments at time t and location x by Si(t, x), Li(t, x), Ii(t, x) and Ri(t, x),
respectively, where i = 1, 2 and (t, x) ∈ R+ × Ω̄.

Let E1(t, a, x) and E2(t, a, x) be the densities of two exposed populations or
sub–populations at time t ≥ 0, infection age variable a ≥ 0 and location x ∈ Ω̄,
repectively. Then Ei(i = 1, 2) satisfy the following model(

∂

∂t
+

∂

∂a

)
Ei(t, a, x) = Di∆xEi(t, a, x)

−
(
D̄i(t, a, x) +Mi(t, a, x) + di(t, x)

)
Ei(t, a, x), (1)

t, a > 0, x ∈ Ω

with Neumann boundary condition

∂Ei(t, a, x)

∂n
= 0, t, a > 0, x ∈ ∂Ω, i = 1, 2,

where n is the outward normal to ∂Ω, Di represents the diffusion rate of the i–th
population, D̄i(t, a, x) and Mi(t, a, x) mean the disease–induced mortality rate and
the recovery rate of the i–th population which are dependent upon the infection age
a, time t and location x, respectively and di(t, x) denotes the natural death rate of
the i–th population at time t and location x for i = 1, 2.

Suppose that an infectious disease has a period of latency which is not fixed.
Namely, for each population, we assume that infectious individuals must have ca-
pable of infecting others after the infection age τi ∈ [0,∞). But, between the
infection age 0 and τi, the infected individual may or may not have an infection
ability. Assume that fi(r)dr denotes the probability of becoming into the individu-
als who are capable of infecting others between the infection ages r and r+ dr and
Fi(a) :=

∫ a
0
fi(r)dr represents the probability of turning into the individuals with

infecting others before the infection age a for i = 1, 2. Then we have

Li(t, x) =

∫ τi

0

(1− Fi(a))Ei(t, a, x)da
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and

Ii(t, x) =

∫ τi

0

Fi(a)Ei(t, a, x)da+

∫ +∞

τi

Ei(t, a, x)da, i = 1, 2.

It is clear that fi(a) ≥ 0 for a ∈ (0, τi) and Fi(a) ≡ 1 for a ∈ [τi,∞) for i = 1, 2.
For the sake of simplicity, we assume that the functions D̄i(t, a, x) and Mi(t, a, x)
are independent of the infection age a, namely,

D̄i(t, a, x) = D̄i(t, x), Mi(t, a, x) = Mi(t, x), ∀t ≥ 0, a ∈ [0,∞), x ∈ Ω, i = 1, 2.

For a convenience, we assume

Ii,1 :=

∫ τi

0

Fi(a)Ei(t, a, x)da and Ii,2 :=

∫ +∞

τi

Ei(t, a, x)da.

We now aim to find partial differential equations satisfied by Li(t, x) and Ii(t, x).
Integrating (1) with respect to a and using the expressions of Li(t, x) and Ii(t, x),
one has

∂Li
∂t

= Di∆Li(t, x)−
(
D̄i(t, x) +Mi(t, x) + di(t, x)

)
Li(t, x)

−
∫ τi

0

fi(a)Ei(t, a, x)da+ Ei(t, 0, x),

∂Ii,1
∂t

= Di∆Ii,1(t, x)−
(
D̄i(t, x) +Mi(t, x) + di(t, x)

)
Ii,1(t, x)

+

∫ τi

0

fi(a)Ei(t, a, x)da− Ei(t, τi, x)

and

∂Ii,2(t, x)

∂t
= Di∆Ii,2(t, x)−

(
D̄i(t, x) +Mi(t, x) + di(t, x)

)
Ii,2(t, x)

+ Ei(t, τi, x)− Ei(t,∞, x),

where i = 1, 2. Let Ei(t,∞, x) = 0(i = 1, 2), then we can obtain

∂Ii(t, x)

∂t
= Di∆Ii(t, x)−

(
D̄i(t, x) +Mi(t, x) + di(t, x)

)
Ii(t, x)

+

∫ τi

0

fi(a)Ei(t, a, x)da, i = 1, 2.

As the new infection individuals come from the contact of the infectious and sus-
ceptible individuals, we adopt the following form:

Ei(t, 0, x) = βi1(t, x)gi1(Si(t, x), I1(t, x)) + βi2(t, x)gi2(Si(t, x), I2(t, x)), i = 1, 2,

where βij(t, x) ≥ 0 is called the infection rate for i, j = 1, 2. In this paper, we
assume that the contacts between susceptible individuals and infectious individuals
are defined by incidence functions gij(u, v)(i, j = 1, 2), which satisfy the following
conditions:

(H1): (i) gij(u, v) : R2
+ → R+(i, j = 1, 2) are continuously differentiable for all

u, v ≥ 0;
(ii) gij(u, 0) = 0 and gij(0, v) = 0 for all u, v ≥ 0 and i, j = 1, 2;

(iii) ∂
∂ugij(u, v) ≥ 0 and ∂

∂v gij(u, v) ≥ 0 for all u, v ≥ 0 and i, j = 1, 2. In
particular, ∂ugij(u, 0) = 0 and ∂vgij(u, 0) > 0 for all u > 0;

(iv) there exist ηi > 0(i = 1, 2) such that gij(u, v) ≤ ηiu for all u, v ≥ 0;
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(v)Nij(u, v) :=
gij(u,v)

v ,Nij(u, v) > 0, ∂
∂uNij(u, v) ≥ 0 and ∂

∂vNij(u, v) ≤ 0
for all u, v > 0 and i, j = 1, 2.

Note that the class of gij(u, v)(i, j = 1, 2) satisfying (H1) include many common
incidence functions such as

gij(u, v) =
uv

u+ v
, gij(u, v) =

uv

1 + aiju+ bijv + cijuv

and

gij(u, v) =
uv

1 + aiju
,

where aij , bij , cij > 0 for i, j = 1, 2, see [39].
We use the following simple demographic equation for a population Q(t, x) that

admits a dynamics of global convergence to a positive periodic solution

∂Q(t, x)

∂t
= DQ∆Q(t, x) + µ(t, x)− d(t, x)Q(t, x),

where µ(t, x) is the recruiting rate, DQ is the diffusion rate and d(t, x) is the natural
death rate. We also assume that the disease under consideration does not transmit
vertically. On the basis of the above assumptions, the disease dynamics is expressed
by the following system

∂Si(t,x)
∂t = DSi∆Si(t, x) + µi(t, x)− di(t, x)Si(t, x)

−βi1(t, x)gi1(Si(t, x), I1(t, x))− βi2(t, x)gi2(Si(t, x), I2(t, x)),
∂Li(t,x)

∂t = Di∆Li(t, x)−
(
D̄i(t, x) +Mi(t, x) + di(t, x)

)
Li(t, x)

+βi1(t, x)gi1(Si(t, x), I1(t, x)) + βi2(t, x)gi2(Si(t, x), I2(t, x))

−
∫ τi

0
fi(a)Ei(t, a, x)da,

∂Ii(t,x)
∂t = Di∆Ii(t, x)−

(
D̄i(t, x) +Mi(t, x) + di(t, x)

)
Ii(t, x)

+
∫ τi

0
fi(a)Ei(t, a, x)da,

∂Ri(t,x)
∂t = DRi∆Ri(t, x) +Mi(t, x)Li(t, x) +Mi(t, x)Ii(t, x)− di(t, x)Ri(t, x).

(2)
We make the following basic assumptions:

(H2): DSi and Di are positive constants for i = 1, 2; µi(t, x) and D̄i(t, x) are
Hölder continuous and nonnegative nontrivial functions on R×Ω̄, and periodic
in time t with the same period T > 0; di(t, x)(i = 1, 2) are Hölder continuous
and positive functions on R× Ω̄, and periodic in time t with the same period
T > 0; βij(t, x)(i, j = 1, 2) are Hölder continuous and nonnegative nontrivial
functions on R× Ω̄, and periodic in time t with the same period T > 0.

The reminder is to derive functions Ei(t, a, x)(i = 1, 2) by integration along
characteristics. For a convenience, let ri(t, ·) = D̄i(t, ·) +Mi(t, ·) + di(t, ·). For any
ξ ≥ 0, we consider the solutions of (1) along the characteristic line t = a + ξ by
letting vi(ξ, a, x) = Ei(a+ ξ, a, x)(i = 1, 2). Then for a ∈ (0, τi], we have{

∂vi(ξ,a,x)
∂a = Di∆vi(ξ, a, x)− ri(a+ ξ, x)vi(ξ, a, x),

vi(ξ, 0, x) = βi1(ξ, x)gi1(Si(ξ, x), I1(ξ, x)) + βi2(ξ, x)gi2(Si(ξ, x), I2(ξ, x)),
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where i = 1, 2. For the above system, we can regard ξ as a parameter. Then we
have

vi(ξ, a, x) =

∫
Ω

Γi(ξ + a, ξ, x, y)
(
βi1(ξ, y)gi1(Si(ξ, y), I1(ξ, y))

+ βi2(ξ, y)gi2(Si(ξ, y), I2(ξ, y))
)
dy,

where Γi(t, s, x, y) with t > s and x, y ∈ Ω is the fundamental solution associated
with the partial differential operator ∂t − Di∆ − ri(t, ·) and Neumann boundary
condition for i = 1, 2. Note that Γi(t, s, x, y) = Γi(t+T, s+T, x, y) for all t > s ≥ 0
and x, y ∈ Ω because of ri(t + T, x) = ri(t, x) for any t ≥ 0. It then follows from
Ei(t, a, x) = vi(t− a, a, x) that

Ei(t, a, x) =

∫
Ω

Γi(t, t− a, x, y)
(
βi1(t− a, y)gi1(Si(t− a, y), I1(t− a, y))

+ βi2(t− a, y)gi2(Si(t− a, y), I2(t− a, y))
)
dy, i = 1, 2.

(3)

Substituting (3) into the second equation and the third equation of (2) respectively,
and ignoring the Li(t, x) and Ri(t, x) equations from (2) because they are decoupled
from the Si(t, x) and Ii(t, x) equations, we obtain the following system:

∂Si(t,x)
∂t = DSi∆Si(t, x) + µi(t, x)− di(t, x)Si(t, x)

−βi1(t, x)gi1(Si(t, x), I1(t, x))− βi2(t, x)gi2(Si(t, x), I2(t, x)),

t > 0, x ∈ Ω,
∂Ii(t,x)
∂t = Di∆Ii(t, x)− ri(t, x)Ii(t, x) +

∫ τi
0
fi(a)

∫
Ω

Γi(t, t− a, x, y)

×
(
βi1(t− a, y)gi1(Si(t− a, y), I1(t− a, y))

+βi2(t− a, y)gi2(Si(t− a, y), I2(t− a, y))
)
dyda, t > 0, x ∈ Ω,

∂
∂nSi(t, x) = ∂

∂nIi(t, x) = 0, t > 0, x ∈ ∂Ω

(4)
for i = 1, 2. We assume∫ τi

0

fi(a)

∫
Ω

Γi(t, t− a, x, y)βij(t− a, y)dyda > 0, ∀(t, x) ∈ (0,+∞)× Ω̄ (5)

for i, j = 1, 2. For simplicity, letting (uS1 , uS2 , u1, u2) = (S1, S2, I1, I2), we focus on
the following reaction–diffusion system with Neumann boundary condition:

∂uSi (t,x)

∂t = DSi∆uSi(t, x) + µi(t, x)− di(t, x)uSi(t, x)

−βi1(t, x)gi1(uSi(t, x), u1(t, x))− βi2(t, x)gi2(uSi(t, x), u2(t, x)),

t > 0, x ∈ Ω,
∂ui(t,x)
∂t = Di∆ui(t, x)− ri(t, x)ui(t, x) +

∫ τi
0
fi(a)

∫
Ω

Γi(t, t− a, x, y)

×
(
βi1(t− a, y)gi1(uSi(t− a, y), u1(t− a, y))

+βi2(t− a, y)gi2(uSi(t− a, y), u2(t− a, y))
)
dyda, t > 0, x ∈ Ω,

∂
∂nuSi(t, x) = ∂

∂nui(t, x) = 0, t > 0, x ∈ ∂Ω

(6)
for i = 1, 2.

3. Threshold dynamics. In this section, we explore the threshold dynamics of
system (6).
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3.1. Global existence of solution. In this subsection, we investigate the exis-
tence and uniqueness of time–global solutions of system (6). Set τ = max{τ1, τ2}.
Let X := C(Ω̄,R4) be the Banach space with the supremum norm ‖ · ‖X. Let Cτ :=
C([−τ, 0],X) be the Banach space with the norm ‖φ‖ = maxθ∈[−τ,0] ‖φ(θ)‖X, ∀φ ∈
Cτ . Define X+ := C(Ω̄,R4

+) and C+
τ := C([−τ, 0],X+), then (X,X+) and (Cτ ,C+

τ )
are strongly ordered spaces. For σ > 0 and a given function u(t) : [−τ, σ]→ X, we
denote ut ∈ Cτ by

ut(θ) = u(t+ θ), θ ∈ [−τ, 0].

Set Y := C(Ω̄,R) and Y+ := C(Ω̄,R+). Furthermore, we consider the following
system: 

∂wi
∂t = DSi∆wi(t, x)− di(t, x)wi(t, x), t > 0, x ∈ Ω, i = 1, 2,
∂
∂nwi(t, x) = 0, t > 0, x ∈ ∂Ω, i = 1, 2,

wi(0, x) = φSi(x), x ∈ Ω, φSi ∈ Y+, i = 1, 2,

(7)

where DSi > 0(i = 1, 2) and di(t, x)(i = 1, 2) are Hölder continuous and nonnegative
nontrivial functions on R× Ω̄ and T–periodic in t. It follows from [19, Chapter II]
that (7) admits an evolution operator VSi(t, s) : Y+ → Y+ for s ≤ t satisfying
VSi(t, t) = I, VSi(t, s)VSi(s, ρ) = VSi(t, ρ) for 0 ≤ ρ ≤ s ≤ t and VSi(t, 0)(φSi)(x) =
wi(t, x;φSi) for t ≥ 0, x ∈ Ω and φSi ∈ Y+, where wi(t, x;φSi) is a solution of (7)
for i = 1, 2. Similarly, we take into account the following system:

∂w̄i
∂t = Di∆w̄i(t, x)− ri(t, x)w̄i(t, x), t > 0, x ∈ Ω, i = 1, 2,
∂
∂n w̄i(t, x) = 0, t > 0, x ∈ ∂Ω, i = 1, 2,

w̄i(0, x) = φi(x), x ∈ Ω, φi ∈ Y+, i = 1, 2,

where Di > 0(i = 1, 2) and ri(t, x)(i = 1, 2) are Hölder continuous and nonnegative
nontrivial functions on R × Ω̄ and T–periodic in t. Let Vi(t, s)(i = 1, 2) be the
evolution operators determined by the above system and have the similar properties
as VSi(t, s). Due to the periodicity of coefficients, it follows from [11, Lemma 6.1]
that VSi(t, s) = VSi(t+ T, s+ T ) and Vi(t, s) = Vi(t+ T, s+ T ) hold for (t, s) ∈ R2,
t ≥ s and i = 1, 2. In addition, for any t, s ∈ R and s < t, VSi(t, s) and Vi(t, s) are
compact, analytic and strongly positive operators on Y+ for i = 1, 2. Together [11,
Theorem 6.6] with α = 0, we get that there exist constants Q ≥ 1 and c0 ∈ R such
that

‖VSi(t, s)‖, ‖Vi(t, s)‖ ≤ Qe−c0(t−s), ∀t ≥ s, t, s ∈ R, i = 1, 2.

Define F = (FS1 , FS2 , F1, F2)T : [0,∞)× C+
τ → X by

FSi(t, φ) =µi(t, ·)− βi1(t, ·)gi1(φSi(0, ·), φ1(0, ·))− βi2(t, ·)gi2(φSi(0, ·), φ2(0, ·)),

Fi(t, φ) =

∫ τi

0

fi(a)

∫
Ω

Γi(t, t− a, ·, y)
(
βi1(t− a, y)gi1(φSi(−a, y), φ1(−a, y))

+ βi2(t− a, y)gi2(φSi(−a, y), φ2(−a, y))
)
dyda

for t ≥ 0, x ∈ Ω̄, φ = (φS1
, φS2

, φ1, φ2) ∈ C+
τ and i = 1, 2. Let

U(t, s) :=


VS1(t, s) 0 0 0

0 VS2
(t, s) 0 0

0 0 V1(t, s) 0
0 0 0 V2(t, s)


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and U(t, s) : X→ X be an evolution operator for (t, s) ∈ R2 with t ≥ s. Let

A(t) :=


AS1

(t) 0 0 0
0 AS2(t) 0 0
0 0 A1(t) 0
0 0 0 A2(t)

 ,

where ASi(t) and Ai(t)(i = 1, 2) are defined by

D(ASi(t)) = {φ ∈ C2(Ω̄) | ∂nφ = 0 on ∂Ω},
ASi(t)φ(x) = DSi∆φ(x)− di(t, x)φ(x), ∀φ ∈ D(ASi(t))

and

D(Ai(t)) = {φ ∈ C2(Ω̄) | ∂nφ = 0 on ∂Ω},
Ai(t)φ(x) = Di∆φ(x)− ri(t, x)φ(x), ∀φ ∈ D(Ai(t)),

respectively. Then (6) can be written as the following Cauchy problem:{
∂u(t,x)
∂t = A(t)u(t, x) + F (t, ut), t > 0, x ∈ Ω,

u(ζ, x) = φ(ζ, x), ζ ∈ [−τ, 0], x ∈ Ω,
(8)

where u(t, x) := (uS1
(t, x), uS2

(t, x), u1(t, x), u2(t, x)). Moreover, it can be rewritten
as the following integral equation

u(t, φ) = U(t, 0)φ(0) +

∫ t

0

U(t, s)F (s, us)ds, t ≥ 0, φ ∈ C+
τ . (9)

A solution of (9) is called a mild solution of (8).

Lemma 3.1. For every initial value function φ ∈ C+
τ , system (6) has a unique

mild solution u(t, φ) on [0,+∞) with u0 = φ. Furthermore, system (6) generates a
T–periodic semiflow Φt(·) := ut(·) : C+

τ → C+
τ , namely, Φt(φ)(s, x) = ut(φ)(s, x) =

u(t + s, x;φ) for each φ ∈ C+
τ , t ≥ 0, s ∈ [−τ, 0), x ∈ Ω and ΦT : C+

τ → C+
τ has a

global compact attractor in C+
τ .

Proof. We firstly show the local existence of the unique mild solution. It is obvious
that F (t, φ) is locally Lipschitz continuous. By Martin and Smith [37, Corollary 3]
and Smith [47, Theorem 7.3.1], it is necessary to prove

lim
k→0+

dist(φ(0) + kF (t, φ), X+) = 0, ∀(t, φ) ∈ [0,∞)× C+
τ . (10)

For any t ≥ 0, x ∈ Ω̄, φ ∈ C+
τ and k ≥ 0, we have

φ(0, x) + kF (t, φ)(x)

=


φS1

(0, x) + k
(
µ1(t, x)− (

∑2
i=1 β1i(t, x)g1i(φS1

, φi)(0, x))
)

φS2(0, x) + k
(
µ2(t, x)− (

∑2
i=1 β2i(t, x)g2i(φS2

, φi)(0, x))
)

φ1(0, x) + k
(
f1 ◦

(
Γ1 ∗

(
β11g11 + β12g12

)))
(t, x)

φ2(0, x) + k
(
f2 ◦

(
Γ2 ∗

(
β21g21 + β22g22

)))
(t, x)



≥


φS1(0, x)

(
1− k

(∑2
i=1 β1i(t, x)

g1i(φS1 ,φi)(0,x)

φS1 (0,x)

))
φS2(0, x)

(
1− k

(∑2
i=1 β2i(t, x)

g2i(φS2 ,φi)(0,x)

φS2 (0,x)

))
φ1(0, x)
φ2(0, x)

 ,
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where (
fi ◦

(
Γi ∗

(
βi1gi1 + βi2gi2

)))
(t, x)

=

∫ τi

0

fi(a)

∫
Ω

Γi(t, t− a, x, y)
(
βi1(t− a, y)gi1(φSi(−a, y), φ1(−a, y))

+ βi2(t− a, y)gi2(φSi(−a, y), φ2(−a, y))
)
dyda, i = 1, 2

and gij(φSi , φj)(0, x) = gij(φSi(0, x), φj(0, x)). The above inequality implies that
(10) holds when k is small enough. Consequently, by [37, Corollary 4] with K =
X+ and S(t, s) = U(t, s), system (6) admits a unique mild solution u(t, x;φ) with
u0(·, ·;φ) = φ on its maximal interval of existence t ∈ [0, t̃φ), where t̃φ ≤ ∞ and
u(t, ·;φ) ∈ X+, ∀t ∈ [0, t̃φ). Furthermore, u(t, x;φ) is a classic solution for t > τ by
using the analytic of U(t, s) for any s, t ∈ R with s < t.

Consider the following time–periodic reaction–diffusion equation:{
∂ωi(t,x)

∂t = DSi∆ωi(t, x) + µi(t, x)− di(t, x)ωi(t, x), t > 0, x ∈ Ω,
∂
∂nωi(t, x) = 0, t > 0, x ∈ ∂Ω,

(11)

where i = 1, 2. It follows from [67, Lemma 2.1] that system (11) admits a unique
positive T–periodic solution ω∗i (t, x) which is globally asymptotically stable in Y+

for i = 1, 2. Since the uSi(i = 1, 2) equations of system (6) are dominated by (11),
respectively, there exists a positive constant Bs such that for any φ ∈ C+

τ , there is
a positive integer ls = ls(φ) > 0 such that uSi(t, x;φ) ≤ Bs for any t ≥ lsT , x ∈ Ω̄
and i = 1, 2.

In view of (iv) of (H1), we have for t > 0 and x ∈ Ω,

∂ui(t, x)

∂t
≤ Di∆ui(t, x)− ri(t, x)ui(t, x) + ηi

∫ τi

0

fi(a)

∫
Ω

Γi(t, t− a, x, y)

uSi(t− a, y) (βi1(t− a, y) + βi2(t− a, y)) dyda

with Neumann boundary condition

∂

∂n
ui(t, x) = 0, ∀x ∈ ∂Ω.

It follows from the comparison principle that there exists a constant B̃ > 0 such
that for any φ ∈ C+

τ , there is a positive integer li > ls such that ui(t, x;φ) ≤ B̃ for
any t ≥ liT + τ , x ∈ Ω̄ and i = 1, 2.

Define Φt : C+
τ → C+

τ by Φt(φ)(s, x) = ut(φ)(s, x) = u(t + s, x;φ) for t > 0,
s ∈ [−τ, 0], x ∈ Ω̄ and φ ∈ C+

τ . Similar to the proof of [67, Lemma 2.1], we get that
{Φt}t≥0 is a T–periodic semiflow on C+

τ . From the above discussion, we have that
Φt is point dissipative. Let n0 := min{n ∈ N : nT > 2τ}. Then by the standard
parabolic estimates, we conclude that Φn0

T = un0T is compact. Following from [35,
Theorem 2.9], one has that ΦT : C+

τ → C+
τ has a global compact attractor. The

proof is completed.

3.2. Basic reproduction number. Let CT (R × Ω̄,R) be the ordered Banach
space consisting of all T–periodic and continuous functions from R× Ω̄ to R, where
‖φ‖CT = maxt∈[0,T ],x∈Ω̄ |φ(t, x)| for any φ ∈ CT . Denote C+

T as the positive cone of
CT , that is,

C+
T := {φ ∈ CT : φ(t, x) ≥ 0,∀t ∈ R, x ∈ Ω̄}.
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Let CT (R × Ω̄,R × R) = CT (R × Ω̄,R) × CT (R × Ω̄,R) with the norm ‖φ‖CT =∑2
i=1 ‖φi‖CT for any φ ∈ CT . Similarly, we define C+

T as the positive cone of CT ,
namely,

C+
T := {φ = (φ1, φ2) ∈ CT : φi(t, x) ≥ 0,∀t ∈ R, x ∈ Ω̄, i = 1, 2}.

For τ ≥ 0, define D = C([−τ, 0],Y×Y) with the norm ‖φ‖D = maxθ∈[−τ,0] ‖φ(θ)‖Y×Y
and D+ := C([−τ, 0],Y+ × Y+), then (D,D+) is a strongly ordered Banach space.

Setting u1 ≡ 0 and u2 ≡ 0, we have the following equations for the densities of
the susceptible population uSi(t, x)(i = 1, 2){

∂uSi (t,x)

∂t = DSi∆uSi(t, x) + µi(t, x)− di(t, x)uSi(t, x), t > 0, x ∈ Ω, i = 1, 2,
∂
∂nuSi(t, x) = 0, t > 0, x ∈ ∂Ω, i = 1, 2,

(12)
respectively. It follows from [67, Lemma 2.1] that (12) admit positive solutions
u∗Si(i = 1, 2) which are unique, globally asymptotically stable and T–periodic in
t ∈ R, respectively. As a consequence, the function (u∗S1

, u∗S2
, 0, 0) is called the

disease–free periodic solution of (6). Linearizing the third and the forth equations
of system (6) at (u∗S1

, u∗S2
, 0, 0) and according to (iii) of (H1), we have the following

system:

∂ω1(t,x)
∂t = D1∆ω1(t, x)− r1(t, x)ω1(t, x) +

∫ τ1
0
f1(a)

∫
Ω

Γ1(t, t− a, x, y)

×
(
β11(t− a, y)∂vg11(u∗S1

(t− a, y), 0)ω1(t− a, y) + β12(t− a, y)

∂vg12(u∗S1
(t− a, y), 0)ω2(t− a, y)

)
dyda, t > 0, x ∈ Ω,

∂ω2(t,x)
∂t = D2∆ω2(t, x)− r2(t, x)ω2(t, x) +

∫ τ2
0
f2(a)

∫
Ω

Γ2(t, t− a, x, y)

×
(
β21(t− a, y)∂vg21(u∗S2

(t− a, y), 0)ω1(t− a, y) + β22(t− a, y)

∂vg22(u∗S2
(t− a, y), 0)ω2(t− a, y)

)
dyda, t > 0, x ∈ Ω,

ωi(s, x) = φi(s, x), i = 1, 2, φ = (φ1, φ2) ∈ D, s ∈ [−τ, 0], x ∈ Ω,
∂ωi(t,x)
∂n = 0, t > 0, x ∈ ∂Ω, i = 1, 2.

(13)
Define operators Cij : CT (R× Ω̄,R)→ CT (R× Ω̄,R)(i, j = 1, 2) by(

Cijψj
)
(t, x)

=

∫ τi

0

fi(a)

∫
Ω

Γi(t, t− a, x, y)βij(t− a, y)

×∂vgij(u∗Si(t− a, y), 0)ψj(t− a, y)dyda.

Suppose that φ(s, x) := (φ1(s, x), φ2(s, x)) is the initial distribution of infectious
individuals at time s ∈ R and the spatial location x ∈ Ω̄. Given t ∈ R. Due to
the synthetical influence of mobility, mortality and recovery, (Vi(t− a, s)φi(s)) (x),
where s < t − a represents the density distribution at location x of those infective
individuals who were infected at time s and remained infective at time t− a when
time evolved from s to t−a for a ∈ [0, τ ]. Furthermore,

∫ t−a
−∞ (Vi(t− a, s)φi(s)) (x)ds

denotes the density distribution of the accumulative infective individuals of the i–th
group at locations x and time t−a for all previous time s < t−a when time evolved
from the previous time s to t− a. After that, the term∫ τi

0

fi(a)

∫
Ω

Γi(t, t− a, x, y)
{
βi1(t− a, y)∂vgi1(u∗Si(t− a, y), 0)
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×
∫ t−a

−∞

(
V1(t− a, s)φ1(s)

)
(y)ds+ βi2(t− a, y)∂vgi2(u∗Si(t− a, y), 0)

×
∫ t−a

−∞

(
V2(t− a, s)φ2(s)

)
(y)ds

}
dyda

=

∫ τi

0

fi(a)

∫
Ω

Γi(t, t− a, x, y)
{ 2∑
j=1

βij(t− a, y)∂vgij(u
∗
Si(t− a, y), 0)

×
∫ +∞

0

(
Vj(t− a, t− a− s)φj(t− a− s)

)
(y)ds

}
dyda

represents the distribution of new infected individuals of the i–th group at location
x and time t for i = 1, 2. As a consequence, we can define the next generation
infection operator L as

L(φ)(t, x) := (L1(φ)(t, x),L2(φ)(t, x)),

where

Li(φ)(t, x)

=

∫ τi

0

fi(a)

∫
Ω

Γi(t, t− a, x, y)
{ 2∑
j=1

βij(t− a, y)∂vgij(u
∗
Si(t− a, y), 0)

×
∫ +∞

0

(
Vj(t− a, t− a− s)φj(t− a− s)

)
(y)ds

}
dyda

for i = 1, 2. It is obvious that L is a positive and bounded linear operator on CT .
Let r(L) be the spectral radius of L. Similar to [5, 12, 57, 71, 67], denote the
spectral radius of L as the basic reproduction number R0 of model (6), that is,

R0 := r(L).

Next, we define an operator L̂(φ)(t, x) : CT → CT by

L̂(φ)(t, x) := (L̂1(φ)(t, x), L̂2(φ)(t, x)),

where

L̂i(φ)(t, x) =

∫ ∞
0

2∑
j=1

(
Vi(t, t− s) (Cijφj) (t− s)

)
(x)ds, t ∈ R, s ≥ 0, i = 1, 2.

Clearly, L̂ is a compact, positive and bounded linear operator on CT . Let

C =

(
C11 C12

C21 C22

)
, Ṽ (t, s) =

(
V1(t, s) 0

0 V2(t, s)

)
and

A(φ)(t, x) = C(φ)(t, x), B(φ)(t, x) =

∫ ∞
0

(Ṽ (t, t− s)φ(t− s))(x)ds.

Then one has L = AB and L̂ = BA. It follows that R0 = r(L) = r(L̂), where r(L̂)

is the spectral radius of the operator L̂.
As the previous discussion, there exist constants Q > 1 and ci ∈ R such that

‖Vi(t, s)‖ ≤ Qeci(t−s), ∀t ≥ s, t, s ∈ R, i = 1, 2.

It follows that c∗i := ω̄(Vi) ≤ ci, where

ω̄(Vi) = inf{ω | ∃M ≥ 1,∀s ∈ R, t ≥ 0 : ‖Vi(t+ s, s)‖ ≤Meωt}
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is the exponent growth bound of the evolution operator Vi(t, s). Define c∗ =
max{c∗1, c∗2}. r(Vi(T, 0)) is defined as the spectral radius of Vi(T, 0) for i = 1, 2. In
addition, Vi(t, 0) is compact and strongly positive on Y for any t > 0 and i = 1, 2.
By the Krein–Rutman theorem [19, Theorem 7.2], we have r(Vi(T, 0)) > 0 for
i = 1, 2. It further follows from [19, Lemma 14.2] that r(Vi(T, 0)) < 1 for i = 1, 2.
According to [51, Proposition 5.6] with s = 0, one has c∗i < 0 for i = 1, 2.

For any given λ ∈ (c∗,∞), we introduce an operator L̂λ on CT :

L̂λ(φ)(t, x) :=

∫ ∞
0

e−λs
(
Ṽ (t, t− s) (C(φ)) (t− s)

)
(x)ds.

Clearly, L̂0 = L̂. It follows that the operator L̂λ is bounded for λ ∈ (c∗,∞).

Moreover, the compactness of Vi(t, s)(i = 1, 2), t > s, implies that L̂λ is compact.

Denote ρ(λ) as the spectral radius of L̂λ for λ ∈ (c∗,∞). It is easy to see that

R0 = r(L) = r(L̂) = ρ(0). Similar to the arguments in [4, Lemma 1] and [67,
Lemma 3.2], we can show the following properties of the function ρ(λ).

Lemma 3.2. For λ ∈ (c∗,∞), the following statements are true for ρ(λ)

(i): ρ(λ) is continuous and non–increasing;
(ii): ρ(∞) = 0;
(iii): ρ(λ) = 1 has at most one solution; ρ is either strictly decreasing in λ ∈

(c∗,∞), or strictly decreasing in λ ∈ (c∗, b) for some b > c∗, and ρ(λ) = 0 in
λ ∈ [b,∞).

Let ε be a positive parameter. Consider the following periodic time–delayed
nonlocal equations:

∂ωε1(t,x)
∂t = D1∆ωε1(t, x)− r1(t, x)ωε1(t, x) +

∫ τ1
0
f1(a)

∫
Ω

Γ1(t, t− a, x, y)

×
{(
β11(t− a, y) + ε

)
∂vg11(u∗S1

(t− a, y), 0)ωε1(t− a, y)

+
(
β12(t− a, y) + ε

)
∂vg12(u∗S1

(t− a, y), 0)ωε2(t− a, y)
}
dyda,

t > 0, x ∈ Ω,
∂ωε2(t,x)

∂t = D2∆ωε2(t, x)− r2(t, x)ωε2(t, x) +
∫ τ2

0
f2(a)

∫
Ω

Γ2(t, t− a, x, y)

×
{(
β21(t− a, y) + ε

)
∂vg21(u∗S2

(t− a, y), 0)ωε1(t− a, y)

+
(
β22(t− a, y) + ε

)
∂vg22(u∗S2

(t− a, y), 0)ωε2(t− a, y)
}
dyda,

t > 0, x ∈ Ω,

ωεi (s, x) = ψi(s, x), ψ = (ψ1, ψ2) ∈ D, s ∈ [−τi, 0], x ∈ Ω, i = 1, 2,
∂ωε1(t,x)
∂n =

∂ωε2(t,x)
∂n = 0, t > 0, x ∈ ∂Ω.

(14)
Define the Poincaré map of (14) Pε : D → D by Pε(ψ) = ωεT (ψ) for all ψ ∈ D,
where

ωεT (ψ)(s, x) = ωε(s+ T, x;ψ) = (ωε1(s+ T, x;ψ), ωε2(s+ T, x;ψ))

for all (s, x) ∈ [−τ, 0] × Ω̄ (τ := max{τ1, τ2}), and ωεt is the solution map of (14).
Let n0 := min{n ∈ N : nT > 2τ}. (Pε)n0 : D → D is denoted by (Pε)n0(φ) =
ωε(n0T + s, x;φ) for all (s, x) ∈ [−τ, 0]× Ω̄. Define rε0 as the spectral radius of Pε.
Without loss of generality, we replace P and r0 with P0 and r0

0, respectively. It
follows from [25, Section 3] (see also [47, Section 5.3]) that ωε(t, x;φ) > 0 for t > τ ,
x ∈ Ω̄, φ ∈ D+ with φ 6≡ 0, and ωεt (·, ·;φ) is strongly positive for t > 2τ . Moreover,
ωεt is compact on D+ for all t > 2τ . Hence, (Pε)n0 = ωεn0T

(·) is compact and
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strongly positive. By [30, Lemma 3.1], rε0 is a simple eigenvalue of Pε having a strong
positive eigenvector ψ ∈ D+ and the modulus of any other eigenvalue is less than
rε0. Assume that ωε(t, x;ψ) is the solution of system (14) with ωε(s, x;ψ) = ψ(s, x)
for all s ∈ [−τ, 0], x ∈ Ω. We can conclude from the strong positivity of ψ that

ωε(·, ·;ψ)� 0. Let µε =
ln rε0
T and Vε(t, x) = e−µ

εtωε(t, x;ψ) for all t > τ and x ∈ Ω̄.
By arguments similar to those in [25, Lemma 3.2] and [62, Theorem 2.1], we have
that Vε(t, x) is a nontrivial and nonnegative T–periodic function and eµ

εtVε(t, x) is
a solution of (14). Furthermore, by the strong positivity of Vi(t, s), t > s, we have
Vε(t, x) > 0 for any t ∈ R and x ∈ Ω̄. Thus, we have the following lemma.

Lemma 3.3. Let µε =
ln rε0
T . Then there exists a positive T–periodic function

Vε(t, x) such that eµ
εtVε(t, x) is a solution of (14).

In the following, by the methods similar to [71, Section 2] and [67, Section 3], we
prove that R0 − 1 has the same sign as r0 − 1.

Lemma 3.4. Let µ = ln r0
T . If r0 > r(Vi(T, 0)) for i = 1, 2, then ρ(µ) = 1.

Proof. By virtue of [51, Proposition A.2], we have c∗i := ln r(Vi(T,0))
T < 0. Since

r0 > r(Vi(T, 0)), one has µ > c∗. According to the continuity of solution with
respect to parameter ε > 0, we have limε→0 Pε = P. In view of the upper semi–
continuity of the spectral [26, Section IV.3.1] and the continuity of a finite system
of eigenvalues [26, Section IV.3.5], we get limε→0+ rε0 = r0. It follows from Lemma
3.3 that limε→0+ µε = µ.

Let εn = 1
n for n ≥ 1 such that rεn0 > r(Vi(T, 0)). We define

(Cεnij ψj)(t, x)

:=

∫ τi

0

fi(a)

∫
Ω

Γi(t, t− a, x, y)
(
βij(t− a, y) + εn

)
× ∂vgij(u∗Si(t− a, y), 0)ψj(t− a, y)dyda,

L̂εn(ψ)(t, x) = (L̂εn1 (ψ)(t, x), L̂εn2 (ψ)(t, x)),

L̂εnλ (ψ)(t, x) = (L̂εn1λ(ψ)(t, x), L̂εn2λ(ψ)(t, x)),

where

L̂εni (ψ)(t, x) =

∫ ∞
0

{
Vi(t, t− s)

(
(Cεni1 φ1)(t− s) + (Cεni2 φ2)(t− s)

)}
(x)ds,

L̂εniλ(ψ)(t, x) =

∫ ∞
0

e−λs
{
Vi(t, t− s)

(
(Cεni1 φ1)(t− s) + (Cεni2 φ2)(t− s)

)}
(x)ds

for i = 1, 2.
According to Lemma 3.3, there is a positive periodic function Vεn(t, x) such that

ωεn(t, x) = eµ
εn tVεn(t, x) is a solution of (14). That is, it satisfies for t ≥ s and

s ∈ R,ω
εn
1 (t, ·) = V1(t, s)ωεn1 (s) +

∫ t
s
V1(t, η)

(
(Cεn11ω

εn
1 ) (η) + (Cεn12ω

εn
2 ) (η)

)
dη,

ωεn2 (t, ·) = V2(t, s)ωεn2 (s) +
∫ t
s
V2(t, η)

(
(Cεn21ω

εn
1 ) (η) + (Cεn22ω

εn
2 ) (η)

)
dη,

which implies that



1548 LIN ZHAO, ZHI-CHENG WANG AND LIANG ZHANG



eµ
εn tVεn1 (t, ·) = V1(t, s)

(
eµ

εnsVεn1 (s)
)

+
∫ t
s
eµ

εnηV1(t, η)
(

(Cεn11V
εn
1 ) (η)

+ (Cεn12V
εn
2 ) (η)

)
dη,

eµ
εn tVεn2 (t, ·) = V2(t, s)

(
eµ

εnsVεn2 (s)
)

+
∫ t
s
eµ

εnηV2(t, η)
(

(Cεn21V
εn
1 ) (η)

+ (Cεn22V
εn
2 ) (η)

)
dη,

(15)

where t ≥ s and s ∈ R. Since rεn0 > r(Vi(T, 0)), then we have µεn :=
ln rεn0
T > c∗i

and [Vi(t, s)(e
µεnsVεni (s))] → 0 as s → −∞. Letting s → −∞ in the first equation

of (15), we get

Vεn1 (t, ·) =

∫ t

−∞
e−µ

εn (t−η)V1(t, η)
(

(Cεn11V
εn
1 ) (η) + (Cεn12V

εn
2 ) (η)

)
dη.

=

∫ +∞

0

e−µ
εnsV1(t, t− s)

(
(Cεn11V

εn
1 ) (t− s) + (Cεn12V

εn
2 ) (t− s)

)
ds

Similarly, one has

V εn2 (t, ·) =

∫ +∞

0

e−µ
εnsV2(t, t− s)

(
(Cεn21V

εn
1 ) (t− s) + (Cεn22V

εn
2 ) (t− s)

)
ds,

which implies that L̂µεn (Vεn)(t)(·) = Vεn(t, ·). Denote ρεn(λ) as the spectral radius

of L̂εnλ for λ ∈ (c∗,∞). Since βij(t, x) + ε0 > 0, it follows that L̂εnλ : CT → CT is
continuous, compact and strongly positive, and hence, the Krein–Rutmann theorem
associated with the strongly positivity of Vεn imply that ρεn(µεn) = 1. It is easy to

see that L̂εnλ ψ ≥ L̂
εn+1

λ ψ for all ψ ∈ CT . Let fn(λ) = ρεn(λ). It then follows from [9,
Theorem 1.1] that the sequence {fn}n≥1 is non–increasing. Similarly, according to
the upper semi–continuity of the spectral [26, Section IV 3.1] and the continuity of
a finite system of eigenvalues [26, Section IV.3.5], one has limn→∞ ρεn(λ) = ρ(λ) for
any fixed λ ∈ [a, b] ⊂ (c∗,∞). Hence, Dini’s theorem implies that limn→∞ ρεn(λ) =
ρ(λ) uniformly for λ ∈ [a, b]. Choose a sufficient small δ > 0 such that µ− δ > c∗.
By the above analysis, it follows that there exists a constant N1 = N1(δ) ≥ 1 such
that for any n ≥ N1,

µ− δ ≤ µεn ≤ µ+ δ.

On the one hand, we obtain from the continuity of ρ(λ) for λ ∈ (c∗,∞) that for any
η > 0, there exists an N2 ∈ N such that,

|ρ(µεn)− ρ(µ)| < η

2
.

On the other hand, for any η > 0, there is an N3 ≥ 1 such that for n ≥ N3,

|ρεn(µεn)− ρ(µεn)| < η

2
.

Thus, for any η > 0, we have

|ρεn(µεn)− ρ(µ)| ≤ |ρεn(µεn)− ρ(µεn)|+ |ρ(µεn)− ρ(µ)| < η

2
+
η

2
= η,

when n ≥ N := max{N1, N2, N3}. Letting n → ∞, we have ρεn(µεn) → ρ(µ).
Therefore, ρ(µ) = 1. This completes the proof.

Next, we state the main result of this subsection.

Theorem 3.5. one has:

(i): R0 > 1 if and only if r0 > 1;
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(ii): R0 = 1 if and only if r0 = 1;
(iii): R0 < 1 if and only if r0 < 1.

Proof. (i) Assume R0 > 1. In this case one has ρ(0) > 1. In view of Lemma

3.2, there exists a constant λ0 > 0 such that ρ(λ0) = 1. Since L̂λ0 is compact
and positive on CT , it follows from the Krein–Rutmann theorem [19, Theorem 7.1]

that ρ(λ0) is an eigenvalue of L̂λ0 with a positive eigenfunction ψ∗ ∈ CT , that is,

L̂λ0
ψ∗ = ψ∗. Since Vi(t, s) = Vi(t, r)Vi(r, s) for t ≥ r ≥ s, we have

L̂1λ0(ψ∗)(t, x)

=

∫ ∞
0

e−λ0s
{
V1(t, t− s)

(
(C11ψ

∗
1)(t− s) + (C12ψ

∗
2)(t− s)

)}
(x)ds

=

∫ t

−∞
e−λ0(t−s)

{
V1(t, s)

(
(C11ψ

∗
1)(s) + (C12ψ

∗
2)(s)

)}
(x)ds

=

∫ m

−∞
e−λ0(t−s) (V1(t, s) ((C11ψ

∗
1)(s) + (C12ψ

∗
2)(s))) (x)ds

+

∫ t

m

e−λ0(t−s) (V1(t, s) ((C11ψ
∗
1)(s) + (C12ψ

∗
2)(s))) (x)ds

= e−λ0(t−m)V1(t,m)

∫ m

−∞
e−λ0(m−s)

(
V1(m, s)

2∑
i=1

(C1iψ
∗
i )(s)

)
(x)ds

+

∫ t

m

e−λ0(t−s)

(
V1(t, s)

2∑
i=1

(C1iψ
∗
i )(s)

)
(x)ds

= e−λ0(t−m)
(
V1(t,m)ψ∗1(m)

)
(x)

+e−λ0t

∫ t

m

V1(t, s)

2∑
j=1

C1j

(
eλ0sψ∗j

)
(s)

 (x)ds,

namely,

eλ0tψ∗1(t, x)

=
(
V1(t,m)

(
eλ0mψ∗1(m)

))
(x) +

∫ t

m

V1(t, s)

2∑
j=1

C1j

(
eλ0sψ∗j

)
(s)

 (x)ds.

Similarly,

eλ0tψ∗2(t, x)

=
(
V2(t,m)

(
eλ0mψ∗2(m)

))
(x) +

∫ t

m

V2(t, s)

2∑
j=1

C2j

(
eλ0sψ∗j

)
(s)

 (x)ds.

Set ψ∗it(θ, x) = ψ∗i (t+ θ, x), ∀θ ∈ [−τ, 0]. It is obvious that

ω(t, x) := (eλ0tψ∗1(t, x), eλ0tψ∗2(t, x))

is a solution of (13) with ω0 := eλ0·ψ∗. Note that

ωt(θ, x) =(eλ0(t+θ)ψ∗1(t+ θ, x), eλ0(t+θ)ψ∗2(t+ θ, x))

=eλ0t(eλ0θψ∗1t(θ, x), eλ0θψ∗2t(θ, x))
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for θ ∈ [−τ, 0]. Since ω(t, ·) 6≡ 0 on [0,∞), we have eλ0·ψ∗ ∈ D \ {0}. Due to the
T -periodicity of ψ∗(t, x), we get

P(eλ0·ψ∗) = eλ0T (eλ0·ψ∗10, e
λ0·ψ∗20).

Obviously, eλ0T is an eigenvalue of P. Thus, one has r0 ≥ eλ0T > 1.
If r0 > 1, then one has µ > 0. Since c∗ < 0, then r0 > r(Vi(T, 0)) for i = 1, 2.

It follows from Lemma 3.4 that ρ(µ) = 1. By the monotonicity of ρ(λ), we have
1 = ρ(µ) < ρ(0) = R0.

(ii) Assume R0 = 1. It then follows that ρ(0) = 1. By similar arguments
to the proof of (i) with λ0 = 0, we can prove r0 ≥ 1. It is easy to see that
r0 ≥ 1 > r(Vi(T, 0)). Due to Lemma 3.4, we obtain ρ(µ) = 1. By virtue of Lemma
3.2, one has µ = 0, and hence r0 = 1.

Assume r0 = 1. Then we have r0 > r(Vi(T, 0)). Thus, by Lemma 3.4, we obtain
ρ(µ) = ρ(0) = R0 = 1.

The conclusions of (iii) is immediately followed from conclusion (i) and (ii). This
completes the proof.

3.3. Persistence and extinction. In this subsection, we establish the threshold
dynamics of system (6) with respect to R0. Firstly, the following lemma holds.

Lemma 3.6. Assume that (uS1(t, x;φ), uS2(t, x;φ), u1(t, x;φ), u2(t, x;φ)) are a so-
lution of system (6) with φ = (φS1

, φS2
, φ1, φ2) ∈ C+

τ . Then we have

(i): If there exists some t0 ≥ 0 such that ui(t0, ·;φ) 6≡ 0(i = 1, 2), then one has

ui(t, x;φ) > 0, ∀t > t0, x ∈ Ω̄, i = 1, 2;

(ii): For any φ ∈ C+
τ , we always have uSi(t, ·;φ) > 0(i = 1, 2), ∀t > 0 and

lim inf
t→∞

uSi(t, x;φ) ≥ Q, i = 1, 2

uniformly for x ∈ Ω̄, where Q is a positive constant.

Proof. The proof of the lemma is similar to those of [67, Lemma 4.2], so we omit
the details.

Secondly, we present the main theorem of this paper.

Theorem 3.7. Let u(t, x;φ) be the solution of (6) with u0 = φ ∈ C+
τ , then the

following two statements are valid:

(i): If R0 < 1, then the disease free T–periodic solution (u∗S1
, u∗S2

, 0, 0) is globally

attractive in C+
τ .

(ii): If R0 > 1, then there exists an η > 0 such that for any φ ∈ C+
τ with

φ1(0, ·) 6≡ 0 or φ2(0, ·) 6≡ 0, one has

lim
t→∞

inf ui(t, x) ≥ η, i = 1, 2

uniformly for all x ∈ Ω̄.
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Proof. (i) Assume that R0 < 1. It follows from Theorem 3.5 that r0 < 1. Consider
the following system with parameter ε > 0:

∂uε1(t,x)
∂t = D1∆uε1(t, x)− r1(t, x)uε1(t, x) +

∫ τ1
0
f1(a)

∫
Ω

Γ1(t, t− a, x, y)

×
{(
β11(t− a, y) + ε

)
∂vg11(u∗S1

(t− a, y) + ε, 0)uε1(t− a, y)

+
(
β12(t− a, y) + ε

)
∂vg12(u∗S1

(t− a, y) + ε, 0)uε2(t− a, y)
}
dyda,

t ≥ kT, x ∈ Ω,
∂uε2(t,x)

∂t = D2∆uε2(t, x)− r2(t, x)uε2(t, x) +
∫ τ2

0
f2(a)

∫
Ω

Γ2(t, t− a, x, y)

×
{(
β21(t− a, y) + ε

)
∂vg21(u∗S2

(t− a, y) + ε, 0)uε1(t− a, y)

+
(
β22(t− a, y) + ε

)
∂vg22(u∗S2

(t− a, y) + ε, 0)uε2(t− a, y)
}
dyda,

t ≥ kT, x ∈ Ω,
∂
∂nu

ε
1(t, x) = ∂

∂nu
ε
2(t, x) = 0, t ≥ kT, x ∈ ∂Ω,

(16)
where k is an integer determined later. Define the Poincare map of (16) T ε : D→ D
by

T ε(φ) = uεT (φ), ∀φ ∈ D,

where

uεT (φ)(s, x) = uε(s+ T, x;φ), ∀(s, x) ∈ [−τ, 0]× Ω̄

and uε(t, x;φ) is the solution of (16) with uε(s, x) = φ(s, x) for all s ∈ [−τ, 0], x ∈ Ω.
Let rε be the spectral radius of T ε. Since r0 < 1, then there exists a positive constant
ε0 such that rε < 1 for any ε ∈ [0, ε0). Fix ε ∈ [0, ε0). Then, one has µε := ln rε

T < 0.

By Lemma 3.3, there is a positive T–periodic function (V̄ε1(t, x), V̄ε2(t, x)) such that
(uε1(t, x), uε2(t, x)) = (eµ̄

εtV̄ε1(t, x), eµ̄
εtV̄ε1(t, x)) is a solution of (16).

Since the uSi(i = 1, 2) equations of (6) are dominated by (11), respectively, we
obtain that there exists an integer k > 0 such that uSi(t, x) ≤ u∗Si(t, x) + ε for any

t ≥ kT , x ∈ Ω̄ and i = 1, 2. According to (v) of (H1), for all t ≥ kT and x ∈ Ω, we
have

∂u1(t,x)
∂t ≤ D1∆u1(t, x)− r1(t, x)u1(t, x) +

∫ τ1
0
f1(a)

∫
Ω

Γ1(t, t− a, x, y)

×
{(
β11(t− a, y) + ε

)
∂vg11(u∗S1

(t− a, y) + ε, 0)u1(t− a, y)

+
(
β12(t− a, y) + ε

)
∂vg12(u∗S1

(t− a, y) + ε, 0)u2(t− a, y)
}
dyda,

∂u2(t,x)
∂t ≤ D2∆u2(t, x)− r2(t, x)u2(t, x) +

∫ τ2
0
f2(a)

∫
Ω

Γ2(t, t− a, x, y)

×
{(
β21(t− a, y) + ε

)
∂vg21(u∗S2

(t− a, y) + ε, 0)u1(t− a, y)

+
(
β22(t− a, y) + ε

)
∂vg22(u∗S2

(t− a, y) + ε, 0)u2(t− a, y)
}
dyda.

For any given φ ∈ C+
τ , since ui(t, x;φ)(i = 1, 2) are globally bounded, there exists

some α > 0 such that (u1(t, x;φ), u2(t, x;φ)) ≤ α(eµ̄
εtV̄ε1(t, x), eµ̄

εtV̄ε2(t, x)) for any
t ∈ [kT, kT+τ ] and x ∈ Ω̄. By the similar arguments in [25, Section 2] and using the
comparison theorem for the abstract functional differential equation [37, Proposition
3], one has (u1(t, x;φ), u2(t, x;φ)) ≤ α (eµ̄

εtV̄ε1(t, x), eµ̄
εtV̄ε2(t, x)) for any t ≥ kT and

x ∈ Ω̄. It then follows from µ̄ε < 0 that ui(t, x;φ)→ 0 as t→∞ uniformly x ∈ Ω̄.
In addition, the equations uSi(i = 1, 2) in system (6) are asymptotic to system (11).
By [67, Lemma 2.1], we get that u∗Si(i = 1, 2) are global attractive solutions of (11).
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Next, similar to the proof of [67, Theorem 4.3 (i)], we get

lim
t→∞

(
uSi(t, x;φ)− u∗Si(t, x)

)
= 0

uniformly for x ∈ Ω̄.
( 2 ) Assume R0 > 1. In the case, one has r0 > 1. Let

W0 = {φ ∈ C+
τ : φ1(0, ·) 6≡ 0 or φ2(0, ·) 6≡ 0}

and

∂W0 := C+
τ \W0 = {φ ∈ C+

τ : φ1(0, ·) ≡ 0 and φ2(0, ·) ≡ 0}.
If φ ∈ W0 with φ1(0, ·) 6≡ 0, then Lemma 3.6 implies that u1(t, x;φ) > 0 for
any x ∈ Ω̄ and t > 0. Thus, by (5), one gets

∫ τ2
0
f2(a)

∫
Ω

Γ2(t, t − a, x, y)β21(t −
a, y)g21(uS2 , u1)(t− a, y)dyda > 0 for t > τ2, which yields u2(t, x;φ) > 0 for t > τ2
and x ∈ Ω̄. Similarly, if φ ∈ W0 with φ2 6≡ 0, then one has ui(t, x;φ) > 0(i = 1, 2)
for any t > τ1 and x ∈ Ω̄. Thus, there exists k0 ∈ N such that ΦkT (W0) ⊆ W0 for
each k > k0, where ΦkT (φ) = ukT (φ) = u(kT + s, x;φ) for s ∈ [−τ, 0], x ∈ Ω̄ and
φ ∈ W0 and u(t, x;φ) is a solution of system (6) for t > 0, x ∈ Ω̄ and φ ∈ W0.
Define

M∂ := {φ ∈ ∂W0 : ΦkT (φ) ∈ ∂W0,∀k ∈ N}.
Let ω(φ) be the omega limit set of the orbit γ+ := {ΦkT (φ) : ∀k ∈ N} and

M := (u∗S1,0
, u∗S2,0

, 0̂, 0̂), where 0̂ is the constant function and identical to zero. For

any given φ ∈ M∂ , we have ΦkT (φ) ∈ ∂W0, ∀k ∈ N. Thus, one has ui(t, x;φ) ≡ 0
for t ≥ 0, x ∈ Ω̄, φ ∈ M∂ and i = 1, 2. It follows from [67, Lemma 2.1] that

limt→∞

(
uSi(t, x;φ)−u∗Si(t, x)

)
= 0 uniformly for x ∈ Ω̄ and i = 1, 2. Consequently,

we have ω(φ) = {M}, ∀φ ∈M∂ .
Next, we consider the following linear system with parameter θ > 0:

∂vθ1(t,x)
∂t = D1∆vθ1(t, x)− r1(t, x)vθ1(t, x) +

∫ τ1
0
f1(a)

∫
Ω

Γ1(t, t− a, x, y)

×
(
β11(t− a, y)N11(u∗S1

(t− a, y)− θ, θ)vθ1(t− a, y)

+β12(t− a, y)N12(u∗S1
(t− a, y)− θ, θ)vθ2(t− a, y)

)
dyda,

t > 0, x ∈ Ω,
∂vθ2(t,x)

∂t = D2∆vθ2(t, x)− r2(t, x)vθ2(t, x) +
∫ τ2

0
f2(a)

∫
Ω

Γ2(t, t− a, x, y)

×
(
β21(t− a, y)N21(u∗S2

(t− a, y)− θ, θ)vθ1(t− a, y)

+β22(t− a, y)N22(u∗S2
(t− a, y)− θ, θ)vθ2(t− a, y)

)
dyda,

t > 0, x ∈ Ω,
∂vθ1(t,x)
∂n =

∂vθ2(t,x)
∂n = 0, t > 0, x ∈ ∂Ω,

vθi (s, x) = φi(s, x), s ∈ [−τ, 0], x ∈ Ω̄, φ = (φ1, φ2) ∈ D, i = 1, 2.

(17)

Let n0 := min{n ∈ N : nT > 2τ}. Define the Poincaré map of (17) En0

θ : D→ D by

En0

θ (φ) = vθn0T
(φ) = (vθ1,n0T

(φ), vθ2,n0T
(φ)), where vθi,n0T

(φ)(s, x) = vθi (s+n0T, x;φ)

for (s, x) ∈ [−τ, 0]×Ω̄, and vθ(t, x;φ) is the solution of (17) with vθ(s, x) = φ(s, x) =
(φ1(s, x), φ2(s, x)) for all (s, x) ∈ [−τ, 0] × Ω̄. Let rn0

θ be the spectral radius of
En0

θ . It is obvious that En0

θ is compact and positive. The Krein–Rutman theorem
[19, Theorem 7.1] implies that there exist a eigenvalue rn0

θ > 0 and a positive
eigenfunction ϕ̃ = (ϕ̃1, ϕ̃2) ∈ D such that En0

θ (ϕ̃) = rn0

θ ϕ̃. Denote rn0
0 as the

spectral radius of Φn0

T and Φn0

T is defined as in Lemma 3.1. Since r0 > 1 which
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implies that rn0
0 > 1, there exists a parameter θ0 > 0 small enough such that

rn0

θ > 1 for θ ∈ [0, θ0). Fix θ ∈ [0, θ0).

Claim. M is a uniform weak repeller for W0 in the sense that

lim sup
k→∞

∥∥ΦkT (φ)−M
∥∥ ≥ θ, ∀φ ∈W0.

Applying a contradiction way, suppose that lim supk→∞
∥∥ΦkT (φ)−M

∥∥ < θ for some

φ0 ∈ W0. Namely, there exists k̃1 > 0 large enough such that 0 < u1(t, x, φ0) < θ
and 0 < u2(t, x;φ0) < θ , uS1

(t, x;φ0) > u∗S1
(t, x;φ0) − θ and uS2

(t, x;φ0) >

u∗S2
(t, x;φ0) − θ for any t ≥ k̃1T and x ∈ Ω̄. Furthermore, we select K̃ =

max{n0, k̃1}. According to (v) of (H1), for any t ≥ K̃T and x ∈ Ω, u1(t, x;φ0)
and u2(t, x;φ0) satisfy

∂
∂tu1(t, x) ≥ D1∆u1(t, x)− r1(t, x)u1(t, x) +

∫ τ1
0
f1(a)

∫
Ω

Γ1(t, t− a, x, y)

×
(
β11(t− a, y)N11(u∗S1

(t− a, y)− θ, θ)u1(t− a, y)

+β12(t− a, y)N12(u∗S1
(t− a, y)− θ, θ)u2(t− a, y)

)
dyda,

∂
∂tu2(t, x) ≥ D2∆u2(t, x)− r2(t, x)u2(t, x) +

∫ τ2
0
f2(a)

∫
Ω

Γ2(t, t− a, x, y)

×
(
β21(t− a, y)N21(u∗S2

(t− a, y)− θ, θ)u1(t− a, y)

+β22(t− a, y)N22(u∗S2
(t− a, y)− θ, θ)u2(t− a, y)

)
dyda.

(18)
Since ui(t, x;φ0) > 0(i = 1, 2) for t > τ and x ∈ Ω̄, there exists a constant κ > 0
such that

ui((K̃ + 1)T + s, x;φ0) ≥ κϕ̃i(s, x), s ∈ [−τ, 0], x ∈ Ω̄, i = 1, 2.

Due to (17), (18) and the comparison principle, there exists κ > 0 such that

(u1(t, x;φ0), u2(t, x;φ0))T

≥κ(vθ1(t− (K̃ + 1)T, x; ϕ̃), vθ2(t− (K̃ + 1)T, x; ϕ̃)), ∀t ≥ (K̃ + 1)T, x ∈ Ω̄.

Therefore, one has

ui(KT, x;φ0) ≥ κvθi ((K − K̃ − 1)T, x; ϕ̃)) = κ(rn0

θ )m)ϕ̃i(s, x), (19)

where we select K = (K̃ + 1) + mn0 and i = 1, 2. Since ϕ̃i(s, x)(i = 1, 2) are
positive, there exist si ∈ [−τ, 0] and xi ∈ Ω̄ such that ϕ̃i(si, xi) > 0(i = 1, 2). Thus,
it follows from (19) that ui(KT, xi;φ0)→ +∞ as K →∞ (namely, m→∞) which
contradicts the boundedness of ui(t, x;φ)(i = 1, 2). The claim is proved.

It follows from the above claim that M is an isolated invariant set for ΦT in
W0, and W s(M) ∩W0 = ∅, where W s(M) is the stable set of M . According to
the acyclicity theorem on uniform persistence for maps (see [71, Theorem 1.3.1 and
Remark 1.3.1]), one has that ΦT : C+

τ → C+
τ is uniformly persistence with respect

to (W0, ∂W0), namely, there exists a δ̃ > 0 such that

lim inf
k→∞

d(ΦkT , ∂W0) ≥ δ̃,∀φ ∈W0.

It then follows from [71, Theorem 3.1.1] that the periodic semiflow Φt : C+
τ → C+

τ

is also uniformly persistent with respect to (W0, ∂W0). It is easy to see that Φn0

T is
compact and point dissipative on W0. Therefore, according to [35, Theorem 2.9],
one obtains that Φn0

T : W0 →W0 has a global attractor Z0.
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In the following, we further prove the persistence stated in (ii). Define a contin-
uous function p : C+

τ → R+ by (similar to [31, Theorem 4.1])

p(φ) = min{min
x∈Ω̄

φ1(0, x), min
x∈Ω̄

φ2(0, x)}, ∀φ ∈ C+
τ .

Since Z0 = Φn0

T (Z0), we have that

φi(0, ·) > 0, φ ∈ Z0, i = 1, 2. (20)

Let B0 :=
⋃
t∈[0,n0T ] Φt(Z0). It then follows that B0 ⊂W0 and

lim
t→∞

d(Φt(φ),B0) = 0

for all φ ∈ W0. Since B0 is a compact subset of W0, we have minφ∈B0
p(φ) > 0.

Thus, by Lemma 3.6, there exists a δ∗ > 0 such that lim inft→∞ ui(t, ·;φ) ≥ δ∗(i =
1, 2). Furthermore, there exists 0 < δ < δ∗ such that

lim inf
t→∞

ui(t, ·;φ) ≥ δ, φ ∈W0, i = 1, 2.

The proof is completed.

4. A special case. In this section, we investigate the special case where all the
coefficients in (4) are independent of the time variable t and the spatial variable x.
That is,

µi(t, x) ≡ µi, di(t, x) ≡ di, βij(t, x) ≡ βij ,
ri(t, x) ≡ ri, Γi(t, t− a, x, y) ≡ Γi(a, x, y),

t > 0, x ∈ Ω, i, j = 1, 2.

In addition, gij(u, v) ≡ pi(u)qj(v) and pi(u) and qi(v) satisfy

(A1): (i): pi(u), qi(v) : R+ → R+(i, j = 1, 2) can be continuously differen-
tiable for all u, v ≥ 0;

(ii): qi(0) = 0 and pi(0) = 0 for i, j = 1, 2. Furthermore, pi(u) > 0 for
u > 0;

(iii): p′i(u) ≥ 0 and q′i(v) ≥ 0 for all u, v ≥ 0 and i, j = 1, 2. In particular,
q′i(0) > 0 for i = 1, 2;

(iv): there exist ηi > 0(i = 1, 2) such that pi(u)qi(v) ≤ ηiu for all u, v ≥ 0.

(v): Nj(v) :=
qj(v)
v > 0, N ′j(v) ≤ 0 for all v > 0 and j = 1, 2.

In short, we consider the following spatio–temporally homogeneous reaction
–diffusion epidemic model with Neumann boundary condition:

∂Si(t,x)
∂t = DSi∆Si(t, x) + µi − diSi(t, x)− βi1pi(Si(t, x))q1(I1(t, x))

−βi2pi(Si(t, x))q2(I2(t, x)), t > 0, x ∈ Ω,
∂Ii(t,x)
∂t = Di∆Ii(t, x)− riIi(t, x) +

∫ τi
0
fi(a)

∫
Ω

Γi(a, x, y)

×
(
βi1pi(Si(t− a, y))q1(I1(t− a, y))

+βi2pi(Si(t− a, y))q2(I2(t− a, y))
)
dyda, t > 0, x ∈ Ω,

∂Si(t,x)
∂n = ∂Ii(t,x)

∂n = 0, t > 0, x ∈ ∂Ω.

(21)

By a straightforward computation, one has

S0
i (t, x) ≡ µi

di
, t ≥ 0, x ∈ Ω.

Next, we give the explicit expression with the basic reproduction number R0.
Let φ = (φ1, φ2)T be the initial distribution of infective individuals such that
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Ω
φi(x)dx = 1 for i = 1, 2. Then Ti(t)φi represents the solution of the follow-

ing system 
∂ui(t,x)
∂t = Di∆ui(t, x)− riui(t, x), t > 0, x ∈ Ω,

∂ui(t,x)
∂n = 0, t > 0, x ∈ ∂Ω,

ui(0, x) = φi(x), x ∈ Ω

for i = 1, 2. Thus, Ti(t)φi can be given by

(Ti(t)φi)(x) =

∫
Ω

Γ̃i(t, x, z)φi(z)dz,

where Γ̃i(t, x, z) for t > 0 and x, z ∈ Ω is the fundamental solution associated with
the partial differential operator ∂t − Di∆ − ri and Neumann boundary condition
for i = 1, 2 and

∫
Ω

Γ̃i(t, x, z)dz =
∫

Ω
Γ̃i(t, x, z)dx = e−rit for i = 1, 2. Let T (t)φ =

(T1(t)φ1, T2(t)φ2)T be the remaining distribution of infective individuals at time t.
Also in this case, V is the positive linear operator on C(Ω̄,R× R) defined by

V (φ)(x) =

(
V11(φ)(x) V12(φ)(x)
V21(φ)(x) V22(φ)(x)

)
, ∀φ ∈ C(Ω̄,R× R), x ∈ Ω̄,

where Vij(φ)(x) = βijpi(S
0
i )q′j(0)

∫ τi
0
fi(a)

∫
Ω

Γi(a, x, y)φj(y)dyda, i, j = 1, 2. Thus,
V (T (t) φ) is the distribution of newly infected individuals at time t. Thus, the next
generate operator can be represented by

L(φ) :=

∫ ∞
0

V (T (t)φ)dt = V

(∫ ∞
0

T (t)φdt

)
.

Furthermore, the total number of infectious individuals is given by

L :=

∫
Ω

L(φ)(x)dx.

Let ϑ1 :=
∫ τ1

0
f1(a)

∫
Ω

Γ1(a, x, y)dxda. According to (v) of (A1), we can obtain∫
Ω

∫ ∞
0

V11(T1(t)φ1)(x)dtdx

=

∫
Ω

β11p1(S0
1)q′1(0)

∫ ∞
0

∫ τ1

0

f1(a)

∫
Ω

∫
Ω

Γ1(a, x, y)Γ̃1(t, y, z)φ1(z)dzdydadtdx

=β11p1(S0
1)q′1(0)ϑ1

∫ ∞
0

e−r1t
∫

Ω

φ1(z)dzdt

=
ϑ1β11p1(S0

1)q′1(0)

r1
.

By the same methods, one has∫
Ω

∫ ∞
0

V1(T2(t)φ2)(x)dtdx =
ϑ1β12p1(S0

1)q′2(0)

r2
,∫

Ω

∫ ∞
0

V2(Tj(t)φj)(x)dtdx =
ϑ2β2jp2(S0

2)q′j(0)

rj
, j = 1, 2.

As a consequence, it follows that

L =

(
ϑ1β11p1(S0

1)q′1(0)
r1

ϑ1β12p1(S0
1)q′2(0)

r2
ϑ2β21p2(S0

2)q′1(0)
r1

ϑ2β22p2(S0
2)q′2(0)

r2

)
.
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Let r(L) be the spectral radius of L. Finally, we can define the spectral radius of
L as the basic reproduction number R0, that is,

R0 = r(L).

We are in a position to show the main results in this section.

Theorem 4.1. Let u(t, x, φ) be the solution of (21) with u0 = φ ∈ C+
τ , then the

following two statements are valid:

(1): If R0 < 1, then the disease free equilibrium (µ1

d1
, µ2

d2
, 0, 0) is globally attrac-

tive.
(2): If R0 > 1, then the system (21) has a positive constant steady state u∗ =

(S∗1 , S
∗
2 , I
∗
1 , I

∗
2 ) which is globally attractive.

Proof. The conclusion of (1) follows from Theorem 3.7(i).
In the following, we prove the conclusion (2) by using a Volterra like Lyapunov

functional. Similarly to the proof of [48, Theorem 2.1], we can show that the
corresponding ordinary differential equations of (21):

dSi(t)
dt = µi − diSi(t)− βi1pi(Si(t))q1(I1(t))− βi2pi(Si(t))q2(I2(t)),

t > 0, i = 1, 2,
dIi(t)
dt = −riIi(t) + βi1pi(Si(t))q1(I1(t)) + βi2pi(Si(t))q2(I2(t)),

t > 0, i = 1, 2

admits at least one endemic equilibrium u∗ = (S∗1 , S
∗
2 , I
∗
1 , I
∗
2 )(S∗i , I

∗
i > 0, i = 1, 2),

which is also a positive constant steady state of (21).
Next, we are ready to prove the global attractivity of the endemic equilibrium

u∗ and hence, the endemic equilibrium u∗ is unique. Set V (x) = x− 1− lnx. Then
we define

W (t) =

∫
Ω

{
W 1(t, x)

β12p1(S∗1 )q2(I∗2 )
+

W 2(t, x)

β21p2(S∗2 )q1(I∗1 )

}
dx,

where

W i(t, x) = ΦSi(t, x) +
1

ϑi
ΦIi(t, x) +

1

ϑi

2∑
j=1

βijpi(S
∗
i )qj(I

∗
j )Q(Si,t, Ij,t),

ΦSi(t, x) =

∫ Si(t,x)

S∗i

pi(s)− pi(S∗i )

pi(s)
ds, ΦIi =

∫ Ii(t,x)

I∗i

qi(s)− qi(I∗i )

qi(s)
ds

and

Q(Si,t, Ij,t)

=

∫ τi

0

fi(a)

∫
Ω

Γi(a, x, y)

∫ a

0

V

(
pi(Si(t− σ, y))qj(Ij(t− σ, y))

fi(S∗i )qj(I∗j )

)
dσdyda

for i, j = 1, 2. Let φ = (φS1
, φS2

, φ1, φ2) ∈ Z0 (Z0 is defined as Theorem 3.7(ii)).
Since Z0 is invariant, there exists a non–negative solution (S1, S2, I1, I2) of (21)
that is defined for all t ∈ R, takes all its value in Z0 and satisfies Si(0, x) = φSi(x)
and Ii(0, x) = φi(x) for all x ∈ Ω. It further follows from Lemma 3.6 and (20) that
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inft∈R,x∈Ω Si(t, x) > 0 and inft∈R,x∈Ω Ii(t, x) > 0 for i = 1, 2, which implies that
W (t) is defined for all t ∈ R. We firstly compute the derivation of ΦSi and ΦIi on t

∂ΦS1
(t, x)

∂t
= DS1

p1(S1(t, x))− p1(S∗1 )

p1(S1(t, x))
∆S1(t, x) + F1(t, x)

+

2∑
j=1

β1jp1(S∗1 )qj(I
∗
j )H1j(t, x),

∂ΦI1(t, x)

∂t
= D1

q1(I1(t, x))− q1(I∗1 )

q1(I1(t, x))
∆I1(t, x) + J1(t, x) +

2∑
j=1

β1jp1(S∗1 )qj(I
∗
j )

∫ τ1

0

f1(a)

∫
Ω

Γ1(a, x, y)T1j(t, a, x, y)dyda,

∂ΦS2

∂t
= DS2

(
p2(S2(t, x))− p2(S∗2 )

p2(S2(t, x))

)
∆S2(t, x) + F2(t, x)

+

2∑
j=1

β2jp2(S∗2 )qj(I
∗
j )H2j(t, x)

and

∂ΦI2
∂t

= D2

(
1− q2(I∗2 )

q2(I2(t, x))

)
∆I2(t, x) + J2(t, x)

+

2∑
j=1

β2jp2(S∗2 )qj(I
∗
j )

∫ τ2

0

f2(a)

∫
Ω

Γ2(a, x, y)T2j(t, a, x, y)dyda,

where

Fi(t, x) = −di
∫

Ω

(pi(Si(t, x))− pi(S∗i ))(Si(t, x)− S∗i )

Si(t, x)
dx, i = 1, 2,

Ji(t, x) = ri
Ii(t, x)I∗i

q(Ii(t, x))q(I∗i )

(
qi(Ii(t, x))− q(I∗i )

)(
Ni(Ii(t, x))−Ni(I∗i )

)
,

i = 1, 2,

Hij(t, x) = 1− pi(S
∗
i )

pi(Si(t, x))
+
qj(Ij(t, x))

qj(I∗j )
− pi(Si(t, x))qj(Ij(t, x))

pi(S∗i )qj(I∗j )
, i, j = 1, 2

and

Tij(t, a, x, y) = 1 +
pi(Si(t− a, y))qj(Ij(t− a, y))

pi(S∗i )qj(I∗j )
− qi(Ii(t, x))

qi(I∗i )

−pi(Si(t− a, y))qj(Ij(t− a, y))qi(I
∗
i )

pi(S∗i )qj(I∗j )qi(Ii(t, x))
, i, j = 1, 2.

Moreover, one has

∂Q(Si,t, Ij,t)

∂t

=

∫ τi

0

fi(a)

∫
Ω

Γi(a, x, y)

(
V

(
pi(Si(t, y))qj(Ij(t, y))

pi(S∗i )qj(I∗j )

)

−V

(
pi(Si(t− a, y))qj(Ij(t− a, y))

pi(S∗i )qj(I∗j )

))
dyda
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for i, j = 1, 2. Secondly, let

Wi(t) =

∫
Ω

W i(t, x)dx, i = 1, 2.

By a straightforward computation, we can get

dW1(t)

dt
= DS1

∫
Ω

(
1− p1(S∗1 )

p1(S1(t, x))

)
∆S1(t, x)dx

+

∫
Ω

D1

ϑ1

(
1− q1(I∗1 )

q1(I1(t, x))

)
∆I1(t, x)dx+

∫
Ω

F1(t, x)dx

+
1

ϑ1

∫
Ω

J1(t, x)dx− β11

ϑ1
p1(S∗1 )q1(I∗1 )

∫ τ1

0

f1(a)

∫
Ω

∫
Ω

Γ1(a, x, y)(
V

(
p1(S∗1 )

p1(S1(t, x))

)
V

(
p1(S1(t− a, y))q1(I1(t− a, y))

p1(S∗1 )q1(I1(t, x))

))
dydxda

+
β12

ϑ1
p1(S∗1 )q2(I∗2 )

∫
Ω

∫ τ1

0

f1(a)

∫
Ω

Γ1(a, x, y)

(
−V

(
p1(S∗1 )

p1(S1(t, x))

)
−V

(
p1(S1(t− a, y))q2(I2(t− a, y))q1(I∗1 )

p1(S∗1 )q2(I∗2 )q1(I1(t, x))

)
+V

(
q2(I2(t, x))

q2(I∗2 )

)
− V

(
q1(I1(t, x))

q1(I∗1 )

))
dydxda

and

dW2(t)

dt
= DS2

∫
Ω

(
1− p2(S∗2 )

p2(S2(t, x))

)
∆S2(t, x)dx

+

∫
Ω

D2

ϑ2

(
1− q2(I∗2 )

q2(I2(t, x))

)
∆I2(t, x)dx+

∫
Ω

F2(t, x)dx

+
1

ϑ2

∫
Ω

J2(t, x)dx+
β21

ϑ2
p2(S∗2 )q1(I∗1 )

∫ τ2

0

f2(a)

∫
Ω

∫
Ω

Γ2(a, x, y)(
−V

(
p2(S∗2 )

p2(S2(t, x))

)
+ V

(
p2(S2(t− a, y))q1(I1(t− a, y))q2(I∗2 )

p2(S∗2 )q1(I∗1 )q2(I2(t, x))

)
+V

(
q1(I1(t, x))

q1(I∗1 )

)
− V

(
q2(I2(t, x))

q2(I∗2 )

))
dydxda

+
β21

ϑ2
p2(S∗2 )q(I∗2 )

∫
Ω

∫ τ2

0

f2(a)

∫
Ω

Γ2(a, x, y)

(
−V

(
p2(S∗2 )

p2(S2(t, x))

)
−V

(
p2(S2(t− a, y))q2(I2(t− a, y))

p2(S∗2 )q2(I2(t, x))

))
dydxda.

In addition, there holds

DSj

∫
Ω

∆Sj(t, x)

(
1−

pj(S
∗
j )

pj(Sj)(t, x)

)
dx

=DSj

∫
∂Ω

(
1−

pj(S
∗
j )

pj(Sj(t, x))

)
∂

∂n
Sj(t, x)dx−DSj

∫
Ω

p′j(Sj)pj(S
∗
j )(∇Sj(t, x))2

p2
j (Sj)(t, x)

dx

=−DSj

∫
Ω

p′j(Sj)pj(S
∗
j )(∇Sj(t, x))2

p2
j (Sj(t, x))

dx, j = 1, 2.
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According (iii) of (A1), one has −DSj

∫
Ω

p′j(Sj)pj(S
∗
j )(∇Sj(t,x))2

p2j (Sj(t,x))
dx ≤ 0 for j = 1, 2.

In the same way, we can obtain

Dj

∫
Ω

∆Ij(t, x)

(
1−

qj(I
∗
j )

qj(Ij(t, x))

)
dx = −Dj

∫
Ω

qj(I
∗
j )q′j(Ij)(∇Ij(t, x))2

q2
j (Ij(t, x))

dx ≤ 0

for j = 1, 2. By virtue of (iii) of (A1), one has∫
Ω

Fi(t, x)dx = −
∫

Ω

di
(pi(Si(t, x))− pi(S∗i ))(Si(t, x)− S∗i )

pi(Si(t, x))
dx ≤ 0, i = 1, 2. (22)

Furthermore, in view of (iii) and (v) of (A1), it follows that∫
Ω

Ji(t, x)dx ≤ 0, i = 1, 2. (23)

As a consequence,

dW1(t)

dt
= −DS1

∫
Ω

p1(S∗1 )p′1(S1)(∇S1(t, x))2

p2
1(S1(t, x))

dx+

∫
Ω

F1(t, x)dx

−D1

ϑ1

∫
Ω

q1(I∗1 )q′1(I1)(∇I1(t, x))2

q2
1(I1(t, x))

dx+
1

ϑ1

∫
Ω

J1(t, x)dx

+
β11p1(S∗1 )q1(I∗1 )

ϑ1

∫ τ1

0

f1(a)

∫
Ω

∫
Ω

Γ1(a, x, y)

(
−V

(
p1(S∗1 )

p1(S1(t, x))

)
−V

(
p1(S1(t− a, y))q1(I1(t− a, y))

p1(S∗1 )q1(I1(t, x))

))
dadydx

+
β12p1(S∗1 )q2(I∗2 )

ϑ1

∫
Ω

∫ τ1

0

f1(a)

∫
Ω

Γ1(a, x, y)

(
−V

(
p1(S∗1 )

p1(S1(t, x))

)
+V

(
q2(I2(t, x))

q2(I∗2 )

)
− V

(
p1(S1(t− a, y))q2(I2(t− a, y))q1(I∗1 )

p1(S∗1 )q2(I∗2 )q1(I1(t, x))

)
−V

(
q1(I1(t, x))

q1(I∗1 )

))
dadydx

and

dW2(t)

dt
= −DS2

∫
Ω

p2(S∗2 )p′2(S2)(∇S2(t, x))2

p2
2(S2)(t, x)

dx+

∫
Ω

F2(t, x)dx

+
D2

ϑ2

∫
Ω

q2(I∗2 )q′2(I2)(∇I2(t, x))2

q2
2(I2(t, x))

dx+
1

ϑ2

∫
Ω

J2(t, x)dx

+
β22p2(S∗2 )q2(I∗2 )

ϑ2

∫
Ω

∫ τ2

0

f2(a)

∫
Ω

Γ2(a, x, y)

(
−V

(
q2(S∗2 )

q2(S2(t, x))

)
−V

(
p2(S2(t− a, y))q2(I2(t− a, y))

p2(S∗2 )q2(I2(t, x))

))
dydadx

+
β21p2(S∗2 )q1(I∗1 )

ϑ2

∫
Ω

∫ τ2

0

f2(a)

∫
Ω

Γ2(a, x, y)

(
−V

(
p2(S∗2 )

p2(S2(t, x))

)
+V

(
q1(I1(t, x))

q1(I∗1 )

)
− V

(
p2(S2(t− a, y))q1(I1(t− a, y))q2(I∗2 )

p2(S∗2 )q1(I∗1 )q2(I2(t, x))

)
−V

(
q2(I2(t, x))

q2(I∗2 )

))
dydadx.
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Set

W =
1

β12p1(S∗1 )q2(I∗2 )
W1 +

1

β21p2(S∗2 )q1(I∗1 )
W2.

Then we have

dW

dt

= − DS1

β12p1(S∗1 )q2(I∗2 )

∫
Ω

p1(S∗1 )p′1(S1)(∇S1(t, x))2

p2
1(S1(t, x))

dx

− D1

ϑ1β12p1(S∗1 )q2(I∗2 )

∫
Ω

q1(I∗1 )q′1(I1)(∇I1(t, x))2

q2
1(I1(t, x))

dx

− DS2

β21p2(S∗2 )q1(I∗1 )

∫
Ω

p2(S∗2 )p′2(S2)(∇S2(t, x))2

p2
2(S2(t, x))

dx

− D2

ϑ2β21p2(S∗2 )q1(I∗1 )

∫
Ω

q2(I∗2 )q′2(I2)(∇I2(t, x))2

q2
2(I2(t, x))

dx

+

∫
Ω

F2(t, x)

β21p2(S∗2 )q1(I∗1 )
dx+

∫
Ω

F1(t, x)

β12p1(S∗1 )q2(I∗2 )
dx

+

∫
Ω

J1(t, x)

ϑ1β12p1(S∗1 )q2(I∗2 )
dx+

∫
Ω

J2(t, x)

ϑ2β21p2(S∗2 )q1(I∗1 )
dx

+
β11q1(I∗1 )

β12q2(I∗2 )ϑ1

∫
Ω

∫ τ1

0

f1(a)

∫
Ω

Γ1(a, x, y)(
−V

(
p1(S∗1 )

p1(S1(t, x))

)
− V

(
p1(S1(t− a, y))q1(I1(t− a, y))

p1(S∗1 )q1(I1(t, x))

))
dydadx

− 1

ϑ1

∫
Ω

∫ τ1

0

f1(a)

∫
Ω

Γ1(a, x, y)(
V

(
p1(S∗1 )

p1(S1(t, x))

)
+ V

(
p1(S1(t− a, y))q2(I2(t− a, y))q1(I∗1 )

p1(S∗1 )q2(I∗2 )q1(I1(t, x))

))
dydadx

− β22q2(I∗2 )

β21q1(I∗1 )ϑ2

∫
Ω

∫ τ2

0

f2(a)

∫
Ω

Γ2(a, x, y)(
V

(
p2(S∗2 )

p2(S2(t, x))

)
+ V

(
p2(S2(t− a, y))q2(I2(t− a, y))

p2(S∗2 )q2(I2(t, x))

))
dydadx

− 1

ϑ2

∫
Ω

∫ τ2

0

f2(a)

∫
Ω

Γ2(a, x, y)(
V

(
p2(S∗2 )

p2(S2(t, x))

)
+ V

(
p2(S2(t− a, y))q1(I1(t− a, y))q2(I∗2 )

p2(S∗2 )q1(I∗1 )q2(I2(t, x))

))
dydadx.

On the basis of (22) and (23), we have dW
dt ≤ 0. By using the similar arguments

introduced in [52, Theorem 12.1], we can prove that the attractor Z0 in Theorem
3.7 is a singleton set which is formed by the endemic equilibrium u∗. This completes
the proof.
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