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Abstract. We consider a reaction diffusion equation with a delayed nonlocal

nonlinearity and subject to Dirichlet boundary condition. The model equa-
tion is motivated by infection dynamics of disease spread (avian influenza, for

example) through environment contamination, and the nonlinearity takes into

account of distribution of limited resources for rapid and slow intervention-
s to clean contaminated environment. We determine conditions under which

an equilibrium with positive value in the interior of the domain (disease e-

quilibrium) emerges and determine conditions under which Hope bifurcation
occurs. For a fixed pair of rapid and slow response delay, we show that nonlin-

ear oscillations can be avoided by distributing resources for both fast or slow
interventions.

1. Introduction. We consider the spread of a disease carried by a biological species
and transmitted through contaminated environment. We assume the diseased in-
dividuals move randomly in a spatial domain Ω (a smooth open bounded set in
a finite dimensional space) following the standard diffusion, and subject to the
Dirichlet condition on the boundary ∂Ω as the boundary is not suitable for the
diseased individuals to survive (due to disease prevention and control, or due to
the natural environmental constraints). We model the situation where the growth
of the infection in the biological population is proportional to the number of dis-
eased individuals as the amount of pathogen loads released to the environment is
proportional to this number of diseased cases. We further consider the case where
a certain amount of resources is available to clean the environment, a portion of the
sources can be used to respond to the contamination relatively faster (with a delay
given by τ1) and the rest can be used for slower response characterized by another
average delay τ2 > τ1. This yields the following model

∂u

∂t
= d∆u+ ru[1− a1

∫
Ω

P1(x, y)u(y, t− τ1)dy− a2

∫
Ω

P2(x, y)u(y, t− τ2)dy], (1)

where u(t, x) is the population density of infected individuals at time t and location
x, (t, x) ∈ (0,∞) × Ω, d is the diffusion rate, r is the reproduction ratio of the
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diseased populations. The total environment available for the pathogen contami-
nation is normalized to 1. In the first nonlocal delayed integration, u(y, t − τ1) is
the pathogen loads released by the infected individuals at time t − τ1 and spatial
location y and P1(x, y) is the probability of the pathogen moved from the spatial
location y to current location x. A certain biosafety intervention measure is im-
plemented, in proportion to the pathogen loads

∫
Ω
P1(x, y)u(y, t − τ1)dy, but with

a time lag τ1. Similar interpretations apply to the second integration, but with a
longer delay τ2. The constants a1 and a2 satisfy a1 + a2 = 1, where a1 ∈ [0, 1]
represents the allocation of resources to be allocated to implement the intervention
measure for either rapid or slow response to protect the environment from being
used to be contaminated to spread the disease back to the biological species under
consideration. The kernel function are relevant to the mobility of the virus and this
can be derived in a similar fashion as in [14].

Note that we assume the time for the biosafety intervention is much slower than
the virus spread in the environment, and hence the delay in the spread process is
ignored. ∆ stands for the Laplacian operator, with following Dirichlet boundary
condition

u(x, t) = 0, x ∈ ∂Ω and t ∈ (0,+∞)

which implies that the exterior environment is hostile and the species cannot move
across the boundary of environment, and initial condition satisfies

u(x, s) = η(x, s) ≥ 0, x ∈ Ω and t ∈ [−τ, 0],

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω, τ =
max(τ1, τ2), η ∈ C := C([−τ, 0], Y ) and Y = L2(Ω).

This study is motivated by the spread of avian influenza, an infectious disease
of birds that is caused by influenza virus type A strains. The involvement of differ-
ent bird species and their interactions with environments together lead to complex
transmission pathways which include birds to birds, birds to mammals, birds to hu-
man, birds to insects, human to human, and environment to birds/mammals/human
and vice-versa [9]. How to model the interplay of different transmission path-
ways and its impact on the spread of avian influenza imposes significant challenge
[1][11][16]. In the study of Wang et al.[17], a system of reaction diffusion equations
on unbounded domains was proposed to establish the existence and nonexistence
of traveling wave solutions of a reaction-convection epidemic model for the spatial
spread of avian influenza involving a wide range of bird species and environmental
contamination. In the earlier studies of Gourley et al.[6], the role of migrating birds
were examined using partial differential equations and their reduction to delay dif-
ferential systems. Here we focus on the spread of avian influenza among the wild
birds, where the virus is shredded into the environment, through which the virus
further spreads and infects other wild birds coming to contact with contaminated
environment. The parameter r represents the intrinsic susceptibility and transmis-
sibility of the environment, which can be reduced through biosafety intervention so
the nonlinearity in the kinetic equation for the infected individuals resembles the
classical delayed non-local logistic equations. Note that a large portion of the envi-
ronment for the virus spread and contamination involves water, the kernel functions
P1 and P2 for the virus spread in the environment can involve both diffusion and
convercation.

Our goal in this paper is to 1). Determine whether there is a critical value of r
above which the disease will persist in the population in the form of a nonnegative
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non-trivial equilibrium (note this is necessarily spatially varying due to the Dirichlet
condition); 2). Identify critical value of the rapid response delay where the nontrivial
equilibrium remains locally stable when all resources are committed for the rapid
biosafety intervention; 3). Identify critical value of the slow response delay where
the nontrivial equilibrium loses its locally stability even when all resources are
committed for the slow biosafety intervention; 4). Identify the critical resource
allocation parameter α when a Hopf bifurcation takes place from the nontrivial
equilibrium, in this case we examine the patterns of bifurcated periodic solutions to
examine impact of parameters on the peak and frequency of the spatiotemporally
varying stable patterns.

We use r∗ to denote the principal eigenvalue of the following one-dimensional
eigenvalue problem {

−d∆u(x) = ru(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

and φ is the corresponding eigenfunction of r∗ with φ(x) > 0 for x ∈ Ω. The follow-
ing notations are needed. Let Lp(Ω) (p ≥ 1) be the space consisting of measurable
functions on Ω that are p-integrable, and Hk(Ω) (k ≥ 0) be the space consisting
of functions whose k-th order weak derivatives belong to L2(Ω). Denote the s-
paces X = H2(Ω) ∩ H1

0 (Ω) and Y = L2(Ω), where H1
0 (Ω) = {u ∈ H1(Ω)|u(x) =

0 for all x ∈ ∂Ω}. For any real-valued vector space Z, we also denote the complex-
ification of Z to be ZC := Z ⊕ iZ = {x1 + ix2|x1, x2 ∈ Z}. For a linear operator
L : Z1 → Z2, we denote the domain of L by D(L), the null space by N (L) and the
range of L by R(L). For the complex-valued Hilbert space YC, the standard inner
product is < u, v >=

∫
Ω
ū(x)v(x)dx. In what follows, we assume the comparability

condition between the kernel functions Pi(x, y), i = 1, 2 and the eigenfunction φ.
Namely, we assume

∫
Ω

∫
Ω

(P1(x, y) + P2(x, y))φ(y)φ(x)dydx 6= 0. This is because
one of the kernel functions can be zero.

2. Existence of steady state solution. The positive steady state solutions of
(1) satisfy the following equation:d∆u+ ru[1−

2∑
i=1

ai

∫
Ω

Pi(x, y)u(y)dy] = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(2)

Let N (d∆ + r∗) and R(d∆ + r∗) be the null space and the range of the operator
d∆ + r∗, then

N (d∆ + r∗) = span{φ},
R(d∆ + r∗) = {y ∈ L2(Ω)| < φ, y >= 0}.

Then we have the following decompositions:

X = N (d∆ + r∗)⊕ X̂,
Y = N (d∆ + r∗)⊕R(d∆ + r∗),

where

X̂ = {y ∈ X| < φ, y >= 0}.
Then we have the following result on positive steady state solution of model (1).
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Theorem 2.1. There exist r∗ > r∗ and a continuously differential mapping r 7→
(ξr, αr) from [r∗, r

∗] to X̂ × R+ such that the model (1) has a positive steady state
solution as follows

ur(x) = αr(r − r∗)[φ(x) + (r − r∗)ξr(x)], r ∈ [r∗, r
∗].

Moreover,

αr∗ =

∫
Ω
φ2(x)dx

r∗

(
2∑
i=1

ai

∫
Ω

∫
Ω

Pi(x, y)φ2(x)φ(y)dxdy

)
and ξr∗ ∈ X1 is the unique solution of the following equation

(d∆ + r∗)ξ + φ[1− r∗αr∗

(
2∑
i=1

ai

∫
Ω

Pi(x, y)φ(y)dy

)
] = 0.

The proof is standard. Namely, we let f : X̂ × R× R→ Y be defined by

f(ξr, αr, r) =(d∆ + r∗)ξr + φ(x) + (r − r∗)ξr − rαr
(
φ(x) + (r − r∗)ξr

)
·

(
2∑
i=1

ai

∫
Ω

Pi(x, y)
(
φ(y) + (r − r∗)ξ(y)

)
dy

)
,

then f(ξr∗ , αr∗ , r∗) = 0. The partial derivative of f at (ξr∗ , αr∗ , r∗) is given by

D(ξr,αr)f(ξr∗ , αr∗ , r∗)(η, ε) = (d∆ + r∗)η − rφ(x)ε

(
2∑
i=1

ai

∫
Ω

Pi(x, y)φ(y)dy

)
.

Under the comparability condition, we have φ(x)
∫

Ω
(P1(x, y) + P2(x, y))φ(y)dy /∈

R(d∆ + r∗). Then D(ξr,αr)f(ξr∗ , αr∗ , r∗) is bijective from X̂ × R to Y . From the
implicit function theorem, there exist r∗ > r∗ and a unique continuously differential
mapping r 7→ (ξr, αr) from [r∗, r

∗] to X̂ × R+ such that

f(ξr, αr, r) = 0, r ∈ [r∗, r
∗].

Therefore, ur(x) = αr(r−r∗)[φ(x)+(r−r∗)ξr(x)] solves the boundary value problem
(2).

In what follows, we always assume that r ∈ (r∗, r
∗] and r∗ − r∗ � 1.

3. Eigenvalue analysis. It is easy to see that the linearized equation of the model
(1) at the steady state solution ur can be written as

∂v(x, t)

∂t
=d∆v(x, t) + rv(x, t)[1−

(
2∑
i=1

ai

∫
Ω

Pi(x, y)ur(y)dy

)
]− rur(x)

·

(
2∑
i=1

ai

∫
Ω

Pi(x, y)v(y, t− τi)dy

)
, x ∈ Ω, t > 0,

v(x, t) =0, x ∈ ∂Ω, t > 0,

v(x, t) =η(x, t), (x, t) ∈ Ω× [−τ, 0],

(3)

where η ∈ C.
Define a operator Ar : D(Ar)→ Y with domain D(Ar) = X by

Ar = d∆ + r[1−

(
2∑
i=1

ai

∫
Ω

Pi(x, y)ur(y)dy

)
].



MULTI-NONLOCAL DELAYED DIFFUSIVE MODEL 1519

From [13], Ar is an infinitesimal generator of a strong continuous semigroup and
Ar is also self-adjoint. Then the study of the stability of ur is transferred to the
analysis of the following eigenvalue problem

Λ(r, λ, τ1, τ2)ψ = Arψ − rur

(
2∑
i=1

aie
−λτi

∫
Ω

Pi(x, y)ψ(y)dy

)
− λψ = 0, (4)

where ψ ∈ XC\{0}, i.e., the study of the following spectral set

σ(Aτ1τ2,r) = {λ ∈ C : Λ(r, λ, τ1, τ2)ψ = 0, for ψ ∈ XC\{0}},
where Aτ1τ2,r is the infinitesimal generator of the semigroup induced by the solutions
of equation (3) with

Aτ1τ2,rψ = ψ̇,

and
D(Aτ1τ2,r)

={ψ ∈ CC ∩ C1
C : ψ(0) ∈ XC, ψ̇(0) = Arψ(0)− rur

(
2∑
i=1

ai

∫
Ω

Pi(x, y)ψ(y,−τi)dy

)
},

where C1
C = C1([−τ, 0], YC).

Then Aτ1τ2,r has a purely imaginary roots λ = iω (ω 6= 0) for τ1, τ2 ≥ 0 if and
only if

Arψ − rur

(
2∑
i=1

aie
−iωτi

∫
Ω

Pi(x, y)ψ(y)dy

)
− iωψ = 0

is solvable for some ω > 0 and ψ ∈ XC\{0}.
Next, we discuss the effects of two nonlocal delays on the stability at the positive

steady state solution ur in four different cases.

Case 1. τ1 = 0 and τ2 > 0.
In this case, the equation (4) can be reduced into

Λ(r, λ, 0, τ2)ψ

=Arψ − rur[a1

∫
Ω

P1(x, y)ψ(y)dy + a2e
−λτ2

∫
Ω

P2(x, y)ψ(y)dy]− λψ = 0.
(5)

If there exit iωτ2(ωτ2 > 0) and ψτ2 ∈ XC\{0} satisfying (5), then〈
Arψτ2 − rur

∫
Ω

(
a1P1(x, y) + a2e

−iωτ2τ2P2(x, y)
)
ψτ2(y)dy − iωτ2ψτ2 , ψτ2

〉
= 0.

(6)
Separating the real and imaginary parts, we obtain

〈ωτ2ψτ2 , ψτ2〉

=Im

〈
−rur

∫
Ω

(a1P1(x, y) + a2e
−iωτ2τ2P2(x, y))ψτ2(y)dy, ψτ2

〉
≤

2∑
i=1

∣∣∣∣〈rur ∫
Ω

aiPi(x, y)ψτ2(y)dy, ψτ2

〉∣∣∣∣ .
Thus,

ωτ2
r − r∗

≤ (a1 + a2)rαr(‖φ‖∞ + (r − r∗)‖ξr‖∞) max
Ω̄×Ω̄

Pi(x, y)|Ω|. (7)

It implies that
ωτ2
r−r∗ is uniformly bounded for r ∈ (r∗, r

∗].
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Ignoring a scalar factor, we know that ψτ2 can be expressed as

ψτ2 = βτ2φ+ (r − r∗)zτ2 , 〈φ, zτ2〉 = 0, βτ2 ≥ 0,

‖ψτ2‖2YC
= β2

τ2‖φ‖
2
YC

+ (r − r∗)2‖zτ2‖2YC
= ‖φ‖2YC

.
(8)

Substituting (8) and ωτ2 = (r − r∗)kτ2 into (5), we have the following equivalent
equation to (5)

g1(zτ2 , βτ2 , kτ2 , r) =(d∆ + r∗)zτ2 + [1− ikτ2 −
2∑
i=1

∫
Ω

airαrPi(x, y)(φ(y) + (r − r∗)

· ξr(y))dy](βτ2φ+ (r − r∗)zτ2)− rαr(φ(x) + (r − r∗)ξr(x))

·
∫

Ω

(a1P1(x, y) + a2e
−iωτ2τ2P2(x, y))(βτ2φ+ (r − r∗)zτ2)dy

=0,

g2(zτ2 , βτ2 , kτ2 , r) =(β2
τ2 − 1)‖φ‖2YC

+ (r − r∗)2‖zτ2‖2YC
= 0.

Define Gτ2 : X̂C × R3 7→ YC × R by Gτ2 = (g1, g2). It is clear that

Gτ2(zτ2,r∗ , βτ2,r∗ , kτ2,r∗ , r∗) = 0.

Denote

ãi = ai

∫
Ω

∫
Ω

Pi(x, y)φ2(x)φ(y)dxdy, for i = 1, 2.

Separating the real and imaginary parts of g1(zτ2,r∗ , βτ2,r∗ , kτ2,r∗ , r∗) = 0, we have

(d∆ + r∗)z
1
τ2,r∗+[1−

(
2∑
i=1

air∗αr∗

∫
Ω

Pi(x, y)φ(y)dy

)
]φ− r∗αr∗φ(x)

·
∫

Ω

(a1P1(x, y) + a2P2(x, y) cos(ωτ2,r∗τ2))φ(y)dy = 0,

(d∆ + r∗)z
2
τ2,r∗−kτ2,r∗φ+ a2r∗αr∗φ(x)

∫
Ω

P2(x, y)φ(y)dy sin(ωτ2,r∗τ2) = 0,

(9)

where zτ2,r∗ = z1
τ2,r∗ + iz2

τ2,r∗ .
From Theorem (2.1), it can be seen that Eq. (9) is solvable if and only if

zτ2,r∗ = (1− ikτ2,r∗)ξr∗ , kτ2,r∗ =

√
ã2

2 − ã2
1

ã1 + ã2
, (ã2 > ã1)

βτ2,r∗ = 1, ωτ2,r∗τ2 = arccos(− ã1

ã2
) + 2nπ, n = 0, 1, 2, · · · .

Case 2. τ1 > 0 and τ2 = 0.
Assume that ã1 ≥ ã2. Using a similar analysis as in the Case 1, we can obtain

the following result:
If there exit iωτ1(ωτ1 > 0) and ψτ1 ∈ XC\{0} satisfying

Arψτ1 − rur
∫

Ω

(
a1e
−iωτ1τ1P1(x, y) + a2P2(x, y)

)
ψτ1(y)dy − iωτ1ψτ1 = 0,

then
ωτ1
r−r∗ is uniformly bounded for r ∈ (r∗, r

∗]. The equivalent equation to (5) is

Gτ1 = (g1(zτ1 , βτ1 , kτ1 , r), g2(zτ1 , βτ1 , kτ1 , r)), where
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g1(zτ1 , βτ1 , kτ1 , r) = (d∆ + r∗)zτ1 + [1− ikτ1 −
2∑
i=1

∫
Ω

airαrPi(x, y)(φ(y) + (r − r∗)

· ξr(y))dy](βτ1φ+ (r − r∗)zτ1)− rαr(φ(x) + (r − r∗)ξr(x))

·
∫

Ω

(a1e
−iωτ1τ1P1(x, y) + a2P2(x, y))(βτ1φ+ (r − r∗)zτ1)dy = 0,

g2(zτ1 , βτ1 , kτ1 , r) = (β2
τ1 − 1)‖φ‖2YC

+ (r − r∗)2‖zτ1‖2YC
= 0.

Moreover, it is easy to see that Gτ1(zτ1,r∗ , βτ1,r∗ , kτ1,r∗ , r∗) = 0, where

zτ1,r∗ = (1− ikτ1,r∗)ξr∗ , kτ1,r∗ =

√
ã2

1 − ã2
2

ã1 + ã2
, (ã1 > ã2)

βτ1,r∗ = 1, ωτ1,r∗τ1 = arccos(− ã2

ã1
) + 2nπ, n = 0, 1, 2, · · · .

Case 3. τ1 ∈ (0, τ10) and τ2 > 0.
In this case, we consider τ2 as a parameter and τ1 being in the stable interval

(0, τ10). Assume that, for some τ2 > 0, iωτ1τ2 (ωτ1τ2 > 0) and ψτ1τ2 ∈ XC\{0} are
a solution of the equation (4). If we substitute this solution into the inner product
〈∆(r, iωτ1τ2 , τ1, τ2)ψτ1τ2 , ψτ1τ2〉 and separate the imaginary part, then we obtain the
following equation:

〈ωτ1τ2ψτ1τ2 , ψτ1τ2〉

=Im

〈
−rur

∫
Ω

(
a1e
−iωτ1τ2τ1P1(x, y) + a2e

−iωτ1τ2τ2P2(x, y)
)
ψτ1τ2(y)dy, ψτ1τ2

〉
.

Therefore,
ωτ1τ2
r−r∗ has the same boundary as shown in (7), i.e.,

ωτ1τ2
r−r∗ is uniformly

bounded for r ∈ (r∗, r
∗]. Then we can rewrite ψτ1τ2 as

ψτ1τ2 = βτ1τ2φ+ (r − r∗)zτ1τ2 , 〈φ, zτ1τ2〉 = 0, βτ1τ2 ≥ 0,

‖ψτ1τ2‖2YC
= β2

τ1τ2‖φ‖
2
YC

+ (r − r∗)2‖zτ1τ2‖2YC
= ‖φ‖2YC

.
(10)

Based on (10) and ωτ1τ2 = (r − r∗)kτ1τ2 , we obtain the equivalent equation to (5)
as follows:

g1(zτ1τ2 , βτ1τ2 , kτ1τ2 , r) =(d∆ + r∗)zτ1τ2 + [1− ikτ1τ2 −
2∑
i=1

∫
Ω

airαrPi(x, y)(φ(y)

+ (r − r∗)ξr(y))dy](βτ1τ2φ+ (r − r∗)zτ1τ2)− rαr(φ(x)

+ (r − r∗)ξr(x))

2∑
i=1

∫
Ω

aie
−iωτ1τ2τiPi(x, y)(βτ1τ2φ

+ (r − r∗)zτ1τ2)dy = 0,

g2(zτ1τ2 , βτ1τ2 , kτ1τ2 , r) =(β2
τ1τ2 − 1)‖φ‖2YC

+ (r − r∗)2‖zτ1τ2‖2YC
= 0.

Define Gτ1τ2 : X̂C × R3 7→ YC × R by Gτ1τ2 = (g1, g2). By separating the real
and imaginary parts of g1(zτ1τ2,r∗ , βτ1τ2,r∗ , kτ1τ2,r∗ , r∗) = 0 similar to Case 1, it is
easy to see that Gτ1τ2 = 0 at r = r∗ when the following equations are satisfied

zτ1τ2,r∗ = (1− ikτ1τ2,r∗)ξr∗ , kτ1τ2,r∗ =

√
ã2

2 − ã2
1

ã1 + ã2
, (ã2 > ã1)

βτ1τ2,r∗ = 1, ωτ1τ2,r∗τ2 = arccos(− ã1

ã2
) + 2nπ, n = 0, 1, 2, · · · .
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Case 4. τ1 > 0 and τ2 ∈ (0, τ20).
Assume that there exit iωτ2τ1(ωτ2τ1 > 0) and ψτ2τ1 ∈ XC\{0} such that

Arψτ2τ1 − rur

(
2∑
i=1

aie
−iωτ2τ1τi

∫
Ω

Pi(x, y)ψτ2τ1(y)dy

)
− iωτ2τ1ψτ2τ1 = 0.

By the similar analysis as in the Case 3, the following result can be obtained:
ωτ2τ1
r−r∗ is uniformly bounded for r ∈ (r∗, r

∗]. The equivalent equation to (5) is

Gτ2τ1 = (g1(zτ2τ1 , βτ2τ1 , kτ2τ1 , r), g2(zτ2τ1 , βτ2τ1 , kτ2τ1 , r)) = 0, which has the same
form as Gτ1τ2 . Moreover, Gτ2τ1 = 0 at r = r∗ if the following equations are satisfied

zτ2τ1,r∗ = (1− ikτ2τ1,r∗)ξr∗ , kτ2τ1,r∗ =

√
ã2

1 − ã2
2

ã1 + ã2
, (ã1 > ã2)

βτ2τ1,r∗ = 1, ωτ2τ1,r∗τ1 = arccos(− ã2

ã1
) + 2nπ, n = 0, 1, 2, · · · .

Since stability analysis is similar for the above four cases, we will only discuss
Case 3. For other cases, we omit them in this paper.

Theorem 3.1. There exists a continuously differentiable mapping

r 7→ (zτ1τ2,r, βτ1τ2,r, kτ1τ2,r)

from [r∗, r
∗] to XC×R3 such that Gτ1τ2(zτ1τ2,r, βτ1τ2,r, kτ1τ2,r, r) = 0. Furthermore,

the solution of Gτ1τ2 = 0 is unique for r ∈ (r∗, r
∗].

Proof. Define θτ1τ2 = ωτ1τ2τ2. Let T = (T1, T2) : XC × R3 7→ YC × R be defined by
the Fréchet derivative of G at r = r∗ as follows

T1(z, β, k, θ) =(d∆ + r∗)z + [1− r∗αr∗(a1e
−iωτ1τ2,r∗τ1

∫
Ω

P1(x, y)φ(y)dy

+ (a2 − i
√
a2

2 − a2
1)

∫
Ω

P2(x, y)φ(y)dy)−
√
a2

2 − a2
1

a1 + a2
i]φβ − iφk

− rαr(a1i−
√
a2

2 − a2
1)φ(x)θ

∫
Ω

P2(x, y)φ(y)dy,

T2(z, β, k, θ) =2‖φ‖2YC
β.

Then T is one-to-one from XC×R3 to 7→ YC×R. Hence, from the implicit function
theorem, the proof of the existence is completed. Since the proof of the uniqueness
is similar to Theorem 2.4 in [15], we omit it here.

Now, from the analysis above, we can obtain the following conclusion:

Remark 1. For r ∈ (r∗, r
∗], the eigenvalue problem

∆(r, iωτ1τ2 , τ1, τ2)ψτ1τ2 = 0, ωτ1τ2 > 0, τ2 > 0, ψ ∈ XC\{0}

has a solution ψτ1τ2 = βτ1τ2φ+ (r − r∗)zτ1τ2 if and only if

ωτ1τ2 = (r − r∗)kτ1τ2 ,

where zτ1τ2 , βτ1τ2 , kτ1τ2 are defined in Case 3.
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4. Hopf bifurcation.

Theorem 4.1. When τ1 = τ2 = 0, all eigenvalues of Aτ1τ2,r have negative real
parts for any r ∈ (r∗, r

∗], i.e., ur is locally asymptotically stable for τ1 = τ2 = 0.

The proof is essentially same as Proposition 2.9 in [3], hence is omitted.
Next, we introduce the adjoint operator of Aτ1τ2,r and ∆(r, iωτ1τ2 , τ1, τ2), denoted

by A∗τ1τ2,r and ∆∗(r, iωτ1τ2 , τ1, τ2), respectively. ∆∗(r, iωτ1τ2 , τ1, τ2) is defined as
follows

∆∗(r, iωτ1τ2 , τ1, τ2)ψ∗ = Arψ
∗ + iωτ1τ2ψ

∗ − r
2∑
i=1

∫
Ω

aie
iωτ1τ2τiPi(x, y)ur(y)ψ∗(y)dy.

Similar to the analysis of (4), we conclude that the following adjoint equation

Arψ
∗ − r

(
2∑
i=1

aie
iωτ1τ2τi

∫
Ω

Pi(x, y)ur(y)ψ∗(y)dy

)
+ iω∗τ1τ2ψ

∗ = 0 (11)

is solvable and the solution is denoted by ω∗τ1τ2 > 0 and ψ∗ ∈ XC\{0}. It is well-
known that the spectrum set satisfies

σ(∆(r, iωτ1τ2 , τ1, τ2)) = σ(∆∗(r, iωτ1τ2 , τ1, τ2)).

Define the following function

Sn(r) :=

∫
Ω

ψ̄∗(x)ψ(x)dx− ra1τ1

∫
Ω

∫
Ω

P1(x, y)ur(x)ψ̄∗(x)ψ(y)dxdye−iωτ1

− ra2τ2n

∫
Ω

∫
Ω

P2(x, y)ur(x)ψ̄∗(x)ψ(y)dxdye−iωτ2n .

It is easy to see that

Sn(r)→[
(a1 + a2)

∫
Ω

∫
Ω
P2(x, y)φ

2(x)φ(y)dxdy
2∑
i=1

ai

∫
Ω

∫
Ω

Pi(x, y)φ
2(x)φ(y)dxdy

(arccos(−a1

a2
cos (ωτ1τ2,r∗τ1)) + 2nπ)

·
a1 sin(ωτ1τ2,r∗τ1)−

√
a2

2 − a2
1 cos

2(ωτ1τ2,r∗τ1)

a1 − a2
(i
√
a2

2 − a2
1 cos

2(ωτ1τ2,r∗τ1)

+ a1 cos(ωτ1τ2,r∗τ1)) + 1]

∫
Ω

φ2(x)dx, as r → r∗,

which leads to Sn(r) 6= 0 for any r ∈ (r∗, r
∗].

Theorem 4.2. For r ∈ (r∗, r
∗], iωτ1τ2 is a simple eigenvalue of Aτ1τ2n,r, n =

0, 1, 2 · · · .

Proof. Notice that N [Aτ1τ2n,r− iωτ1τ2 ] = Span{eiωτ1τ2 ·ψτ1τ2}. If ξ ∈ D(Aτ1τ2n,r)∩
D([Aτ1τ2n,r]

2), then we can obtain

[Aτ1τ2n,r − iωτ1τ2 ]2ξ = 0,

which leads to

[Aτ1τ2n,r − iωτ1τ2 ]ξ ∈ N [Aτ1τ2n,r − iωτ1τ2 ] = Span{eiωτ1τ2 ·ψτ1τ2}.

Thus, there exists a constant l such that

[Aτ1τ2n,r − iωτ1τ2 ]ξ = leiωτ1τ2 ·ψτ1τ2 ,
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i.e.,

ξ̇(θ) = iωτ1τ2ξ(θ) + leiωτ1τ2θψτ1τ2 θ ∈ [−τ2n, 0]

ξ̇(0) = Arξ(0)− a1rur

∫
Ω

P1(x, y)ξ(−τ1)(y)dy − a2rur

∫
Ω

P2(x, y)ξ(−τ2n)(y)dy.

(12)
The first equation of (12) leads to

ξ(θ) = ξ(0)eiωτ1τ2θ + lθeiωτ1τ2θψτ1τ2

ξ̇(0) = iωτ1τ2ξ(0) + lψτ1τ2 .

Thus, we have

∆(r, iωτ1τ2 , τ1, τ2n)ξ(0)

=l[ψτ1τ2 − rur(a1τ1e
−iωτ1

∫
Ω

P1(x, y)ψ(y)dy + a2τ2ne
−iωτ2n

∫
Ω

P2(x, y)ψ(y)dy)].

Moreover,

0 =〈∆∗(r, iωτ1τ2 , τ1, τ2n)ψ∗τ1τ2 , ξ(0)〉
=〈ψ∗τ1τ2 ,∆(r, iωτ1τ2 , τ1, τ2n)ξ(0)〉

=l[

∫
Ω

ψ̄∗(x)ψ(x)dx− r
∫

Ω

∫
Ω

ψ̄∗(x)ur(x)(a1τ1e
−iωτ1τ2τ1P1(x, y)

+ a2τ2ne
−iωτ1τ2τ2P2(x, y))ψ(y)dxdy]

=lSn(r).

Due to Sn(r) 6= 0, the coefficient l = 0 and this leads to ξ ∈ N [Aτ1τ2n,r − iωτ1τ2 ].
Hence, we have

ξ ∈ N [Aτ1τ2n,r − iωτ1τ2 ]j = N [Aτ1τ2n,r − iωτ1τ2 ], j = 1, 2, 3 · · · , n = 0, 1, 2 · · · ,
and this shows that λ = iωτ1τ2 is a simple eigenvalue of Aτ1τ2n,r for n = 0, 1, 2 · · · .
This completes the proof.

From the implicit function theorem, we can obtain that there is a neighborhood
On×Dn×Hn ⊂ R×C×XC of (τ2n, iω, ψ) and a continuously differential function
(λ, ψ) : On → Dn ×Hn such that for each τ2 ∈ On, the only eigenvalue of Aτ1τ2,r
in Dn is µ(r) and

λ(τ2n) = iωτ1τ2,r, ψ(τ2n) = ψτ1τ2,r,

∆(r, µ, τ1, τ2)ψ = (Ar − µ(τ2))ψ − rur
2∑
i=1

∫
Ω

aie
−µ(τ2)τiPi(x, y)ψ(τ2)(y)dy = 0.

(13)
Then, the following result describes the transversality condition of Hopf bifurca-

tion:

Theorem 4.3. For any r ∈ (r∗, r
∗], Re

dλ(τ2n)

τ2
> 0, n = 0, 1, 2 · · · .

Proof. Differentiating (13) with respect to τ2 at τ2 = τ2n, we obtain that

dλ(τ2)

dτ2
=

a2riω
∫

Ω

∫
Ω
ψ̄∗(x)ur(x)P2(x, y)ψ(τ2)(y)dxdye−iθ∫

Ω
ψ̄∗(x)ψ(x)dx− r

∫
Ω

∫
Ω

(
2∑
i=1

aiτie
−iωτiPi(x, y)

)
ψ̄∗(x)ur(x)ψ(y)dxdy



MULTI-NONLOCAL DELAYED DIFFUSIVE MODEL 1525

=
1

|Sn(r)|2
{a2riωe

−iθ
∫

Ω

ψ∗(x)ψ̄(x)dx

∫
Ω

∫
Ω

P2(x, y)ur(x)ψ̄∗(x)ψ(y)dxdy

− a1a2r
2iωτ1e

i(ωτ1−θ)
∫

Ω

∫
Ω

P1(x, y)ur(x)ψ∗(x)ψ̄(y)dxdy

·
∫

Ω

∫
Ω

P2(x, y)ur(x)ψ̄∗(x)ψ(τ2)(y)dxdy − a2
2r

2τ2iω

∫
Ω

∫
Ω

P2(x, y)ur(x)

· ψ∗(x)ψ̄(y)dxdy

∫
Ω

∫
Ω

P2(x, y)ur(x)ψ̄∗(x)ψ(τ2)(y)dxdy}.

Therefore,

lim
r→r∗

Re(
dλ(τ2)

dτ2
)

=
1

|Sn(r)|2
√
a2

2 − a2
1 cos2(ωτ1τ2τ1) arccos(−a1

a2
cos(ωτ1τ2τ1))r∗αr∗

∫
Ω

φ2(x)dx

·
∫

Ω

∫
Ω

P2(x, y)φ2(x)φ(y)dxdy > 0.

Then we conclude

Theorem 4.4. For r ∈ (r∗, r
∗], the positive steady state solution ur of model (1)

is locally asymptotically stable for τ2 ∈ [0, τ20) and there undergoes Hopf bifurcation
at τ2 = τ20.

5. Stability of bifurcated periodic solutions. This section contains lengthy
and technical discussions about the direction of Hopf bifurcation, stability and
period of the periodic solution bifurcating from the positive steady solution ur.
Following the ideas of Wu [19], we derive the explicit formulae for determining the
properties of Hopf bifurcation at the critical value τ20 for fixed τ1 ∈ (0, τ10) by
employing the normal form method and center manifold theorem. Without loss
of generality, this section assumes that τ1 < τ20. Let U(t) = u(·, t) − ur and
τ2 = τ20 + ν. Then ν = 0 is the Hopf bifurcation value of model (1). Re-scaling the
time by t→ t

τ2
to normalize the delay, model (1) is transformed into the following

form
dU(t)

dt
= τ20d∆U(t) + τ20L0(Ut) + F (Ut, ν), (14)

and L0 : C → C, F : C × R→ C are given respectively by

L0(ψ) =r[1−

(
2∑
i=1

ai

∫
Ω

Pi(x, y)ur(y)dy

)
]ψ(0)− rur[a1

∫
Ω

P1(x, y)ψ(− τ1
τ20

)dy

+ a2

∫
Ω

P2(x, y)ψ(−1)dy],

F (ψ, ν) =νd∆ψ(0) + νL0(ψ)− r(ν + τ20)(a1

∫
Ω

P1(x, y)ψ(− τ1
τ20

)dy

+ a2

∫
Ω

P2(x, y)ψ(−1)dy)ψ(0),

where ψ ∈ C([−1, 0], Y ).
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There exists a function η(θ, x, ψ(θ)) of bounded variation for θ ∈ [−1, 0] such
that

L0ψ =

∫ 0

−1

dη(θ, x, ψ(θ)),

where

η(θ, x, ψ(θ)) =r[1−

(
2∑
i=1

ai

∫
Ω

Pi(x, y)ur(y)dy

)
]δ(θ)ψ(θ)− a1rur

∫
Ω

P1(x, y)

· δ(θ +
τ1
τ20

)ψ(θ)(y)dy − a2rur

∫
Ω

P2(x, y)δ(θ + 1)ψ(θ)(y)dy.

For ψ ∈ C([−1, 0], Y ), define

Aτ2ψ =


dψ(θ)

dθ
θ ∈ [−1, 0),

τ2d∆ψ(0) + τ2
∫ 0

−1
dη(θ, x, ψ(θ)) θ = 0,

and

R(ψ, ν) =

{
0 θ ∈ [−1, 0)

F (ψ, ν) θ = 0

Then system (14) is equivalent to

dUt
dt

= Aτ2Ut +R(Ut, ν), (15)

where Ut(θ) = U(t+ θ) for θ ∈ [−1, 0].
For ψ ∈ C([0, 1], Y ), define

A∗τ2 ψ̃(s) =

−dψ̃(s)

ds
s ∈ (0, 1],

τ2d∆ψ̃(0) + τ2
∫ 0

−1
dη(s, x, ψ̃(−s)) s = 0,

and the formal duality

� ψ̃, ψ �= 〈ψ̃(0), ψ(0)〉 −
∫ 0

−1

∫ θ

ξ=0

〈ψ̃(ξ − θ), dη(θ, y, ψ(ξ))〉dξ.

From the previous definition, we have

� A∗τ2 ψ̃, ψ �

=〈A∗τ2 ψ̃(0), ψ(0)〉 − a1rτ20

∫ 0

−
τ1
τ2

〈A∗τ2 ψ̃(s+
τ1
τ2

), ur(x)

∫
Ω

P1(x, y)ψ(s)(y)dy〉ds

− a2rτ20

∫ 0

−1

〈A∗τ2 ψ̃(s+ 1), ur(x)

∫
Ω

P2(x, y)ψ(s)(y)dy〉ds

=〈τ2d∆ψ̃(0) + τ2r

(
1−

2∑
i=1

∫
Ω

aiPi(x, y)ur(y)dy

)
ψ̃(0)− ra1τ2ur(x)

·
∫

Ω

P1(x, y)ψ(
τ1
τ2

)(y)dy − ra2τ2ur(x)

∫
Ω

P2(x, y)ψ(1)(y)dy, ψ(0)〉

− a1rτ20

∫ 0

−
τ1
τ2

〈− ˙̃
ψ(s+

τ1
τ2

), ur(x)

∫
Ω

P1(x, y)ψ(s)(y)dy〉ds
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− a2rτ2

∫ 0

−1

〈− ˙̃
ψ(s+ 1), ur(x)

∫
Ω

P2(x, y)ψ(s)(y)dy〉ds

=〈ψ̃(0), τ2d∆ψ(0) + τ2r

(
1−

2∑
i=1

∫
Ω

aiPi(x, y)ur(y)dy

)
ψ(0)〉 − ra1τ2〈ψ̃(

τ1
τ2

),

ur(x)

∫
Ω

P1(x, y)ψ(0)(y)dy〉 − ra2τ2〈ψ̃(1), ur(x)

∫
Ω

P2(x, y)ψ(0)(y)dy〉

+ a1rτ20

∫ 0

−
τ1
τ2

〈 ˙̃
ψ(s+

τ1
τ2

), ur(x)

∫
Ω

P1(x, y)ψ(s)(y)dy〉ds+ a2rτ2

∫ 0

−1

〈 ˙̃
ψ(s+ 1),

ur(x)

∫
Ω

P2(x, y)ψ(s)(y)dy〉ds

=〈ψ̃(0), Aτ2ψ(0)〉 − a1rτ2

∫ 0

−
τ1
τ2

〈ψ̃(s+
τ1
τ2

), ur(x)

∫
Ω

P1(x, y)ψ̇(s)(y)dy〉ds

− a2rτ20

∫ 0

−1

〈ψ̃(s+ 1), ur(x)

∫
Ω

P2(x, y)ψ̇(s)(y)dy〉ds

=� ψ̃, Aτ2ψ � .

Since ±iωτ1τ2τ20 are eigenvalues of Aτ2 , they are also eigenvalues of A∗τ2 . Based

on the previous eigenvalue analysis, ψτ1τ2e
iωτ1τ2τ20θ and ψ̄τ1τ2e

−iωτ1τ2τ20θ are the
eigenfunctions of Aτ2 corresponding to iωτ1τ2τ20 and −iωτ1τ2τ20, respectively. Let
Φ = (q(θ), q̄(θ)) = (ψτ1τ2e

iωτ2θ, ψ̄τ1τ2e
−iωτ2θ), θ ∈ [−1, 0], then P = Span{Φ} is the

generalized eigenspace of Aτ2 with respect to eigenvalues set {iωτ1τ2τ20,−iωτ1τ2τ20}.
Similarly P ∗ = Span{q∗(s), q̄∗(s)} is generalized eigenspace of the adjoint operator
A∗τ2 , where q∗(s) = ψ∗τ1τ2e

iωτ2s is the eigenfunction with respect to −iωτ2. Then
the phase space CC can be decomposed as CC = P ⊕Q, where

Q = {ψ ∈ CC :� ψ, φ�= 0, for all ψ ∈ P ∗}.

Denote

Ψ =


1

S̄n(r)
q∗(s)

1

Sn(r)
q̄∗(s)

 ,

then � Ψ,Φ�= I2×2.
Let Ut be the solution of (15) when ν = 0. Define

z(t) =� 1

S̄n(r)
q∗(s), Ut �, W (t, θ) = Ut − Φ(θ) · (z(t), z̄(t))T . (16)

Then we obtain the following center manifold

W (t, θ) = W (z(t), z̄(t), θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · (17)

with the range in Q. From the definition of (16), we have

ż(t) =
d

dt
� 1

S̄n(r)
q∗(s), Ut �

=� 1

S̄n(r)
q∗(s), Aτ2Ut � +� 1

S̄n(r)
q∗(s), R(Ut, 0)�
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=� 1

S̄n(r)
A∗τ2q(s), Ut � +

1

Sn(r)
〈q∗(0), F (Ut, 0)〉

= iωτ20z(t) +
1

Sn(r)
〈q∗(0), F (W (z(t), z̄(t), 0) + 2Re{z(t)q(θ)}, 0)〉.

We rewrite this equation as

ż(t) = iωτ20z(t) + g(z, z̄),

where

g(z, z̄) =
1

Sn(r)
〈q∗(0), F (W (z(t), z̄(t), 0) + 2Re{z(t)q(θ)}, 0)〉

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

(18)

Computing the coefficients of (18), we have

g20 =− 2τ20r

Sn

∫
Ω

∫
Ω

(a1e
−iωτ1P1(x, y) + a2e

−iωτ20P2(x, y))ψ̄∗τ1τ2(x)ψτ1τ2(x)

· ψτ1τ2(y)dxdy,

g11 =− τ20r

Sn
[

∫
Ω

∫
Ω

(a1e
−iωτ1P1(x, y) + a2e

−iωτ20P2(x, y))ψ̄∗τ1τ2(x)ψ̄τ1τ2(x)

· ψτ1τ2(y)dxdy +

∫
Ω

∫
Ω

(a1e
iωτ1P1(x, y) + a2e

iωτ20P2(x, y))ψ̄∗τ1τ2(x)

· ψτ1τ2(x)ψ̄τ1τ2(y)dxdy],

g02 =− 2τ20r

Sn

∫
Ω

∫
Ω

(a1e
iωτ1P1(x, y) + a2e

iωτ20P2(x, y))ψ̄∗τ1τ2(x)ψ̄τ1τ2(x)

· ψ̄τ1τ2(y)dxdy,

g21 =− 2τ20r

Sn

∫
Ω

∫
Ω

(a1e
−iωτ1P1(x, y) + a2e

−iωτ20P2(x, y))ψ̄∗τ1τ2(x)ψτ1τ2(y)

·W11(0)(x)dxdy − τ20r

Sn

∫
Ω

∫
Ω

(a1e
iωτ1P1(x, y) + a2e

iωτ20P2(x, y))ψ̄∗τ1τ2(x)

ψ̄τ1τ2(y)W20(0)(x)dxdy − τ20r

Sn

∫
Ω

∫
Ω

ψ̄∗τ1τ2(x)ψ̄τ1τ2(x)(a1P1(x, y)

W20(−τ1
τ2

)(y) + a2P2(x, y)W20(−1)(y))dxdy − 2τ20r

Sn

∫
Ω

∫
Ω

ψ̄∗τ1τ2(x)ψτ1τ2(x)

· (a1P1(x, y)W11(−τ1
τ2

)(y) + a2P2(x, y)W11(−1)(y))dxdy.

From the expression of g21, we need to compute W20(θ) and W11(θ). From (15) and
(16), we have

Ẇ =


Aτ2W − Φ(θ)〈Ψ(0), F (W (z, z̄) + Φ(z, z̄)T , 0)〉, −1 ≤ θ < 0,

Aτ2W − Φ(θ)〈Ψ(0), F (W (z, z̄) + Φ(z, z̄)T , 0)〉+ F (W (z, z̄) + Φ(z, z̄)T , 0)

θ = 0,

= Aτ2W +H(z, z̄, θ),

(19)
where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · . (20)

Due to the chain rule

Ẇ = Wz ż +Wz̄ ˙̄z,
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we have

(−2iωτ1τ2τ20 +Aτ2)W20(θ) = −H20(θ), Aτ2W11(θ) = −H11(θ). (21)

From (19), we know that for θ ∈ [−1, 0)

H(z, z̄, θ) = −Φ(θ)〈Ψ(0), F (W (z, z̄, θ) + Φ(z, z̄)T , 0)〉 = −gq(θ)− ḡq̄(θ).

Comparing the coefficients with (20), we obtain

H20(θ) = −g20q(θ)− ḡ02q̄(θ), H11(θ) = −g11q(θ)− ḡ11q̄(θ). (22)

From (21) and (22) and the definition of Aτ2 , it follows that

Ẇ20(θ) = 2iωτ1τ2τ20W20(θ) + g20q(θ) + ḡ02q̄(θ). (23)

Hence,

W20(θ) =
ig20

ωτ1τ2τ20
q(θ) +

iḡ02

3ωτ1τ2τ20
q̄(θ) +M1e

2iωτ1τ2τ20θ. (24)

Similarly, we can obtain

W11(θ) = − ig11

ωτ1τ2τ20
q(θ) +

iḡ11

ωτ1τ2τ20
q̄(θ) +M2. (25)

In the following we shall find out M1 and M2. From (19) and (20), we have

H20(0) =− g20q(0)− ḡ02q̄(0)− 2rτ20ψτ1τ2(x)

∫
Ω

(a1e
−iωτ1τ2τ1P1(x, y)

+ a2e
−iωτ1τ2τ20P2(x, y))ψτ1τ2(y)dy,

H11(0) =− g11q(0)− ḡ11q̄(0)− rτ20[ψτ1τ2(x)(a1

∫
Ω

P1(x, y)ψ̄τ1τ2(y)eiωτ1τ2τ1dy

+ a2

∫
Ω

P2(x, y)ψ̄τ1τ2(y)eiωτ1τ2τ20dy) + ψ̄τ1τ2(x)(a1

∫
Ω

P1(x, y)ψτ1τ2(y)

· e−iωτ1τ2τ1dy + a2

∫
Ω

P2(x, y)ψτ1τ2(y)e−iωτ1τ2τ20dy)].

Thus, we can compute M1 and M2 satisfying

M1 =2r∆−1(r, 2iωτ1τ2 , τ1, τ2)ψτ1τ2(x)

∫
Ω

(a1e
−iωτ1τ2τ1P1(x, y)

+ a2e
−iωτ1τ2τ20P2(x, y)) · ψτ1τ2(y)dy,

M2 =r∆−1(r, 0, τ1, τ2)[ψτ1τ2(x)

∫
Ω

(a1e
iωτ1τ2τ1P1(x, y)

+ a2e
iωτ1τ2τ20P2(x, y))ψ̄τ1τ2(y)dy

+ ψ̄τ1τ2(x)

∫
Ω

(a1P1(x, y)e−iωτ1τ2τ1 + a2P2(x, y)e−iωτ1τ2τ20)ψτ1τ2(y)dy]



1530 XUE ZHANG, SHUNI SONG AND JIANHONG WU

Now, we can determine W20(θ) and W11(θ) from (24) and (25). Furthermore, g21

can be expressed. Hence, we can compute the following values

c1(0) =
i

2ωτ1τ2τ20
(g20g11 − 2|g11|2 −

|g02|2

3
) +

g21

2
,

µ2 = − Re{c1(0)}
Re{λ′(τ20)}

,

β2 = 2Re{c1(0)},

T2 = −Im{c1(0)}+ µ2Im{λ′(τ20)}
ωτ1τ2τ20

.

From the conclusion of [19], [8], we have the following results.

Theorem 5.1. µ2 determines the direction of the Hopf bifurcation: if µ2 > 0 (µ2 <
0), the Hopf bifurcation is supercritical (subcritical); β2 determines the stability of
the bifurcating periodic solution: the bifurcating periodic solution is stable (unstable)
if β2 < 0 (β2 > 0) and T2 determines the period of the bifurcating periodic solution:
the period increases (decrease) if T2 > 0 (T2 < 0).

6. Numerical simulation. In this section, we present some numerical simulations
to demonstrate our analytical results.

We choose the parameters d = 1, r = 2.5 and the initial condition u(x, t) =
0.9 sin2 x for all −τ < t ≤ 0. And a1 = 0.6, a2 = 0.4 satisfying a1 + a2 = 1.
Without loss the generality, let a1 = α and then a2 = 1− α. Kernel function takes

the form Pi(x, y) = 1√
4παi

e
− (x−y)2

4αi , i = 1, 2. For the simplicity, α1 = α2 = 1. For

τ2 = 0, we can get τ10 = 3.4294. Now, let the delay τ1 = 1 ∈ [0, τ10) be fixed.
Based on theoretical analysis above, we can figure out ωτ1τ2 = 1.4933, λ′(τ20) =
0.1810− 0.0225i, c1(0) = −0.0941− 0.1298i, µ2 = 0.52, β2 = −0.1882, T2 = 0.0838
and delay critical value τ20 = 1.1299. Then we know that the positive steady state
solution ur is locally asymptotically stable when τ2 < τ20. This is numerically
illustrated in left panel of Fig. 1. According to Theorem 5.1, model (1) undergoes
a supercritical Hopf bifurcation at the positive state solution ur(x) and bifurcating
periodic solution exists for τ2 slightly larger than τ20 and the bifurcated periodic
solution is stable, as depicted in right panel of Fig. 1. Moreover, Fig. 2 plots a
critical curve τ2 = f(α) w.r.t. two parameters τ2 and α for the fixed delay τ1 = 1.
We shall explore the significance of the change of monotonicity of this curve in the
next section.

7. Discussion. Here we interpreted the classical logistic model with two non-local
delayed terms in the framework of avian influenza spread between wild birds and
the environment—the environment is contaminated by infected birds and the con-
taminated environment then pass on the pathogen to other susceptible birds. Due
to the random movement of the infected birds and pathogens, the disease spreads
in the geographical domain and pathogen loads in any given spatial location are
not just the consequence of local contamination. Here we consider the case where
resources are available for cleaning the environment. These resources can be used
to launch either rapid or slow environment cleaning interventions, but the resources
are limited so optimal allocations will be needed. Our study shows that disease
outbreak in the form of a nontrivial equilibrium is possible assuming the intrin-
sic reproduction number is sufficiently large, and nonlinear oscillations around this
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Figure 1. Solutions of model (1) approach to a positive steady
state with τ2 = 0.6 and a periodically oscillatory orbit with τ2 =
1.2, respectively.
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Figure 2. The critical value of time delay τ2 with respect to vary-
ing α ∈ (0, 0.8).

nontrivial equilibrium can take place. Our analysis and simulations show that to
prevent this oscillation, the resources should be distributed for both rapid and slow
responses, focusing on either rapid or slow response will require the slow response
to be also very rapid. For example, in Figure 3, if we normalized the delay so that
the rapid response takes place with τ1 = 1, then the critical value for nonlinear
oscillation (τ20) to take place can be large, and close to 5 when α is close to 0.5.

In recent years, reaction-diffusion equations with time delay have been investi-
gated extensively. Su et al.[15] studied a diffusive logistic equation with mixed de-
layed and instantaneous density dependence, with some interesting results on global
continuation of Hopf bifurcation branches. Hu and Yuan[10] proposed a coupled
system of reaction-diffusion system with distributed delay and studied stability of
the positive steady state solution and the occurrence of Hopf bifurcation. The Hopf
bifurcation was also considered in Ma [12] for a coupled reaction-diffusion systems
involving three interacting species. The earlier work introducing nonlocal terms into
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the diffusive Fisher equation included the paper of Britton[2]. Guo[7] investigated
the existence, stability and multiplicity of spatially nonhomogeneous steady state
solutions and periodic solutions for reaction-diffusion models with nonlocal delay
effect by using the Lyapunov-Schmidt reduction. Deng and Wu[5] established a
comparison principle and constructed monotone sequences to show the global sta-
bility for a nonlocal reaction-diffusion population model. Zuo and Song[22] studied
the effect of three weight functions on the dynamics of a general reaction-diffusion
equation with nonlocal delay and showed that the average delay for the case of
strong kernel may induce the stability switches. Chen and Yu [4] considered a non-
local delayed reaction-diffusion equation with general form of nonlocal delay. More
discussions about the biological backgrounds of non-local reaction diffusion equa-
tions with delay and further results on the existence of nontrivial equilibria and
Hopf bifurcations can be found in [21][20][18] and references therein. Here we link
a logistic model with two non-local delay terms to the understanding of optimal
strategies to prevent nonlinear oscillations in disease spread involving environmen-
t contamination and resources allocation, and we believe this line of research in
modeling and analysis may generate interest for further expanding the models to
reflect more biological realities and disease spread such as temporal heterogeneity
and multiple routes of transmission.

Acknowledgments. This work was supported by the Fundamental Research Fund-
s for the Central University of China (N140504005) and the Natural Sciences and
Engineering Research Council of Canada (105588-2011-RGPIN).

REFERENCES

[1] L. Bourouiba, S. Gourley, R. Liu, J. Takekawa and J. Wu, Avian Influenza Spread and Trans-
mission Dynamics. In Analyzing and Modeling Spatial and Temporal Dynamics of Infectious

Diseases, John Wiley and Sons Inc., 2014.

[2] N. Britton, Reaction-diffusion Equations and Their Applications to Biology, Academic Press,
London, 1986.

[3] S. Chen and J. Shi, Stability and Hopf bifurcation in a diffusive logistic population model
with nonlocal delay effect, J. Differ. Equations, 253 (2012), 3440–3470.

[4] S. Chen and J. Yu, Stability and bifurcations in a nonlocal delayed reaction-diffusion popu-

lation model, J. Differ. Equaitons, 260 (2016), 218–240.
[5] K. Deng and Y. Wu, Global stability for a nonlocal reaction-diffusion population model,

Nonlinear Anal. Real World Appl., 25 (2015), 127–136.

[6] S. Gourley, R. Lui and J. Wu, Spatiotemporal distributions of migratory birds: Patchy models
with delay, SIAM Journal on Applied Dynamical Systems, 9 (2010), 589–610.

[7] S. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J.

Differ. Equations, 259 (2015), 1409–1448.
[8] B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation,

Cambridge University Press, Cambridge, 1981.

[9] Y. Hsieh, J. Wu, J. Fang, Y. Yang and J. Lou, Quantification of bird-to-bird and bird-to-
human infections during 2013 novel H7N9 avian influenza outbreak in China, PLoS One, 9
(2014), e111834.

[10] R. Hu and Y. Yuan, Spatially nonhomogeneous equilibrium in a reaction-diffusion system
with distributed delay, J. Differ. Equations, 250 (2011), 2779–2806.

[11] R. Liu, V. Duvvuri and J. Wu, Spread patternformation of H5N1-avian influenza and its
implications for control strategies, Math. Model. Nat. Phenom., 3 (2008), 161–179.

[12] Z. P. Ma, Stability and Hopf bifurcation for a three-component reaction-diffeusion population

model with delay effect, Appl. Math. Model., 37 (2013), 5984–6007.
[13] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,

Springer-Verlag, New York, 1983.

http://www.ams.org/mathscinet-getitem?mr=MR866143&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2981261&return=pdf
http://dx.doi.org/10.1016/j.jde.2012.08.031
http://dx.doi.org/10.1016/j.jde.2012.08.031
http://www.ams.org/mathscinet-getitem?mr=MR3411671&return=pdf
http://dx.doi.org/10.1016/j.jde.2015.08.038
http://dx.doi.org/10.1016/j.jde.2015.08.038
http://www.ams.org/mathscinet-getitem?mr=MR3351016&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2015.03.006
http://www.ams.org/mathscinet-getitem?mr=MR2670011&return=pdf
http://dx.doi.org/10.1137/090767261
http://dx.doi.org/10.1137/090767261
http://www.ams.org/mathscinet-getitem?mr=MR3345856&return=pdf
http://dx.doi.org/10.1016/j.jde.2015.03.006
http://www.ams.org/mathscinet-getitem?mr=MR603442&return=pdf
http://dx.doi.org/10.1371/journal.pone.0111834
http://dx.doi.org/10.1371/journal.pone.0111834
http://www.ams.org/mathscinet-getitem?mr=MR2771266&return=pdf
http://dx.doi.org/10.1016/j.jde.2011.01.011
http://dx.doi.org/10.1016/j.jde.2011.01.011
http://www.ams.org/mathscinet-getitem?mr=MR2460260&return=pdf
http://dx.doi.org/10.1051/mmnp:2008048
http://dx.doi.org/10.1051/mmnp:2008048
http://www.ams.org/mathscinet-getitem?mr=MR3028445&return=pdf
http://dx.doi.org/10.1016/j.apm.2012.12.012
http://dx.doi.org/10.1016/j.apm.2012.12.012
http://www.ams.org/mathscinet-getitem?mr=MR710486&return=pdf
http://dx.doi.org/10.1007/978-1-4612-5561-1


MULTI-NONLOCAL DELAYED DIFFUSIVE MODEL 1533

[14] J. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure.
I travelling wavefronts on unbounded domains, Proceedings of the Royal Society: London A,

457 (2001), 1841–1853.

[15] Y. Su, J. Wei and J. Shi, Hopf bifurcation in a diffusive logistic equation with mixed delayed
and instantaneous density dependence, J. Dyn. Differ. Equ., 24 (2012), 897–925.

[16] X. Wang and J. Wu, Periodic systems of delay differential equations and avian influenza
dynamics, J. Math. Sci., 201 (2014), 693–704.

[17] Z. Wang, J. Wu and R. Liu, Traveling waves of the spread of avian influenza, Proc. Amer.

Math. Soc., 140 (2012), 3931–3946.
[18] Z. C. Wang, W. T. Li and J. Wu, Entire solutions in delayed lattice differential equations

with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392–2420.

[19] J. Wu, Theory and Applications of Partial Functional Differential Equations, Spinger-Verlag,
New York, 1996.

[20] T. Yi and X. Zou, Global dynamics of a delay differential equaiton with spatial non-locality

in an unbounded domain, J. Differ. Equations, 251 (2011), 2598–2611.
[21] G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling

waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl.,

95 (2011), 627–671.
[22] W. Zuo and Y. Song, Stability and bifurcation analysis of a reaction-diffusion equaiton with

spatio-temporal delay, J. Math. Anal. Appl., 430 (2015), 243–261.

Received August 29, 2016; Accepted December 30, 2016.

E-mail address: zhangxue@mail.neu.edu.cn

E-mail address: songsn@126.com

E-mail address: wujh@mathstat.yorku.ca

http://www.ams.org/mathscinet-getitem?mr=MR1852431&return=pdf
http://dx.doi.org/10.1098/rspa.2001.0789
http://dx.doi.org/10.1098/rspa.2001.0789
http://www.ams.org/mathscinet-getitem?mr=MR3000609&return=pdf
http://dx.doi.org/10.1007/s10884-012-9268-z
http://dx.doi.org/10.1007/s10884-012-9268-z
http://www.ams.org/mathscinet-getitem?mr=MR3087048&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2944733&return=pdf
http://dx.doi.org/10.1090/S0002-9939-2012-11246-8
http://www.ams.org/mathscinet-getitem?mr=MR2481299&return=pdf
http://dx.doi.org/10.1137/080727312
http://dx.doi.org/10.1137/080727312
http://www.ams.org/mathscinet-getitem?mr=MR1415838&return=pdf
http://dx.doi.org/10.1007/978-1-4612-4050-1
http://www.ams.org/mathscinet-getitem?mr=MR2825342&return=pdf
http://dx.doi.org/10.1016/j.jde.2011.04.027
http://dx.doi.org/10.1016/j.jde.2011.04.027
http://www.ams.org/mathscinet-getitem?mr=MR2802895&return=pdf
http://dx.doi.org/10.1016/j.matpur.2010.11.005
http://dx.doi.org/10.1016/j.matpur.2010.11.005
http://www.ams.org/mathscinet-getitem?mr=MR3347212&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2015.04.089
http://dx.doi.org/10.1016/j.jmaa.2015.04.089
mailto:zhangxue@mail.neu.edu.cn
mailto:songsn@126.com
mailto:wujh@mathstat.yorku.ca

	1. Introduction
	2. Existence of steady state solution
	3. Eigenvalue analysis
	4. Hopf bifurcation
	5. Stability of bifurcated periodic solutions
	6. Numerical simulation
	7. Discussion
	Acknowledgments
	REFERENCES

