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Abstract. A facilitation-competition system of two species is considered,

where one species has a facilitation effect on the other but there is spatial
competition between them. Our aim is to show mechanism by which the fa-

cilitation promotes coexistence of the species. A lattice gas model describing

the facilitation-competition system is analyzed, in which nonexistence of pe-
riodic solution is shown and previous results are extended. Global dynamics

of the model demonstrate essential features of the facilitation-competition sys-

tem. When a species cannot survive alone, a strong facilitation from the other
would lead to its survival. However, if the facilitation is extremely strong, both

species go extinct. When a species can survive alone and its mortality rate is
not larger than that of the other species, it would drive the other one into ex-

tinction. When a species can survive alone and its mortality rate is larger than

that of the other species, it would be driven into extinction if the facilitation
from the other is weak, while it would coexist with the other if the facilitation

is strong. Moreover, an extremely strong facilitation from the other would

lead to extinction of species. Bifurcation diagram of the system exhibits that
interaction outcome between the species can transition between competition,

amensalism, neutralism and parasitism in a smooth fashion. A novel result of

this paper is the rigorous and thorough analysis, which displays transparency
of dynamics in the system. Numerical simulations validate the results.

1. Introduction. Natural symbiosis of species is usually a complex combination
of positive and negative interactions [6, 7]. For example, one species may receive
merit from the other, while there exists competition between them because of s-
patial or nutrition limitations. The so-called facilitation-competition relationship
widely exists in plant-plant, plant-animal and animal-animal interactions in natural
environments [4, 5, 9].

Kawai et al. [3] studied two sessile filter-feeders of similar body sizes, the goose
barnacle Capitulum mitella and mussel Septifer virgatus, which live in patches on
a moderately wave-exposed rocky shore of south Japan in the western Pacific. The
presence of C. mitella decreases the washing-away rate of S. virgatus, while S.
virgatus gives no merit to C. mitella. Since both species live in the same area,
there exists spatial competition between them. In order to understand the pattern
of coexistence of the species, Yokoi et al. [12] established a lattice gas model to
describe the facilitation-competition system.

In a lattice gas system of species X (S. virgatus) and Y (C. mitella), individuals
of the species live on a square lattice. A site is labeled by X (or Y ) if it is occupied
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by an individual of species X (or Y ). When it is empty, it is labeled by O. On
the lattice, any pair of sites interact randomly and independently. If sites X and O
interact, then the site O will become X in a birth rate BX . If a site is occupied by
X, then it will become O in a death rate mX . Then reactions (contact process) in
species X can be depicted by

X +O → 2X with rate BX

X → O with rate mX
(1)

where parameter BX represents the intrinsic growth rate of species X and mX

denotes its mortality rate.
Similarly, the reactions in species Y can be depicted by

Y +O → 2Y with rate BY

Y → O with rate mY
(2)

where parameter BY represents the intrinsic growth rate of species Y and mY

denotes its mortality rate. All parameters in (1)-(2) are positive.
The interaction outcome between species X and Y is determined by positive (+),

neutral (0), or negative (−) effects of one species on the other [1, 8, 11]. Assume that
species X can approach a density of x1 in the absence of Y , while in the presence
of Y , species X approaches a density of x2. Similarly, assume that species Y can
approach a density of y1 in the absence of X, while in the presence of X, species Y
approaches a density of y2. Here, the density of a species represents the number of
the species in a certain area. When x2 − x1 > 0 and y2 − y1 < 0, the interaction
outcome between species X and Y is parasitism (+ −). When x2 − x1 = 0 and
y2−y1 = 0, the interaction outcome becomes neutralism (0 0). When x2−x1 = 0
and y2−y1 < 0, the interaction outcome is amensalism (0 −). When x2−x1 < 0
and y2 − y1 = 0, the interaction outcome becomes the other amensalism (− 0).
When x2−x1 < 0 and y2−y1 < 0, the interaction outcome is competition (− −).

Based on the reactions in (1)-(2), Yokoi et al. [12] established a facilitation-
competition model. Local stability analysis and numerical simulations of the model
exhibit novel transition of interaction outcomes between the species. In order to
show global stability in the system and display all possible transitions of outcomes,
it is necessary to give rigorous and thorough analysis and transparency of the results.

In this paper, we analyze global dynamics of the model established by Yokoi et
al. [12], in which our results consolidate and extend those by Yokoi et al. [12].
Moreover, dynamical behavior of the facilitation-competition system demonstrates
that interaction outcomes between the species can transition between competition
(− −), amensalism (0 −), amensalism (− 0), neutralism (0 0) and parasitism (+ −)
in a smooth fashion. Numerical simulations validate our results.

2. Model. When the lattice size is sufficiently large, the reactions of (1)-(2) are
usually described by differential equations, which are called the mean-field theory
of lattice model [10]:

dx

dt
= BXx(1− x− y)−mXx

dy

dt
= BY y(1− x− y)−mY y

(3)

where parameter mX = m̄X/(1 + cy) denotes the mortality rate of species X in
the presence of Y . Parameter m̄X represents the mortality rate of species X in
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the absence of Y , and c measures the degree of facilitation. The term 1 − x − y
represents the density of empty sites. For simplicity, system (3) is rewritten as

dx

dt
= r1x(1− x− y − d1

1 + cy
)

dy

dt
= r2y(1− d2 − x− y)

(4)

where

r1 = BX , d1 =
m̄X

BX
, r2 = BY , d2 =

mY

BY
. (5)

We consider solutions (x(t), y(t)) of (4) with initial values x(0) > 0, y(0) > 0. Then
we have x(t) > 0, y(t) > 0 as t > 0.

The following result demonstrates boundedness of solutions and non-existence of
periodic solutions of (4).

Theorem 2.1. (i) Solutions of (4) are bounded.
(ii) System (4) admits no periodic solution.

Proof. (i) When x + y ≥ 1, we have dx/dt < 0 and dy/dt < 0, which implies all
solutions of (4) will satisfy x(t) + y(t) < 1 as t is sufficiently large. Thus solutions
of (4) are bounded.

(ii) Let H(x, y) = 1/(xy), which is called the Dulac function. Let φ(x, y) and
ψ(x, y) be the righthand sides of equations in (4), respectively. Then we have

∂(Hφ)

∂x
+
∂(Hψ)

∂y
= −r1

y
− r2
x
< 0

for all x > 0, y > 0. It follows from Bendixson-Dulac Theorem [2] that system (4)
admits no periodic solution.

It follows from Theorem 2.1 that all solutions of (4) converge to equilibria. When
d2 ≥ 1, we have dy/dt < 0, which implies limt→∞ y(t) = 0. Thus limt→∞ x(t) =
1 − d1 as 1 − d1 > 0, and limt→∞ x(t) = 0 as 1 − d1 ≤ 0. Therefore, we assume
d2 < 1 in the following analysis.

3. Dynamics. In this section, we consider dynamics of system (4), which are de-
termined by the relative positions of isoclines. Denote the isoclines of (4) by

L1 : 1− x− y − d1
1 + cy

= 0,

L2 : 1− d2 − x− y = 0.

Then L1 is a hyperbola with asymptotes 1− x− y = 0 and y = −1/c. In the first
quadrant, L1 can be rewritten as

x = f(y) = 1− y − d1
1 + cy

.

Thus we have
d2f(y)

dy2
= − 2c2d1

(1 + cy)3
< 0

which implies that L1 is convex rightward in the first quadrant.
On the other hand, L2 is a line, which is parallel to the asymptote 1−x− y = 0.

Thus, there is at most one interior equilibrium of system (4) as shown in Figs. 1-2.
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The Jacobian matrix A of (4) is

A =

(
a11 a12
a21 a22

)
(6)

where

a11 = r1[1− 2x− y − d1/(1 + cy)], a12 = r1x[−1 + cd1/(1 + cy)2],

a21 = −r2y, a22 = r2(1− d2 − x− 2y).

The equilibria of (4) are considered as follows, while their local stability is deter-
mined by eigenvalues of Jacobian matrix A of (4) at the equilibria.

(a) The trivial equilibrium O(0, 0) always exists and has eigenvalues r1(1 −
d1), r2(1− d2).

(b) The semi-trivial equilibrium P1(1− d1, 0) exists if d1 < 1, while P2(0, 1− d2)
exists since it is assumed that d2 < 1. The eigenvalues of P1 are −r1(1−d1), r2(d1−
d2). The eigenvalues of P2 are

λ
(1)
2 = r1[d2 −

d1
1 + c(1− d2)

], λ
(2)
2 = −r2(1− d2).

(c) There is at most one interior equilibria P ∗(x∗, y∗) with

x∗ = 1− d2 −
d1 − d2
cd2

, y∗ =
d1 − d2
cd2

(7)

which implies that P ∗ exists if and only if d1 > d2 and c > c∗ with

c∗ =
d1 − d2

(1− d2)d2
. (8)

The following result exhibits stability of P ∗.

Theorem 3.1. Assume d1 > d2 and c > c∗. The interior equilibria P ∗ is globally
asymptotically stable.

Proof. A direct computation shows that the Jacobian matrix A of (4) at P ∗ is

A∗ =

(
−r1x∗ r1x

∗[−1 + cd1/(1 + cy∗)2]
−r2y∗ −r2y∗

)
. (9)

Thus the eigenvalues λ1 and λ2 of A∗ satisfies

λ1 + λ2 = −r1x∗ − r2y∗ < 0, λ1λ2 = r1r2x
∗y∗

cd1
(1 + cy∗)2

> 0

which implies that the real parts of λ1 and λ2 are negative and P ∗ is asymptotically
stable. It follows from Theorem 2.1 that P ∗ is globally asymptotically stable.

We consider dynamics of system (4) in two cases: d1 ≥ 1 and d1 < 1, which rep-
resents that species X cannot/can survive in the absence of species Y , respectively.

Case 1. d1 ≥ 1
When d1 > 1, equilibrium O is a saddle point. When d1 = 1, O has a zero

eigenvalue. Since the isocline L1 is convex rightward, O is unstable in the first
quadrant by phase-portrait analysis, as shown in Fig. 1a.

Since d1 ≥ 1, equilibrium P1 does not exist. When c < c∗, equilibrium P2 is a
stable node. When c = c∗, P2 has a zero eigenvalue and isoclines L1 and L2 intersect
at P2. Since L1 is below L2 as shown in Fig. 1b, P2 is asymptotically stable in the
first quadrant by phase-portrait analysis. It follows from c ≤ c∗ that system (4)
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has no interior equilibrium. Therefore, P2 is globally asymptotically stable when
c ≤ c∗.

When c > c∗, equilibrium P2 is a saddle point and system (4) has a unique
interior equilibrium P ∗, which is globally asymptotically stable by Theorem 3.1.

Case 2. d1 < 1
Since d1 < 1, the equilibrium O is an unstable node and P1 exists. When d1 ≤ d2,

P1 is asymptotically stable and P2 is a saddle point. From d1 ≤ d2, we have y∗ ≤ 0
and system (4) has no interior equilibrium. Thus P1 is globally asymptotically
stable.

When d1 > d2, equilibrium P1 is a saddle point. If c ≤ c∗, system (4) has
no interior equilibrium and P2 is globally asymptotically stable. If c > c∗, both
equilibria P1 and P2 are saddle points. System (4) has a unique interior equilibrium
P ∗. It follows from Theorem 3.1 that P ∗ is globally asymptotically stable.

Therefore, we conclude the following result.

Theorem 3.2. Assume d2 < 1.

(i) Let d1 ≥ 1. If c ≤ c∗, then equilibrium P2 is globally asymptotically stable, as
shown in Figs. 1a-b. If c > c∗, then equilibrium P ∗ is globally asymptotically
stable, as shown in Figs. 1c-d.

(ii) Let d1 < 1. If d1 ≤ d2, then equilibrium P1 is globally asymptotically stable,
as shown in Figs. 2a-b. If d1 > d2 and c ≤ c∗, then equilibrium P2 is globally
asymptotically stable, as shown in Fig. 2c. If d1 > d2 and c > c∗, then
equilibrium P ∗ is globally asymptotically stable, as shown in Fig. 2d.

4. Transition of outcomes. In this section, we consider transition of interaction
outcomes between the species when parameters vary. We focus on parameters c and
d1, which denote the the facilitation from species Y to X and the mortality of X
respectively.

4.1. Transition with parameter c. First, we consider the case of d1 ≥ 1, which
implies that species X cannot survive in the absence of Y . As shown in Theorem
3.2(i) and Figs. 1a-b, when the facilitation from Y is weak (c ≤ c∗), species X still
goes extinct while Y approaches its carrying capacity (1− d2), in which interaction
outcomes between them are neutralism (0 0). The biological reason is that the
facilitation from Y is so weak that it cannot lead to the survival of X with high
mortality.

However, as shown in Theorem 3.2(ii) and Figs. 1c-d, when the facilitation from
Y is strong (c > c∗), species X can persist while X and Y coexist at a steady
state (x∗, y∗) with y∗ < 1− d2. Thus, the interaction outcome becomes parasitism
(+ −). The biological reason is that the strong facilitation from Y largely decreases
the mortality −d1/(1+cy) of X and leads to persistence of X, while the persistence
of X forms spatial competition with Y but provides no merit to Y . Since species
X cannot persist alone, it is the facilitation from Y that leads to its survival, where
species X can be regarded as a parasite of Y .

Moreover, when the facilitation is extremely strong (c→∞), we have y∗ → 0 by
(7) and then species Y goes extinct, which implies the extinction of species X since
X cannot persist alone. Thus, interaction outcome between the species is changed
to amensalism (0 −). The biological reason is that an extremely strong facilitation
from species Y results in rapid growth of X, which would occupy most sites on the
lattice and result in the extinction of Y and finally results in the extinction of X
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in return. Since species Y can persist alone, it is the extremely strong facilitation
from Y that leads to the extinction of both species.

Second, we consider the case of d1 < 1, which implies that species X can survive
alone. As shown in Theorem 3.2(ii) and Fig. 2a, when d1 < d2, species Y goes
extinct whileX approaches its carrying capacity. Then interaction outcome between
the species is amensalism (0 −). The biological reason is that the low mortality of
X leads to an advantage of X over Y in spatial competition. Since species Y can
survive alone, it is the competition from X that results in its extinction.

As shown in Theorem 3.2(ii) and Fig. 2b, even when d1 = d2, species Y still goes
extinct and X approaches its carrying capacity. The reason is as follows. Suppose
c = 0, which implies that there is no facilitation from species Y . Then system (4)
becomes

dx

dt
= r1x(1− d1 − x− y)

dy

dt
= r2y(1− d1 − x− y)

(10)

which has a line segment of stable interior equilibria and all positive solutions of
(4) converge to the equilibria. Thus, when there is no facilitation from Y , the two
species coexist. Therefore, the biological reason under the extinction of Y is the
facilitation from Y , which decreases the mortality of X and leads to the advantage
of X over Y in spatial competition. Since species Y and X can coexist without
facilitation, it is the facilitation from species Y that results in the extinction of Y
itself.

When d1 > d2, Theorem 3.2(ii) and Fig. 2c exhibits that if the facilitation from
Y is weak (c ≤ c∗), species X goes extinct and Y approaches its carrying capacity,
while interaction outcome between the species becomes amensalism (− 0). The
biological reason is that the low mortality of Y leads to an advantage of Y over X
in spatial competition under the weak facilitation from Y to X. Since species X
can survive alone, it is the competition from Y that results in its extinction.

Moreover, if the facilitation from Y is strong (c > c∗), the two species coexist at a
steady state (x∗, y∗) with y∗ < 1− d2. The biological reason under the coexistence
is that although the low mortality of Y leads to an advantage of Y over X, the
strong facilitation from Y to X decreases the mortality of X, which results in a
balance between its positive and negative effects on X. The transition of interaction
outcomes is as follows. From x∗ = 1− d1 we obtain

c∗∗ =
1

d2
.

Then if c < c∗∗, interaction outcome between the species is changed to competition
(− −). The biological reason is that the positive effect from Y to X is larger than
the negative effect. If c = c∗∗, interaction outcome between the species is changed to
amensalism (0 −). If c > c∗∗, interaction outcome between the species is parasitism
(+ −). The biological reason is that the positive effect from Y to X is equal to
or less than the negative effect. Since species X goes extinct in the absence of
facilitation, it is the the strong facilitation from Y that results in its persistence.

Furthermore, when the facilitation is extremely strong (c→∞), we have y∗ → 0
by (7), which implies that species Y goes extinct and X approaches its carrying
capacity. Then interaction outcome between the species becomes amensalism (0 −).
The biological reason is that an extremely strong facilitation from species Y would
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result in rapid growth of species X, which leads to extinction of Y because there
is spatial competition between them. Since species Y can persist alone, it is the
extremely strong facilitation from Y that leads to the extinction of itself.

4.2. Transition with parameter d1. Since parameter d1 represents the effect of
environmental conditions on the mortality rate of species X, it plays an important
role in transitions of interaction outcomes from the viewpoint of biology. For sim-
plicity, we assume that c and d2 are fixed. If c and d2 vary with environmental
conditions, a similar discussion can be given.

Denote

d∗1 = d2[1 + c(1− d2)].

Then c < c∗ can be rewritten as d1 > d∗1.
First, we consider the case of d1 ≥ 1, which implies that species X cannot persist

in the absence of Y . As shown in Theorem 3.2(i) and Fig. 3a, when d1 is large
(d1 ≥ max{1, d∗1}), species X goes extinct and Y approaches its carrying capacity,
while interaction outcome between the species is neutralism (0 0). The biological
reason is that the mortality of X is so large that the facilitation from species Y
cannot drive X into survival.

However, as shown in Theorem 3.2(i) and Fig. 3b, when d1 is intermediate
(1 ≤ d1 < d∗1), species X and Y coexist at a steady state (x∗, y∗) and the interaction
outcome is parasitism (+ −). The biological reason is that the facilitation from
species Y decreases the mortality of X, which leads to the survival of X. Since
species X cannot survive alone, an intermediate mortality can be decreased by the
facilitation of species Y , which can lead to the survival of X.

Second, we consider the case of d1 < 1, which means that species X can survive
alone. When d1 > d2 and d1 ≥ d∗1, Theorem 3.2(ii) exhibits that species X goes
extinct and interaction outcome between the species is amensalism (− 0). The
biological reason is that the low mortality of Y leads to an advantage of Y over X
in spatial competition under the large mortality of X. Since species X can survive
alone, it is the large mortality that results in its extinction in the competition with
Y .

However, if d2 < d1 < d∗1, Theorem 3.2(ii) and Fig. 3c show that the species
coexist at a steady state (x∗, y∗) and the interaction outcome between the species
is competition (− −). The biological reason under the coexistence is that although
the low mortality of Y leads to an advantage of Y over X, the strong facilitation
from Y to X decreases the mortality of X, which results in a balance between its
positive and negative effects on X. Since species X with large mortality (d1 ≥ d∗1)
goes extinct in the competition with species Y , it is the intermediate mortality that
makes the facilitation from Y to drive X into persistence.

As shown in Theorem 3.2(ii) and Fig. 3d, when d1 ≤ d2, species Y would
be driven into extinction by X and the interaction outcome between the species
is amensalism (0 −). The biological reason is that the low mortality of X and
facilitation from Y leads to an advantage of X over Y in spatial competition. Since
species Y can survive alone, it is the low mortality of X that results in the extinction
of Y in the spatial competition with X.

Remark 1. Transition of interaction outcomes can be shown by the bifurcation
diagram in Fig. 4. Here, we fix r1 = r2 = 1, d2 = 0.2. Then

c∗ =
25

4
(d1 − 0.2), c∗∗ = 5.
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The lines d1 = 0.2, d1 = 1.0, c = c∗ and c = c∗∗ divide the first quadrant of d1 − c
plane into 6 regions. In the region d1 ≤ 0.2, the interaction outcome remains
amensalism (0 −). In the regions 0.2 < d1 < 1.0, the interaction outcome changes
from amensalism (− 0), to competition (− −), to the other amensalism (− 0) and
to parasitism (+ −) in a smooth fashion when the facilitation c increases. Even on
the line d2 = 1, the interaction outcome changes from neutralism (0 0) to parasitism
(+ −) as c increases. Similarly, in the regions d1 > 1.0, the interaction outcome
changes from neutralism (0 0) to parasitism (+ −) in a smooth fashion when the
facilitation c increases.

5. Discussion. In this paper, we consider a lattice gas model describing facili-
tation-competition systems. Global dynamics of the model demonstrate mecha-
nisms by which facilitation can lead to persistence/extinction of species.

The facilitation in our discussion from species Y (C. mitella) to X (S. virgatus)
is observed in real situations since C. mitella decreases the washing-away rate of
S. virgatus [12]. Thus the presence of species Y is crucial for the persistence of
X when the environmental condition is harsh. Indeed, as shown in Theorem 3.1,
when species X cannot survive under a harsh environmental condition (d1 ≥ 1), the
facilitation provided by species Y would drive it into persistence if the facilitation
is sufficient (c > c∗). However, an extremely large facilitation from species Y would
result in extinction of both species as discussed in Section 4.1. Moreover, when both
species can survive under the harsh environmental conditions (d1 < 1 and d2 < 1),
an extremely large facilitation from species Y would result in extinction of species
Y itself, as discussed in Section 4.1.

While we focus on mortality rates d1 and d2 in Section 4, a similar discussion
can be given for birth rates. The reason is that from (5) and (8), we have

d1 = m̄X/BX , d2 = mY /BY , c
∗ = (d1 − d2)/[(1− d2)d2]

in which the birth rates BX and BY are included in expressions of d1 and c∗. For
example, when the birth rate of species X is low under a harsh environmental condi-
tion (BX ≤ m̄X), species X cannot survive alone. However, when the facilitation is
sufficient (c > c∗), species X would be driven into persistence as shown in Theorem
3.1.

Numerical simulations validate the results in this paper. Here, we let r1 = r2 = 1.
In Fig. 1, we fix d1 = 1, d2 = 0.1, and let c vary. Thus, species X cannot survive in
the absence of Y , which is discussed in Theorem 3.1. As shown in Figs. 1a-b, when
the facilitation from species Y is not sufficient (c = 6, 10 ≤ 10 = c∗), species X goes
extinct and Y approaches its carrying capacity 0.9. As shown in Figs. 1c-d, when
the facilitation is sufficient (c = 15, 90 > c∗), species X and Y coexist at steady
states (0.3, 0.6) and (0.8, 0.0995), respectively. Fig. 1d also predicts the tendency
of extinction of species Y when the facilitation is extremely large.

In Fig. 2, we fix d2 = 0.1, and let d1(< 1) and c vary. Thus, species X can survive
in the absence of Y , which is discussed in Theorem 3.2. As shown in Figs. 2a-b,
when d1 = 0.08, 0.1 ≤ d2, species Y goes extinct and X approaches its carrying
capacity 0.92. As shown in Fig. 2c, when d1 = 0.2 > d2 and the facilitation is
not sufficient (c = 1 < 1.11 = c∗), species X goes extinct and Y approaches its
carrying capacity 0.9. As shown in Fig. 2d, when d1 = 0.2 > d2 and the facilitation
is sufficient (c = 20 > 1.11 = c∗), species X and Y coexist at a steady state
(0.85, 0.049). Fig. 2d also predicts the tendency of extinction of species Y when
the facilitation is extremely large.
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In Fig. 3, we fix d2 = 0.1, c = 20, and let d1 vary. As shown in Fig. 3a,
when d1 = 2 > d2 and c = 20 < 21.11 = c∗, species X goes extinct and Y
approaches its carrying capacity 0.9. As shown in Fig. 3b, When d1 = 1.1 > d2
and c = 20 > 11.11 = c∗, the species coexist at a steady state (0.4, 0.5). As shown
in Fig. 3c, when d1 = 0.2 > d2 and c = 20 > 1.11 = c∗, the species coexist at a
steady state (0.85, 0.048) and species Y approaches a density extremely less than
its carrying capacity 0.9. As shown in Fig. 3d, d1 = 0.08 < d2, species Y goes
extinct and X approaches its carrying capacity.

The difference between our work and that by Yokoi et al. [12] is as follows.
First, we show boundedness of solutions and nonexistence of periodic orbits of
system (4) which leads to global dynamics of the system, while Yokoi et al. [12]
focused on local stability analysis of equilibria. Second, we give a complete analysis
on model (4) including critical situations such as d1 = 1 and c = c∗, which are not
shown by Yokoi et al. [12]. Finally, we display five interaction outcomes in system
(4) such as competition (− −), amensalism (0 −), amensalism (− 0), neutralism
(0 0) and parasitism (+ −), while Yokoi et al. [12] exhibited two outcomes of
competition (− −) and parasitism (+ −). Here, parasitism (+ −) corresponds to
the commensalism defined by Yokoi et al. [12] since they considered the facilitation
from Y to X, but did not include spatial competition in their definition.

Because there is no real data, it is difficult to check that variation of parameters
could result in persistence/extinction of species. However, we can see that in some
situations, dynamics of the model and ecological phenomena are consistent. For
example, in the facilitation-competition system of and as mentioned in Section 1,
the simulations shown in Fig. 2d displays that species X can approach a density
higher than its carrying capacity in the absence of Y . Thus, this model might
be helpful in the study of facilitation-competition system like S. virgatus and C.
mitella. While the model is simple, its dynamics demonstrate essential features
of facilitation-competition interactions, which may be useful for understanding the
complexity of facilitation-competition systems in real situations.
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Figure 1. Phase-plane diagrams of (4) with d1 ≥ 1. Red and blue
lines are the isoclines for x and y, respectively. Grey arrows display
the direction and strength of the vector fields in the phase-plane
space. Fix r1 = r2 = 1, d1 = 1, d2 = 0.1 and let the facilitation c
vary. (a-b) When c(= 6, 10) is small, species X goes to extinction
and Y approaches its carrying capacity. (c) When c(= 15) is large,
the species coexist. (d) When c(= 90) is very large, the species
coexist and species Y approaches a density extremely less than its
carrying capacity.
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Figure 2. Phase-plane diagrams of (4) with d1 < 1. Red and
blue lines are the isoclines for x and y, respectively. Grey arrows
display the direction and strength of the vector fields in the phase-
plane space. Fix r1 = r2 = 1, d2 = 0.1 and let d1 and c vary.
(a-b) When d1 = 0.08, 0.1 and c = 1, species Y goes to extinction
and X approaches its carrying capacity. (c) When d1 = 0.2 and
c = 1, species X goes to extinction and Y approaches its carrying
capacity. (d) When d1 = 0.2 and c = 20, the species coexist.
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Figure 3. Phase-plane diagrams of (4) when the mortality d1
varies. Red and blue lines are the isoclines for x and y, respective-
ly. Grey arrows display the direction and strength of the vector
fields in the phase-plane space. Fix r1 = r2 = 1, d2 = 0.1, c = 20.
(a) When d1(= 2) is large, species X goes to extinction and Y
approaches its carrying capacity. (b) When d1(= 1.1) is interme-
diate, the species coexist. (c) When d1(= 0.2) is small, the species
coexist and species Y approaches a density extremely less than its
carrying capacity. (d) When d1(= 0.08) is extremely small, species
Y goes to extinction and X approaches its carrying capacity.
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Figure 4. Bifurcation diagram of system (4) on the d1 − c plane.
Fix r1 = r2 = 1, d2 = 0.2. Then lines d1 = 0.2, d1 = 1.0, c =
6.25(d1 − 0.2) and c = 5 divide the first quadrant into 6 regions.
In the region d1 ≤ 0.2, the interaction outcome remains amensal-
ism (0 −). In the regions 0.2 < d1 < 1.0, the interaction outcome
changes from amensalism (− 0), to competition (− −), to the oth-
er amensalism (− 0) and to parasitism (+ −) in a smooth fashion
when the facilitation c increases. Similarly, in the regions d1 ≥ 1.0,
the interaction outcome changes from neutralism (0 0) to para-
sitism (+ −) in a smooth fashion when the facilitation c increases.
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