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Abstract. The properties of the limit sets of orbits of planar impulsive semi-

dynamic system strictly depend on the continuity of the function, which de-
scribes the times of meeting impulsive sets. In this note, we will show a more

realistic counter example on the continuity of this function which has been

proven and widely used in impulsive dynamical system and applied in life sci-
ences including population dynamics and disease control. Further, what extra

condition should be added to guarantee the continuity of the function has been

addressed generally, and then the applications and shortcomings have been
discussed when using the properties of this function.

1. Introduction. The definition of impulsive semi-dynamical system and its prop-
erties including the limit sets of orbits have been investigated [1, 9]. The generalized
planar impulsive dynamical semi-dynamical system can be described as follows{

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (x, y) /∈M,

4x = a(x, y), 4y = b(x, y), (x, y) ∈M,
(1)

where (x, y) ∈ R2,4x = x+−x and4y = y+−y. P,Q, a, b are continuous functions
from R2 into R, M ⊂ R2 denotes the impulsive set. For each point z(x, y) ∈ M ,
the map or impulsive function I : R2 → R2 is defined as

I(z) = z+ = (x+, y+) ∈ R2, x+ = x+ a(x, y), y+ = y + b(x, y)

and z+ is called as an impulsive point of z.
Let N = I(M) be the phase set (i.e. for any z ∈ M, I(z) = z+ ∈ N), and

N ∩M = ∅. Let (X,Π, R+) or (X,Π) be a semi-dynamical system, where X = R2

is a metric space, R+ is the set of all non-negative reals. For any z ∈ X, the function
Πz : R+ → X defined by Πz(t) = Π(z, t) is clearly continuous such that Π(z, 0) = z
for all z ∈ X, and Π(Π(z, t), s) = Π(z, t+ s) for all z ∈ X and t, s ∈ R+. The set

C+(z) = {Π(z, t)|t ∈ R+}

2010 Mathematics Subject Classification. Primary: 34A37; Secondary: 47N60.
Key words and phrases. Impulsive semi-dynamical system, Poincaré map, continuity, state-
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is called the positive orbit of z. For all t ≥ 0 and z ∈ X, we define F (z, t) = {w :
Π(w, t) = z}, and further for any set M ⊂ X, let

M+(z) = C+(z) ∩M − {z}.
Based on above notations, the definition of impulsive semi-dynamical system is

defined as follows [1, 9, 23].

Definition 1.1. An planar impulsive semi-dynamic system (R2,Π;M, I) consists of
a continuous semi-dynamic system (R2,Π) together with a nonempty closed subset
M (or impulsive set) of R2 and a continuous function I : M → R2 such that for
every z ∈M , there exists a εz > 0 such that

F (z, (0, εz)) ∩M = ∅ and Π(z, (0, εz)) ∩M = ∅.

Definition 1.2. Let (R2,Π) be a dynamical system. An open set V in R2 is called
a tube if there exist an s > 0 and a subset S ⊂ V such that

1. Π(z, t) ∈ V for all z ∈ S and −s < t < s, and
2. for each z ∈ V there is a unique s(z), |s(z)| < s such that Π(z, s(z)) ∈ S.

It is clear that V = [Π(z, t)|z ∈ S,−s < t < s]. The set S is called an (s, V )-
section of the tube V . It is well known that if z0 ∈ R2 is not a rest point, that is,
Π(z0, t) 6= z0 for all t, then there exists a tube containing z0.

Definition 1.3. Let (R2,Π) be a dynamical system. A subset M ⊂ R2 is said to
be well placed in R2 if every point z ∈M lies in some tube whose section lies in M .

Denote the points of discontinuity of Πz by {z+
n } and call z+

n an impulsive point
of zn. A function Φ from R2 into the extended positive reals R+ ∪ {∞} is defined
as follows: let z ∈ X, if M+(z) = ∅ then Φ(z) = ∞, otherwise if M+(z) 6= ∅
then Φ(z) = s, where Π(z, t) /∈ M for 0 < t < s but Π(z, s) ∈ M . Obviously,
this function describes the times of meeting impulsive sets, and its continuity plays
an important role in impulsive semi-dynamical system. In 1990 [9], Kual defined
the time function (denoted as Φ)-the time of reaching impulsive points in the given
impulsive semi-dynamical system (X,π;M, I). And he also provided a theorem that
the function Φ is continuous on X when the impulsive set M is well placed. That
is, the following main results on the continuity of function Φ have been provided in
[1, 9] (i.e. Theorem 2.1 in [1] and Theorem 4 in [9]).

Theorem 1.4. Let (R2,Π) be a dynamical system. Let M be a closed and well
placed subset of R2. Suppose that (R2,Π,M, I) is an impulsive semi-dynamical
system. Then Φ is continuous on R2.

2. Example and main results. In 2004 [2], the author pointed out some errors
on Theorem 1.4, that is, it need not be continuous under the assumptions. And
the main aspect concerned in the paper [2] is the continuality of Φ on the impulsive
set M . In another word, the author has proved that the function Φ sometimes is
not continuous (actually not low semicontinuous) on some points in the impulsive
set M and more conditions are needed to guarantee its continuity. They concluded
that Φ just continuous on X \M under the assumptions in [9]. And in paper [1],
the authors have adopted this result. In this note, we have make further efforts that
the function would not be continuous on X \M under the assumption in the paper
[9]. We first address this in the following by a realistic example in pest control and
discuss generally what extra condition should be added to guarantee the continuity
of Φ on X \M .



CONTINUITY OF THE TIME FUNCTION IN IMPULSIVE DYNAMIC SYSTEM 1401

In the following we will provide an example to show this Theorem is not true for
some special cases. Considering the following model with state-dependent feedback
control 

dx(t)

dt
= ax(t)

[
1− x(t)

K

]
− βx(t)y(t)

1 + ωx(t)
,

dy(t)

dt
=
ηβx(t)y(t)

1 + ωx(t)
− δy(t),

 x < ET,

x(t+) = (1− θ)x(t),
y(t+) = y(t) + τ,

}
x = ET.

(2)

where x(t+)
.
= x+ and y(t+)

.
= y+ denote the numbers of pests and natural enemies

after an integrated control strategy is applied at time t [11, 17]. The definitions of
all parameters and their biological meanings please refer to literatures [11, 17]. For
convenience, we assume that the initial density of the pest population is always less
than the economic threshold (ET ) (i.e. x(0+)

.
= x+

0 < ET, y(0+)
.
= y+

0 > 0) and
ET < K. In model (2), 0 ≤ θ < 1 is the proportion by which the pest density is
reduced by killing and/or trapping once the number of pests reaches ET , while τ
(τ ≥ 0) is the constant number of natural enemies released at this time t.

Define four curves as follows

L0 : x =
δ

ηβ − δω
; L1 : y =

r

β

[
1− x

K

]
(1 + ωx);

L2 : x = ET ; and L3 : x = (1− θ)ET.
The intersection points of two lines L1 and L2 , L1 and L3 are QET = (ET, yET )
and QθET = ((1− θ)ET, yθET ), respectively, where

yET =
r

β

[
1− ET

K

]
(1 + ωET ), yθET =

r

β

[
1− (1− θ)ET

K

]
(1 + ω(1− θ)ET ).

Define the open set in R2
+ as follows

Ω = {(x, y)|x > 0, y > 0, x < ET} ⊂ R2
+ = {(x, y)|x ≥ 0, y ≥ 0}. (3)

In the following we assume that model (2) without impulsive effects exists an
unstable focus E∗ with

E∗ = (xe, ye) =

(
δ

ηβ − δω
,
rη(Kηβ −Kδω − δ)

K(ηβ − δω)2

)
,

which means that model (2) without impulsive effects has a unique stable limit
cycle (denoted by Γ)[11, 17], as shown in Fig.1. Note that the Γ intersects with the
isocline L1 at two points EΓ1

(xΓ1
, yΓ1

) and EΓ2
(xΓ2

, yΓ2
) with xΓ1

< xΓ2
.

In the following we show that model (2) defines an impulsive semi-dynamical
system. From a biological point of view, we focus on the space R2

+ to discuss model
(2). As an example, we only focus on the special case, i.e. xΓ1 < (1 − θ)ET <
ET < xΓ2 , as shown in Fig.1, and the trajectory initiating from the point QθET
(denoted by Γ1) plays a key role in defining the impulsive set and determining the
continuity of the function Φ. There are three cases: (A) Γ1 reaches the section
SET = {(x, y)|x = ET, y ≥ 0} without crossing the curve L1; (B) Γ1 reaches the
section SET = {(x, y)|x = ET, y ≥ 0} just on the point QET ; and (C)Γ1 will cross
the curve L1 several times before reaching the section SET , shown in Fig.2(A), (B)
and (C), respectively.
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Figure 1. Illustrations of impulsive set, phase set and definition
of impulsive semi-dynamical system for model (2). The parameter
values are fixed as: r = 1,K = 52, β = 0.19, η = 0.45, ω = 0.19, δ =
0.36, τ = 5, ET = 35, θ = 0.7.
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Figure 2. Three possible trajectories of model (2) with xΓ1
<

(1 − θ)ET < ET < xΓ2 for model (2). The parameter values are
fixed as: r = 1,K = 52, β = 0.19, η = 0.45, ω = 0.19, δ = 0.36, τ =
5, ET = 35, θ = 0.7(A), 0.659(B) and 0.5(C).
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Further, we define the section SθET = {(x, y)|x = (1− θ)ET, y ≥ 0} and assume
that it does not involve the rest point E∗ in it. Choosing the section SθET as a
Poincaré section. Assume that the point P+

k = ((1 − θ)ET, y+
k ) lies in the section

SθET (here E∗ /∈ SθET ), and the trajectory Ψ(t, t0, (1 − θ)ET, y+
k ) = (x(t, t0, (1 −

θ)ET, y+
k ), y(t, t0, (1− θ)ET, y+

k )) initiating from P+
k will reach at the section SET

in a finite time t1 (i.e. x(t1, t0, (1 − θ)ET, y+
k ) = ET and Φ(y+

k ) = t1), denote the
intersection point as Pk+1 = (ET, yk+1). This indicates that yk+1 is determined by
y+
k , i.e. we have yk+1 = y(t1, t0, (1−θ)ET, y+

k )
.
= P(y+

k ). One time state dependent
feedback control action is implemented at point Pk+1 such that it jumps to point
P+
k+1 = ((1− θ)ET, y+

k+1) with y+
k+1 = yk+1 + τ on SθET . Therefore, we can define

the Poincaré map PM as

y+
k+1 = P(y+

k ) + τ = y(t1, t0, (1− θ)ET, y+
k ) + τ

.
= PM (y+

k ), and Φ(y+
k ) = t1. (4)

Now define the impulsive set M for three cases shown in Fig.1 as

M = {(x, y)| x = ET, 0 ≤ y ≤ YM} , (5)

which is a closed subset of R2
+, where YM = P(yθET ) for cases (A) and (B), and

YM = yET for case (C). It is easy to see that any solution of model (2) without
impulsive effects initiating from Ω will reach in the impulsive set M in a finite time
except for the rest point E∗. Define the continuous function I : (ET, y) ∈ M →
(x+, y+) = ((1− θ)ET, y+ τ) ∈ Ω. Thus, the phase set N can be defined as follows

N = I(M) = {(x+, y+) ∈ Ω| x+ = (1− θ)ET, τ ≤ y+ ≤ P(yθET ) + τ} . (6)

Therefore, (R2
+,Π; Ω,M, I) or (R2

+,Π;M, I) with respect to model (2) defines an
impulsive semi-dynamical system.

According to the Definition 1.3 and topological structure of orbits of model (2)
without impulsive effects, it is easy to see that M defined in (5) is a closed and well
placed subset of R2

+, and further no initial point in (R2,Π) belongs to the impulsive
set M . This indicates that according to Theorem 1 the function Φ is continuous for
the three cases shown in Fig.2. For the cases shown in Fig.2(A) and (B) it is easy
to see that the results are true.

However, this is not true for case (C) shown in Fig.2(C). In fact, for case (C) there
exists a trajectory (denoted by Γ2) initiating from Ω will tangent to the section SET
at point QET , and the orbit Γ2 will intersect with the section SθET at several points,
for example, point A = ((1− θ)ET, yA) as shown in Fig.2(C). Now we consider this
point A and choose an open set U which contains the point A. Taking any two
points Ai ∈ U ∩ SθET (i = 1, 2) with yA1 < yA < yA2 , we see that the trajectory
starting from the point A2 will cross the curve L1 at least one time before hitting
the impulsive set M , and the trajectory starting from the point A1 will reach the
impulsive set M directly. This confirms that both trajectories initiating from the
set U ∩ SθET can not simultaneously reach the tube V of the impulsive set M for
small s, and consequently the function Φ is not continuous at the point A.

If we fixed all the parameter values as those shown in Fig.3, then we can see that
the continuities of the Poincaré map and the function Φ depend on the parameter
θ. For larger θ values both the Poincaré map and the function Φ are continuous,
and for smaller θ values both the Poincaré map and the function Φ exist several
discontinuous points, as shown in Fig.3. Moreover, we can show that the function
Φ is continuous when the E∗ is stable equilibrium or E∗ does not exist. Thus,
this counter example shows that more exact conditions are needed to show the
continuity of the function Φ[1, 9]. Based on above discussion, we can see that if



1404 SANYI TANG AND WENHONG PANG

0 5 10 15 20
0

5

10

15

20

P
M

(A) θ=0.8

0 5 10 15 20
2

4

6

8

10

12

14

y
k
+

Φ

(D) θ=0.8

0 5 10 15 20
0

5

10

15

20
(B) θ=0.52

0 5 10 15 20
0

10

20

30

40

50

y
k
+

(E) θ=0.52

0 5 10 15 20
0

5

10

15

20
(C) θ=0.42

0 5 10 15 20
0

20

40

60

80

100

120

y
k
+

(F) θ=0.42

Figure 3. Continuity of Poincaré map and time function without
impulse of model (2) for different θ. The other parameter values
are fixed as: r = 1,K = 52, β = 0.19, η = 0.45, ω = 0.19, δ =
0.36, τ = 5, ET = 35.

the impulsive set M is transversal, i.e. there is no trajectory of model (2) without
impulsive effect which tangents to the set M , then the function Φ is continuous.
Therefore, we have the following result on the continuity of the function Φ which
can be proved by using the similar method as those in[1, 2, 9].

Theorem 2.1. Let (R2,Π) be a dynamical system and consider an impulsive semi-
dynamical system (R2,Π,M, I). Let M be a closed and well placed subset of R2

which is transversal. Then Φ is continuous on R2 if and only if z /∈M .

Note that the transversality condition in Theorem 2.1 may exclude the case (B)
in Fig.2(B). In fact, based on our example we can conclude that the function Φ is
continuous on phase set provided that the Poincaré map reaches its maximal value
at yθET . This confirms that the conditions shown in Theorem 2.1 could be further
improved.

3. Dicsussion. Recently, impulsive semi-dynamical systems or state dependent
feedback control systems arise from many important applications in life sciences
including biological resource management programmes and chemostat cultures [5,
6, 10, 12, 17, 18, 19, 20, 21, 22, 24], diabetes mellitus and tumor control [8, 13],
vaccination strategies and epidemiological control [14, 15], and neuroscience [3, 4, 7].
In those fields, the threshold policies such as ET and threshold glucose level for
closed-loop treatment play the pivotal role in the pest control and medications
to treat diabetes. For example, control actions such as spraying pesticides and
releasing natural enemies for pest control and drug administrations (such as insulin
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and glucose-lowering pills) for disease treatment depend on the threshold levels
including density of pest population and glucose level [8, 16, 17, 24].

The above state-dependent feedback control strategies can be defined in broad
terms in real biological problems, which are usually modeled by the impulsive semi-
dynamical systems. The continuity of the function Φ describing the times of meeting
impulsive set which is equivalent to the continuity of the Poincaré map determined
by the impulsive points in phase set (as shown in Fig.3) plays an important role in
investigating the qualitative theories of the impulsive semi-dynamical system. In
particular, it is very useful for determining the existence and stability of order one
periodic solution or order one limit cycle [21, 23]. However, in order to guarantee the
continuity of this function, only some special cases for the proposed models have
been discussed in literatures [11, 12, 16, 23]. For example, the proposed models
without impulsive effects do not have any positive equilibrium in the first quadrant,
or the threshold level must be less than the values of the steady state once the models
exist the interior equilibrium. Moreover, the Poincaré map can also help us to study
the dynamic complexity of impulsive semi-dynamical system and its application in
reality. Therefore, determining the continuity of the function describing the times
of meeting impulsive set and then the Poincaré map are crucial for proposed models
arising from different fields.
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