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Abstract. In this paper, we study a mathematical model of stem cell re-
generation with epigenetic state transitions. In the model, the heterogeneity

of stem cells is considered through the epigenetic state of each cell, and each

epigenetic state defines a subpopulation of stem cells. The dynamics of the sub-
populations are modeled by a set of ordinary differential equations in which

epigenetic state transition in cell division is given by the transition probability.
We present analysis for the existence and linear stability of the equilibrium

state. As an example, we apply the model to study the dynamics of state

transition in breast cancer stem cells.

1. Introduction. Stem cells play crucial roles during development, tissue regener-
ation and healthy homeostasis in a whole life cycle. Stem cells provide regeneration
in self-renewing tissues through proliferation, differentiation, and apoptosis. A well
controlled population dynamics of stem cells is essential for healthy tissue physio-
logical functions [18, 27]. However, despite the long-running investigation of stem
cell biology, the mechanisms by which stem cell numbers and activity are regulated
are still not completely understood [22].

Stem cell biology is population biology. Many mathematical models of the pop-
ulation dynamics have been widely studied in understanding how stem cell regen-
eration is modulated in different context [6, 10, 15, 17, 24, 25, 26, 27, 33, 39, 43].
In most models, the dynamics of a homogeneous cell pool or the lineage of several
homogeneous subpopulations are formulated through a set of differential equations.
However, the heterogeneity of stem cells is highlighted in recent years due to novel
experimental techniques at single cell level [7, 11, 12, 14, 36, 41]. The heterogeneity
is mostly originated from random changes of epigenetic state at each cell cycle, in-
cluding DNA methylations, histone modifications, and transcriptions of genes and
noncoding RNAs. For heterogeneous populations in which qualitatively different
subpopulations of cells coexist and transit to each other, the validity of traditional
population models is not clear [23].

Fifty years ago, Till et al. proposed a mathematical model of stem cell prolif-
eration to consider the inherently random dynamics of individual cells based on a
stochastic birth-death process [38]. This work opened up a perspective on stem cell
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biology of stochastic heterogenous dynamics of stem cell behavior [22]. In 2014, Lei
et al. offered another approach to this problem [18]. The authors outline a general
mathematical framework that applies tools from optimization theory to understand
stem cell dynamics. In their model, stem cell numbers are regulated by rates of pro-
liferation, differentiation, and apoptosis that are continually tuned by both genetic
and epigenetic feedback mechanisms to maximize population performance. Key to
the process is the classification of the stem cell population over a variety of different
epigenetic states, and the association of different epigenetic states with prolifera-
tion, differentiation, and apoptosis. Both total cell numbers and the distribution
of epigenetic states of the population are regulated by system-level feedbacks [22].
By adapting ideas from evolutionary theory and population biology, Lei et al. have
investigated the cell population dynamics under various control strategies and the
evolution of the optimal strategy through numerical simulations [18]. Neverthe-
less, many questions related to the dynamical properties of the model questions are
not considered. In this paper, we present mathematical analysis on the existence
and stability of the steady states, which are essential for the homeostasis of the
long-term stem cell regeneration dynamics.

2. Model.

2.1. Model description. The model studied in this paper is an extension from
a discrete dynamical model of heterogeneity of stem-cell regeneration [18], which
was established based on the G0 cell cycle model with epigenetic transition between
cell cycles. Stem cells at cell cycling are classified into resting (G0) or proliferating
(G1, S,G2 and M) phases (Fig. 1) [6, 24]. During each cell cycle, a cell in the
proliferating phase either undergoes apoptosis with the probability µ or divides
into two daughter cells at the end of M phase. During the proliferating phase, each
mother cell duplicates its genome and regenerates the epigenetic states therein,
including the patterns of DNA methylations and nucleosome histone modifications
[29, 40]. However, the epigenetic states are not perfectly inherited, which may lead
to dynamical heterogeneity in daughter cells distinguished from the state of mother
cell [35, 36, 37]. One mother cell divides into two daughter cells, each of which can
be one of the two different types, either a differentiated cell (with the probability
κ) or remains a stem cell (with the probability (1−κ)) [17, 28, 34]. A cell in resting
phase either returns to the proliferating phase with the probability β, or irreversibly
removed in a rate γ due to aging, death, or differentiation.

2.2. Mathematical formulation. To establish the formulation of the above mod-
el of stem cell regeneration, we introduce Ω = {Xi}i≥1 for a space of all possible
epigenetic states of resting phase stem cells. Here the epigenetic state of a cell
can be any heritable quantities in gene activity whose changes are not caused by
changes in DNA sequence, for example, the expression levels, the patten of DNA
methylation, the state of histone modifications, or expression levels of cell surface
marker genes that distinguish differentiated cells from stem cells. The dynamics of
system state is measured by the number of stem cells at time t during the resting
phase with different epigenetic state Xi, denoted as N(t,Xi). The total number of
stem cells in resting phase is then given by

N(t) =
∑
Xi∈Ω

N(t,Xi). (1)
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Figure 1. Model illustration. During stem cell regeneration, cells
in the resting phase either enter the proliferating phase with a
rate β, or be removed from the resting pool with a rate γ. The
proliferating cells undergo apoptosis with a probability µ. Each
daughter cell generated from mitosis is either a differentiated cell
(with a probability κ) or a stem cell (with a probability (1− κ)).

Here we always assume discrete epigenetic states. Mathematically, it is easy to
extend the discussions to the continuous situation by replacing the summation with
an integral over all X in Ω.

Each cell in the resting phase reenters cell division at a rate of β that is dependent
on the total cell population N(t) through various types of cytokines [5, 17, 27], as
well as the epigenetic state Xi of the cell. Thus, the proliferation rate has a form
β(N,Xi). Heterogeneity in cell apoptosis, aging, and differentiation are considered,
so that the probabilities µ, κ and the rate γ are dependent on the epigenetic state,
and are denoted as µ(Xi), κ(Xi), and γ(Xi), respectively. Here µ(Xi) gives the
probability that a cell with state Xi (the state before cell division) goes to apoptosis
in the proliferating phase (mainly at S phase), γ(Xi)∆t gives the probability that
a cell with state Xi at resting phase moves out due to some reasons within a small
time interval [t, t + ∆t] (for example, due to cell aging, death, or differentiation).
Cell differentiation often happens at mitosis due to the asymmetric cell division
[16, 28]. A cell with state Xi at M phase becomes a differentiated cell after cell
division with the probability κ(Xi). Finally, the epigenetic state of a proliferating
cell undergoes state transition from G1 to M phase due to stochastic dynamics in
DNA methylations and histone modifications [29, 40]. Here, we do not model the
detailed biochemical reactions in this process, instead we introduce the transition
function p(Xi, Xj) for the probability that a mother cell of state Xj gives a daughter
cell of state Xi (at the end of mitosis phase). It is obviously∑

Xi∈Ω

p(Xi, Xj) = 1, ∀Xj ∈ Ω. (2)

At a small time interval [t, t+∆t], a cell in the resting phase with state Xi either
reenters the proliferating phase with the probability β(N,Xi)∆t, removed with the
probability γ(Xi)∆t, or remains at the resting phase. During the proliferating
phase, a cell that enters G1 phase with state Xj either undergoes apoptosis with
the probability µ(Xj), or produces two daughter cells. Each daughter cell gains
epigenetic state Xi with the probability p(Xi, Xj), and undergoes differentiation
with the probability κ(Xi). These processes lead to the following iteration equation
for the resting-phase cell number (also referred to [18])

N(t+ ∆t,Xi) =N(t,Xi)−N(t,Xi)(β(N,Xi) + γ(Xi))∆t
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+ 2
∑
Xj∈Ω

β(N,Xj)N(t,Xj)(1− µ(Xj))p(Xi, Xj)(1− κ(Xi))∆t,

which gives the following differential equation

∂N(t,Xi)

∂t
= −N(t,Xi)(β(N,Xi) + γ(Xi))

+ 2
∑
Xj∈Ω

β(N,Xj)N(t,Xj)(1− µ(Xj))p(Xi, Xj)(1− κ(Xi)),

N =
∑
Xi∈Ω

N(t,Xi),

(3)
for all Xi ∈ Ω. Here the coefficient 2 means that each mother cell generates two
daughter cells in cell division.

Equation (3) gives the basic dynamical equation of our model of stem cell re-
generation with epigenetic transition. In the equation, β(N,Xi) and γ(Xi) are
the proliferation and removing rate, respectively, and µ(Xi), κ(Xi), p(Xi, Yj) are
probability functions, therefore, we always assume the following:

β(N,Xi), γ(Xi) > 0, 0 ≤ µ(Xi), κ(Xi), p(Xi, Xj) ≤ 1. (4)

Furthermore, the function β(N,X) is continuous with N ∈ R+.

Remark 1. The cell division process usually takes some time. Thus, a delay τ is
often introduced in the modeling of stem cell regeneration [19, 24]. In this case,
equations in (3) are rewritten as the following delay differential equations

∂N(t,Xi)

∂t
= −N(t,Xi)(β(N,Xi) + γ(Xi))

+ 2
∑
Xj∈Ω

β(Nτ , Xj)N(t− τ,Xj)(1− µ(Xj))p(Xi, Xj)(1− κ(Xi)),

N =
∑
Xi∈Ω

N(t,Xi),

(5)
here Nτ = N(t− τ).

Remark 2. Adding equations (3) with respect to all Xi in Ω gives the equation
for N(t):

dN

dt
=
∑
Xi∈Ω

N(t,Xi) [β(N,Xi)(2σ(Xi)(1− µ(Xi))− 1)− γ(Xi)] , (6)

where
σ(Xi) =

∑
Xj∈Ω

(1− κ(Xj))p(Xj , Xi). (7)

If we omit the heterogeneity so that all functions are independent of Xi, and let
β̃(N) = (2σ(1− µ)− 1)β(N), N(t) satisfies

dN

dt
= β̃(N)N − γN. (8)

If the time delay in cell division is considered, we obtain a delay differential equation

dN

dt
= β̃(Nτ )Nτ − γN. (9)

Thus, we again obtain the ordinary/delay differential equation model of stem cell
regeneration [5, 17, 20, 27].
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Remark 3. If the epigenetic state space Ω is continuous, we can replace the sum-
mation in (3) with an integral, so that the equation is rewritten as

∂N(t,X)

∂t
= −N(t,X)(β(N,X) + γ(X))

+ 2

∫
Ω

β(N,Y )N(t, Y )(1− µ(Y ))p(X,Y )(1− κ(X))dY

N =

∫
Ω

N(t,X)dX.

(10)
Here, an integral term is used when the epigenetic state space is continuous. This
idea of using an integral to represent the continuous properties of stem cell dynamics
has also been used in previous studies [2, 3, 4].

Upon the establishment of mathematical models, basic dynamical analysis of the
model equations are important for our understanding of the system behavior and
future extension of the model. In the next section, we give preliminary analysis
results for the modeling equation.

3. Analytic results. In this section, we discuss the existence and stability of the
equilibrium states of (3). It is easy to see that equation (3) always has a trivial
equilibrium state N(t,Xi) ≡ 0. However, this solution is not biologically interesting.
Here we mainly discuss the positive equilibrium state.

In general, equation (3) includes a huge number (as many as possible epigenetic
states) of differential equations that are coupled to each other. Thus, it is difficult to
analyze the dynamics in general. Here, to make the analysis possible, we introduce
a homogenous proliferation assumption:

(A1) The proliferation rate β is independent of the epigenetic state of the cell,
i.e., β(N,X) = β(N). Biologically, cell division is mainly triggered by the
cytokines secreted from other cells in the niche.

3.1. Existence and uniqueness of the positive equilibrium state. Assuming
the condition (A1), equation (3) can be rewritten as

∂N(t,Xi)

∂t
= −N(t,Xi)(β(N) + γ(Xi))

+ β(N)
∑
Xj∈Ω

2(1− µ(Xj))p(Xi, Xj)(1− κ(Xi))N(t,Xj),

N =
∑
Xi∈Ω

N(t,Xi).

(11)
In the following discussions, we always assume that there are finite epigenetic

states Ω = {X1, · · · , Xn}, and introduce the following notations:

qij = (1− µ(Xj))p(Xi, Xj)(1− κ(Xi)),

si =

n∑
j=1

2qij
γ(Xi)

− 1

γ(Xi)
,

s = min
1≤i≤n

si, S = max
1≤i≤n

si,

βmin = inf
N∈R+

β(N), βmax = sup
N∈R+

β(N).
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Here we note that β(N), γ(Xi) > 0 and 0 ≤ µ(Xi), κ(Xi) ≤ 1 from our general
assumption (4).

Theorem 3.1. Consider equation (11) and the general assumption (4), if the fol-
lowing conditions are satisfied

(1) qii ≥ 1
2 for i = 1, · · · , n,

(2) β(N) ∈ C(R,R+), and

1

βmax
< s ≤ S < 1

βmin
, (12)

(3) the transition matrix defined with P = [P (Xi, Xj)]i,j=1,··· ,n is irreducible,

then there exists at least one positive equilibrium state.

Proof. Let N∗ = (N∗(X1), · · · , N∗(Xn))T and

N0 =

n∑
i=1

N∗(Xi)

denote the equilibrium state. From (11), we have

−N∗(Xi)(β(N0) + γ(Xi)) + β(N0)

n∑
j=1

2qijN
∗(Xj) = 0, ∀i = 1, · · · , n. (13)

Multiplying the i’th equation in (13) with
1

β(N0)γ(Xi)
, we obtain

−N∗(Xi)(
1

γ(Xi)
+

1

β(N0)
) +

1

γ(Xi)

n∑
j=1

2qijN
∗(Xj) = 0,

which gives

− 1

γ(Xi)
N∗(Xi) +

1

γ(Xi)

n∑
j=1

2qijN
∗(Xj) =

1

β(N0)
N∗(Xi), i = 1, · · · , n. (14)

Thus, introducing a coefficient matrix

A =



2q11 − 1

γ(X1)

2q12

γ(X1)
· · · 2q1n

γ(X1)
2q21

γ(X2)

2q22 − 1

γ(X2)
· · · 2q2n

γ(X2)
...

...
. . .

...
2qn1

γ(Xn)

2qn2

γ(Xn)
· · · 2qnn − 1

γ(Xn)


,

(14) yields the following linear equation

AN∗ =
1

β(N0)
N∗. (15)

Now, equation (15) indicates that N∗ is an eigenvector of A corresponding to
the eigenvalue 1

β(N0) . Thus, (15) has a positive solution if and only if A has an

eigenvalue λ∗ ∈ [
1

βmax
,

1

βmin
], and this eigenvalue has a non-negative eigenvector
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z = (z1, · · · , zn)T . In this case, the equilibrium state is given by

β(N0) =
1

λ∗
, N∗(Xi) =

N0zi
‖z‖1

, ‖z‖1 =

n∑
i=1

|zi|. (16)

Next, we show that conditions (1)-(3) ensure the existence of the eigenvalue λ∗.
First, when qii ≥ 1

2 , A is a non-negative matrix. Moreover, since the transition

matrix P is irreducible, A is irreducible as well1. Thus, we have the following results
according to Perron-Frobenius theorem:

1. The spectral radius of A, denoted by λ∗, is a positive real number and an
eigenvalue of A.

2. λ∗ is bounded by the sum of row elements of A, i.e.,

s ≤ λ∗ ≤ S.
3. λ∗ is a simple eigenvalue and the corresponding unique eigenvector z =

(z1, · · · , zn)T is positive (i.e. zi > 0).
4. λ∗ is the only eigenvalue of A with a non-negative eigenvector.

Next, since β(N) is a continuous function, βmin ≤ β(N) ≤ βmax (∀N > 0), and

1

βmax
< s ≤ λ∗ ≤ S < 1

βmin
,

there exists at least one N0 > 0 so that

1

β(N0)
= λ∗.

Finally, letting

N∗(Xi) =
N0zi
‖z‖1

,

it is easy to see that N∗(Xi) (i = 1, · · · , n) gives a non-negative solution to equation
(15).

Remark 4. Biologically, qij gives the probability that a mother cell of state Xj

gives a daughter cell of state Xi after one cell cycle. Hence, the condition qii ≥ 1
2

means that each cell has a probability not less than 1
2 to generate a daughter cell

with the same epigenetic state. In particular, if we omit the heterogeneity, then
q = (1− µ)(1− κ). In this case, the condition q ≥ 1

2 is necessary to have a positive
steady state.

Remark 5. From the proof, each eigenvalue of A gives an equilibrium state if
the eigenvalue satisfies λ ∈ [ 1

βmax
, 1
βmin

] and the corresponding eigenvector is non-

negative. Furthermore, according to property 4 of Perron-Frobenius theorem, if the

1The matrix A can be rewritten as

A = Λ1PΛ2 − Λ3, (17)

where Λ1,Λ2,Λ3 are positive diagonal matrices

Λ1 = diag(
2(1 − κ(X1))

γ(X1)
, · · · ,

2(1 − κ(Xn))

γ(Xn)
),

Λ2 = diag(1 − µ(X1), · · · , 1 − µ(Xn)),

Λ3 = diag(
1

γ(X1)
, · · · ,

1

γ(Xn)
).

Thus, the two matrices A and P share the same indexes of non-zero non-diagonal elements. Hence,
A is irreducible if and only if P is irreducible.
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proliferation rate β(N) is a monotone function (which is true in many cases), the
corresponding solution(the positive equilibrium state) is unique.

Remark 6. If the transition matrix P is reducible, we can separate the system
into several irreducible subsystems and rewrite the model equation in hierarchical
structure(refer [21] for a computational method to determine the reducibility of the
matrix).

Now, to further simplify the equations, we introduce additional assumptions
below:

(A2) During cell cycle, cell apoptosis is mainly caused by serious DNA damage,
which is mostly dependent on the number of initial damage sites and the
activity of the DNA damage response pathways [30, 31, 42]. Here we assumed
that the probability of apoptosis µ is independent of the epigenetic state under
consideration.

(A3) The transition probability p(X,Y ) is normally dependent on both epigenetic
state of the mother cell and the daughter cell. Here, for simplicity, we as-
sumed that the transition process approaches the statistical equilibrium state
so that the probability p(X,Y ) is independent to the state of mother cell,
i.e., p(X,Y ) ≡ p(X). Biologically, this condition means that the proliferating
phase is long enough so that the epigenetic dynamics(DNA methylation and
histone modifications) can reach the stationary state during proliferation.

With assumptions (A1)-(A3), we further rewrite the equation (3) as
∂N(t,Xi)

∂t
= −N(t,Xi)(β(N) + γ(Xi))

+ 2p(Xi)(1− µ)(1− κ(Xi))β(N)N,

N =
∑
Xi∈Ω

N(t,Xi).
(18)

The following theorem gives a necessary and sufficient condition for the existence
of a positive equilibrium state of the equation (18).

Theorem 3.2. Assume that β(N) ∈ C(R+,R+), and

β(N) > 0,∀N ∈ R+, and γ(X) > 0, 0 ≤ µ, κ(X), p(X) ≤ 1, ∀X ∈ Ω.

Let

βmin = inf
N∈R+

β(N), βmax = sup
N∈R+

β(N), (19)

and

F (β) = 2
∑
Xi∈Ω

β

β + γ(Xi)
p(Xi)(1− κ(Xi))(1− µ). (20)

Equation (18) has at least one positive equilibrium state if and only if

F (βmin) < 1 < F (βmax), (21)

and the equilibrium state is given by

N(t,Xi) ≡ N0(Xi) =
2β(N0)N0

β(N0) + γ(Xi)
p(Xi)(1− κ(Xi))(1− µ), (22)

where N0 satisfies F (β(N0)) = 1. In particularly, if β(N) is a monotone function,
the positive equilibrium state is unique.
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Proof. At the equilibrium state, equation (18) gives

−N∗(Xi)(β(N0) + γ(Xi)) + 2(1− µ)p(Xi)(1− κ(Xi))N0β(N0) = 0 (23)

for all Xi ∈ Ω, where

N0 =
∑
Xi∈Ω

N∗(Xi). (24)

Hence, we obtain

N∗(Xi) =
2β(N0)N0

β(N0) + γ(Xi)
p(Xi)(1− κ(Xi))(1− µ). (25)

Substituting (25) into (24), we have

F (β(N0)) = 1. (26)

Thus, from (19), equation (26) has at least one positive solution if and only if (20)
is satisfied, and when (20) is satisfied, the equilibrium is given by (25).

If β(N) is a monotone function, equation (26) has a unique solution, and hence
the equilibrium state is unique.

Remark 7. Theorem 3.2 indicates that the fraction of N∗(Xi) at the equilibrium
state is given by

f(Xi) =
2(1− µ)p(Xi)(1− κ(Xi))β(N0)

β(N0) + γ(Xi)
. (27)

3.2. Linear stability of the equilibrium state in two-state systems. Now,
we study the linear stability of the equilibrium state under assumptions (A1)-(A3).
Hereinafter, we always assume that β(N) ∈ C1(R+,R+). We first consider the
system with two states, and the general situation of n ≥ 2 epigenetic states is
discussed in the next section.

Theorem 3.3. Consider equation (18) with two states, i.e., Ω = {X1, X2}, and
there is a positive equilibrium state with total cell population N0, then the equilibrium
state is asymptotically stable if and only if β′(N0) < 0.

Proof. When Ω = {X1, X2}, equation (18) becomes

∂N(t,X1)

∂t
= −N(t,X1)(β(N(t)) + γ(X1))

+ 2(1− µ)p(X1)(1− κ(X1))N(t)β(N(t))
:= f1(N(t,X1), N(t,X2))

∂N(t,X2)

∂t
= −N(t,X2)(β(N(t)) + γ(X2))

+ 2(1− µ)p(X2)(1− κ(X2))N(t)β(N(t))
:= f2(N(t,X1), N(t,X2))

N(t) = N(t,X1) +N(t,X2).

(28)

The linearization near the equilibrium state N∗ = (N∗(X1), N∗(X2))T is given by

dx

dt
= Ax, (29)

where A = (aij) is the Jacobi matrix

A =


∂f1

∂N(t,X1)

∂f1

∂N(t,X2)
∂f2

∂N(t,X1)

∂f2

∂N(t,X2)


∣∣∣∣∣∣∣
N=N∗

,
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where

∂f1

∂N(t,X2)
= −N(t,X1)β′ + 2(1− µ)p(X1)(1− κ(X1))(β + β′N), (30)

∂f2

∂N(t,X1)
= −N(t,X2)β′ + 2(1− µ)p(X2)(1− κ(X2))(β + β′N), (31)

∂f1

∂N(t,X1)
=

∂f1

∂N(t,X2)
− (β + γ(X1)), (32)

∂f2

∂N(t,X2)
=

∂f2

∂N(t,X1)
− (β + γ(X2)). (33)

Here we write β, β′, N for β(N(t)), β′(N(t)), N(t), respectively, for short.
Thus, we obtain

Det(A)

=

(
∂f1

∂N(t,X1)

∂f2

∂N(t,X2)
− ∂f1

∂N(t,X2)

∂f2

∂N(t,X1)

)∣∣∣∣
N=N∗

= (β(N0) + γ(X1))(β(N0) + γ(X2))

− (β(N0) + γ(X1))
∂f2

∂N(t,X1)

∣∣∣∣
N=N∗

− (β(N0) + γ(X2))
∂f1

∂N(t,X2)

∣∣∣∣
N=N∗

= (β(N0) + γ(X1))(β(N0) + γ(X2))

×
(

1− 1

β(N0) + γ(X2)

∂f2

∂N(t,X1)
− 1

β(N0) + γ(X1)

∂f1

∂N(t,X2)

)∣∣∣∣
N=N∗

. (34)

Next, we analyze the last term in (34), which determines the sign of Det(A). From
Theorem 3.2, and (24)-(26), we have(

1− 1

β(N0) + γ(X2)

∂f2

∂N(t,X1)
− 1

β(N0) + γ(X1)

∂f1

∂N(t,X2)

)∣∣∣∣
N=N∗

= 1− −N
∗(X2)β′(N0) + 2(1− µ)p(X2)(1− κ(X2))(β(N0) + β′(N0)N0)

β(N0) + γ(X2)

− −N
∗(X1)β′(N0) + 2(1− µ)p(X1)(1− κ(X1))(β(N0) + β′(N0)N0)

β(N0) + γ(X1)

=
N∗(X2)β′(N0)− 2(1− µ)p(X2)(1− κ(X2))N0β

′(N0)

β(N0) + γ(X2)

+
N∗(X1)β′(N0)− 2(1− µ)p(X1)(1− κ(X1))N0β

′(N0)

β(N0) + γ(X1)

= −β
′(N0)

β(N0)

(
γ(X2)N∗(X2)

β(N0) + γ(X2)
+

γ(X1)N∗(X1)

β(N0) + γ(X1)

)
.

Hence, it is easy to see that Det(A) > 0 if and only if β′(N0) < 0.
Next, we have

tr(A)

= −(2β(N0) + γ(X1) + γ(X2))−N0β
′(N0)

+ β(N0)(2(1− µ)p(X1)(1− κ(X1)) + 2(1− µ)p(X2)(1− κ(X2)))

+N0β
′(N0)(2(1− µ)p(X1)(1− κ(X1)) + 2(1− µ)p(X2)(1− κ(X2)))

= −(β(N0) + γ(X1) + γ(X2))
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+ β(N0)

(
N∗(X1)(β(N0) + γ(X1))

N0β(N0)
+
N∗(X2)(β(N0) + γ(X2))

N0β(N0)
− 1

)
+N0β

′(N0)

(
N∗(X1)(β(N0) + γ(X1))

N0β(N0)
+
N∗(X2)(β(N0) + γ(X2))

N0β(N0)
− 1

)
= −(β(N0) + γ(X1) + γ(X2)) +

(
N∗(X1)

N0
γ(X1) +

N∗(X2)

N0
γ(X2)

)
+
β′(N0)

β(N0)
(N∗(X1)γ(X1) +N∗(X2)γ(X2))

= −β(N0)− (γ(X1) + γ(X2)− N∗(X1)

N0
γ(X1)− N∗(X2)

N0
γ(X2))

+
β′(N0)

β(N0)
(N∗(X1)γ(X1) +N∗(X2)γ(X2)).

It is easy to verify that tr(A) < 0 if β′(N0) < 0.
Now, if β′(N0) < 0, we have Det(A) > 0 and tr(A) < 0, hence all eigenvalues of

A have negative real parts, which implies the stability of the positive equilibrium
state. This theorem is proved.

3.3. Linear stability of the equilibrium state in multi-state systems. Now,
we consider the linear stability of general cases with multiple epigenetic states under
assumptions (A1)-(A3).

Theorem 3.4. Consider equation (18) with n epigenetic states, i.e., Ω = {X1, · · · ,
Xn}, and there is a positive equilibrium state with total cell population N0.

(i) The condition β′(N0) ≤ 0 is necessary for the linear stability of the equilibrium
state.

(ii) If β′(N0) < 0, and the n terms

(β′(N0)N0
γ(Xi)

β(N0) + γ(Xi)
+ β(N0)), (n = 1, · · · , n)

are either all non-negative or all non-positive, then the equilibrium state N0

is asymptotically stable.

Proof. First, we introduce functions fi of (N(t,X1), · · · , N(t,Xn)) as

fi = −N(t,Xi)(β(N(t)) + γ(Xi)) + 2(1− µ)p(Xi)(1− κ(Xi))N(t)β(N(t)).

Equations in (18) are rewritten as

∂N(t,Xi)

∂t
= fi, (i = 1, 2, · · · , n) (35)

N =

n∑
i=1

N(t,Xi). (36)

Let N∗ = (N∗(X1), · · · , N∗(Xn)) and N0 = ‖N∗‖1 be the equilibrium state, i.e.,

fi|N=N∗ = 0. (37)

Similar to the calculations in the proof of Theorem 3.3, we obtain

∂fi
∂N(t,Xj)

∣∣∣∣
N=N∗

=

{
bi − ai i = j
bi i 6= j

(38)
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where

ai = (β(N0) + γ(Xi)), (39)

bi = 2(1− µ)p(Xi)(1− κ(Xi))(β(N0) + β′(N0)N0)−N∗(Xi)β
′(N0). (40)

Hence, the coefficient matrix A of the linearization of (35) at the equilibrium state
N = N∗ is given by

A =



∂f1

∂N(t,X1)

∂f1

∂N(t,X2)
· · · ∂f1

∂N(t,Xn)
∂f2

∂N(t,X1)

∂f2

∂N(t,X2)
· · · ∂f2

∂N(t,Xn)
...

...
. . .

...
∂fn

∂N(t,X1)

∂fn
∂N(t,X2)

· · · ∂fn
∂N(t,Xn)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N=N∗

=


b1 − a1 b1 · · · b1
b2 b2 − a2 · · · b2
...

...
. . .

...
bn bn · · · bn − an

 .
Therefore, the eigenfunction of the coefficient matrix is given by

h(λ) = |λI −A|

=

∣∣∣∣∣∣∣∣∣
λ+ a1 − b1 −b1 · · · −b1
−b2 λ+ a2 − b2 · · · −b2

...
...

. . .
...

−bn −bn · · · λ+ an − bn

∣∣∣∣∣∣∣∣∣
= (1− b1

λ+ a1
− · · · − bn

λ+ an
)(λ+ a1) · · · (λ+ an). (41)

From (41), we have the following results for h(λ):

h(+∞) = +∞ > 0, (42)

h(0) = (1− b1
a1
− b2
a2
− · · · − bn

an
)

n∏
i=1

ai, (43)

h(−ai) = −bi
∏
j 6=i

(aj − ai), (44)

h(−∞) = sgn((−1)n) · ∞. (45)

From (25) and (40),

bi = −N∗(Xi)β
′(N0) + 2(1− µ)p(Xi)(1− κ(Xi))(β(N0) + β′(N0)N0)

= 2(1− µ)p(Xi)(1− κ(Xi))β
′(N0)N0(− β(N0)

β(N0) + γ(Xi)
+ 1)

+ 2(1− µ)p(Xi)(1− κ(Xi))β(N0)

= 2(1− µ)p(Xi)(1− κ(Xi))(β
′(N0)N0

γ(Xi)

β(N0) + γ(Xi)
+ β(N0)). (46)

First, we assume that bi 6= 0. Then (46) and (39) together yield the following
expression
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bi
ai

=
2(1− µ)p(Xi)(1− κ(Xi))β(N0)

β(N0) + γ(Xi)
+N0β

′(N0)
2γ(Xi)(1− µ)p(Xi)(1− κ(Xi))

(β(N0) + γ(Xi))2
.

(47)
Thus, from (26), we obtain

1−
n∑
i=1

bi
ai

= 1−
n∑
i=1

2(1− µ)p(Xi)(1− κ(Xi))β(N0)

β(N0) + γ(Xi)

−N0β
′(N0)

n∑
i=1

2γ(Xi)(1− µ)p(Xi)(1− κ(Xi))

(β(N0) + γ(Xi))2

= −N0β
′(N0)

n∑
i=1

2γ(Xi)(1− µ)p(Xi)(1− κ(Xi))

(β(N0) + γ(Xi))2
. (48)

Now, we are ready to prove the main results.

(i). If β′(N0) > 0, since ai > 0(i = 1, · · · , n), (48) implies h(0) < 0. However,
h(λ) > 0 for large enough λ, hence h(λ) = 0 has a positive solution, and the
equilibrium state is unstable. Thus, β′(N0) ≤ 0 is necessary for the linear
stability of N∗.

(ii). First, we assume that ai are not equal to each other, without loss of generality,
we assume 0 < a1 < a2 < · · · < an.
(a) If bi (i = 1, · · · , n) are positive, from (44), we have

h(0) > 0, h(−a1) < 0, h(−a2) > 0, · · · , sgn(h(−an)) = sgn(−1)n,

and there are n negative roots between (an, 0).
(b) If otherwise, bi (i = 1, · · · , n) are negative, from (45), we have

h(−a1) > 0, h(−a2) < 0, · · · , sgn(h(−an)) = sgn((−1)n+1),

sgn(h(−∞)) = sgn((−1)n),

and there are n negative roots between (−∞, a1).
Next, if bi = 0, it is easy to verify that λ = −ai < 0 is a root of h(λ). And

if some ai = ai+1 = · · · = ai+k, λ = −ai < 0 is a root of h(λ) of multiplicity k.

Under either situations, we can write h(λ) as (λ+ai)
kh̃(λ) so that h̃(−ai) 6= 0.

Then, all roots of h̃(λ) are negative following the similar discussions above.
Thus, in all situations, all n roots of the eigenfunction are negative, and

the equilibrium is linearly stable.

Remark 8. Since γ(Xi) ≤ 1 and β′(N0) < 0, it is easy to verify that

β′(N0)N0
1

β(N0) + 1
+ β(N0) > 0 (49)

is enough to ensure the linear stability of the positive equilibrium. Moreover, if
β(N) is taken as a Hill type function (the function widely used in many stem cell
population models [17, 24, 27])

β(N) = β0
θn

θn +Nn
, (50)

the condition (49) is equivalent to
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(β0 + 1) > (n− 1)(N0/θ)
n. (51)

Interestingly, we note that (51) is always satisfied when n = 1.

3.4. Stability of the zero solution. Here, we study the stability of the zero
solution 0 under assumptions (A1)-(A3), and prove that if equation (18) has a
positive equilibrium state, the zero solution is unstable.

Theorem 3.5. Consider the equation (18), and β(N) is a decreasing function. Let

F (β) =

n∑
i=1

2(1− µ)p(Xi)(1− κ(Xi))β

β + γ(Xi)
. (52)

(1) If there exists N0 > 0 so that F (β(N0)) = 1, then the zero solution N(t) ≡ 0
is unstable.

(2) If F (β(0)) < 1, then the zero solution is linearly stable.

Proof. Consider the linearization of (18) near the zero solution, the coefficient ma-
trix is given by

Ā =


b̄1 − ā1 b̄1 · · · b̄1
b̄2 b̄2 − ā2 · · · b̄2
...

...
. . .

...
b̄n b̄n · · · b̄n − ān

 ,
where

āi = (β(0) + γ(Xi)) > 0

b̄i = 2(1− µ)p(Xi)(1− κ(Xi))β(0) > 0.

Thus, similar to the above argument, let h̄(λ) the eigenfunction of Ā, we have

h̄(+∞) = +∞ > 0,

h̄(0) = (1− b̄1
ā1
− b̄2
ā2
− · · · − b̄n

ān
)

n∏
i=1

āi,

h̄(−āi) = −b̄i
∏
j 6=i

(āj − āi).

(1) If there exists N0 > 0 so that F (β(N0)) = 1, then β(N0) < β(0), and

1−
n∑
i=1

b̄i
āi

= 1−
n∑
i=1

2(1− µ)p(Xi)(1− κ(Xi))β(0)

β(0) + γ(Xi)

= F (β(N0))− F (β(0)).

From the proof of Theorem 3.2, F (β) is a monotone increasing function of

β. Hence, 1 −
∑n
i=1

b̄i
āi
< 0, which implies h̄(0) < 0 by āi > 0 (i = 1 · · · , n).

Thus, there exists an eigenvalue of h̄(λ) in (0,+∞), and the zero solution is
unstable.

(2) If F (β(0)) < 1, then h̄(0) > 0. Moreover, since bi > 0 (i = 1, · · · , n), similar
to the discussions in Theorem 3.4, assuming 0 < ā1 < ā2 < · · · < ān, we have

h̄(0) > 0, h̄(−ā1) < 0, h̄(−ā2) > 0, · · ·
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and all roots of h̄(λ) have negative real parts, hence the zero solution is linearly
stable.

Remark 9. From the discussions in Theorem 3.2, equation (18) has at least one
positive equilibrium state if and only if there exists N0 > 0 so that F (β(N0)) = 1.
Hence, Theorem 3.5 suggests that the zero solution is unstable if there is a positive
equilibrium state, and is linearly stable if there is no positive equilibrium state
(except the critical situation F (β(0)) = 1).

4. Simulations. In this section, we present simulations of applying our model
equation (3) to stem cell population dynamics.

4.1. Transition dynamics of stem cell regeneration. First, we apply our mod-
el to a virtual tissue dynamics of stem cell regenerations. We assumed that in this
virtual tissue the space of epigenetic states is given by Ω = {Xi}300

i=1. Here we write
Xi = i for simplicity. In simulations, the functions µ(Xi), κ(Xi) and γ(Xi) are
taken as

µ(Xi) = 0.1, κ(Xi) = 0.1 +
0.2

1 + (Xi/30)
, κ(Xi) = 0.05 +

0.35

1 + (Xi/50)
. (53)

The proliferation rate function is given by

β(N) = β0
θn

θn +Nn
, β0 = 0.7, θ = 500, n = 3. (54)

The transition probability P (Xi, Xj) is defined as

p(Xi, Xj) =
(300−Xi)(1 + νe−0.2(Xi−Xj)2)∑300
i=1(300−Xi)(1 + νe−0.2(Xi−Xj)2)

. (55)

Here the parameter ν is introduced to represent the effect of mother cells. When
ν = 0, the transition probability is independent to the state of the mother cell.
When ν is larger, however, only local transition is allowed, i.e., the states of the
daughter cells are close to that of their mother cell. We take ν = 0, 20, 200 to
examine the effects of mother cell control transitions.

Simulation results are shown at Fig. 2. Both cell population and the percentage
of different epigenetic states converge to a stable equilibrium state after a long time
simulation. We note that when ν > 0, the transition matrix is different from the
matrix for the case ν = 0 (independent to the mother cell) near the situation of
identical division (Xi = Xj). Fig. 2 show that there is only slight changes when
ν increases from 0 to 20. This result suggests that the equilibrium state is robust
with respect to a small perturbation to the state transition probability. However,
when ν further increases to 200, there is an obvious change in the equilibrium state.

4.2. State transitions of cancer cells. Experiments have found that in human
breast cancer cell lines there are distinct phenotypic cells (stem-like (S), basal (B), or
luminal (L)) [13]. The proportion of distinct cell-state subpopulations remain stable
in the cell line (proportion of B, S, and L = 97.3%, 1.9%, and 0.62%, respectively).
When the pure subpopulations of cells are isolated and cultured, they can rapidly
progress toward equilibrium proportions after 6 days growth in culture [13]. A
quantitative Markov model of cell-state interconversion was developed to explain
the state transition [13]. Here we applied our state transition model to describe the
evolution dynamics based on state transition.
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Figure 2. Transition dynamics. (A) The cell population dynam-
ics. (B) The percentage of epigenetic-state cells at the equilibrium
state. Here, results of ν = 0 (green), 20 (blue), and 200 (red)
are shown. In simulations, the initial cell population is taken as
N(0) = 300, and N(0, Xi) = 1, (i = 1, · · · , 300).

Table 1. Parameter values in the model of cancer cell state tran-
sition. Left: the probabilities γ, κ, µ for cells of these three states.
Right: the transition matrix p(X,Y ), X, Y ∈ Ω.

Parameter S B L
γ 0.95 0.7 0.65
κ 0.02 0.03 0
µ 0.1 0.1 0.1

S B L
S 0.58 0.04 0.01
B 0.07 0.47 0
L 0.35 0.49 0.09

The model includes three subpopulations of cells (Ω = {S,B,L}), and cells can
transit between different states. The parameters are listed at Table 1. Cells of these
three states are assumed to have the same proliferation rate that is dependent only
on the stem cell population N through function (54). Simulation results are shown
at Fig. 3, which are in good agreement with experimental data and prediction based
on a Markov chain model in [13]. Interestingly, starting from different initial condi-
tions, all three state subpopulation proportions approach to the same equilibrium
state. This result indicates the dynamic equilibrium of stem cell regeneration.
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Figure 3. Simulation of cell-state dynamics. Dynamics of cell-
state proportion with different initial states (left: (S,B,L) =
(99.9, 0.05, 0.05), middle: (S,B,L) = (0.05, 0.05, 99.9), right:
(S,B,L) = (0.05, 99.9, 0.05)). Markers are data taken from [13].
Parameters are listed in Table 1.
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5. Discussions. Stem cell regeneration is essential during development and the
maintaining of homeostasis. Epigenetic state transition is inherent to cell cycling
due to the random dynamics of biochemical reactions involved in histone modifica-
tion and DNA methylation during cell division. Here we have described a general
form of continuous dynamical model of stem cell regeneration with epigenetic state
transition. In the model, an individual cell is represented by its epigenetic state,
and each cell can give two daughter cells with alterations in the epigenetic state.
During cell division, the death rate and the probabilities of cell differentiation are
assumed to be dependent on the epigenetic state. We give mathematical analysis
to the model equations, basic dynamical properties, including existence and linear
stability of the equilibrium state, are discussed under general assumptions.

The current study is intended to bring a general consideration of the popula-
tion dynamics of stem cell regeneration with epigenetic transition. Therefore, no
molecular or mechanistic details were involved on our model. This leaves a wide
space for the extension of our study. To investigate specific functions of a particular
type of stem cells, one can add an additional layer of complexity into the model by
incorporating corresponding genetic and molecular regulations into the equation of
proliferation, differentiation, and apoptosis. In additional to the biological prob-
lems, further mathematical questions can be arisen when such details are added to
the model, for example, the population dynamics with feedback regulations to stem
cell differentiation [17], the signaling pathway to control to oscillatory dynamics in
developing hair follicles [1, 32], the complex dynamics in hematopoiesis and dynam-
ical blood disease [8, 9, 44]. This study offers a new approach and mathematical
framework to these issues of stem cell biology.
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