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Abstract. Clustered regularly interspaced short palindromic repeats

(CRISPRs) along with Cas proteins are a widespread immune system across

bacteria and archaea. In this paper, a mathematical model in a chemostat is
proposed to investigate the effect of CRISPR/Cas on the bacteriophage dynam-

ics. It is shown that the introduction of CRISPR/Cas can induce a backward

bifurcation and transcritical bifurcation. Numerical simulations reveal the co-
existence of a stable infection-free equilibrium with an infection equilibrium,

or a stable infection-free equilibrium with a stable periodic solution.

1. Introduction. Bacteriophage or virulent phage is a virus which can grow and
replicate by infecting bacteria. Once residing in bacteria, phage grow quickly, which
result in the infection of bacteria and drive the bacteria to die [17]. Thus, we can
view them as bacteria predators and use them to cure the diseases induced by
infecting bacteria [9,35]. Phage therapy has become a promising method because of
the emergence of antibiotic resistant bacteria [9,12]. Indeed, as a treatment, phages
have several advantages over antibiotics. Phages replicate and grow exponentially,
while antibiotics are not [47]. Generally speaking, a kind of phages infect only
particular classes of bacteria, and this limitation of their host is very beneficial to
cure the diseases. Moreover, phages are non-toxic, and cannot infect human cells.
Hence, there are fewer side effects as compared to antibiotics [12,35].

It is important to understand the interaction dynamics between bacteria and
phage to design an optimal scheme of phage therapy. There have been a number
of papers that study the mathematical models of bacteriophages (see, for example,
[1–4, 8–11, 21, 23, 28, 42] and the references cited therein). Campbell [11] proposed
a deterministic mathematical model for bacteria and phage, which is a system of
differential equations containing two state variables, susceptible bacteria S and
phage P , and incorporating a delay τ that represents the time period for phage
replication in the bacteria. The model was developed by [28, 32, 36, 40] to consider
the effect of predation and competition with the limited resources. It was further
studied by [3,4,21] to study the infections of marine bacteriophages, where bacteria
populations from 5-6% up to 70% are infected by bacteriophages [38]. Smith and
Thieme [42] formulate two models: a system of delay differential equations with
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infinite delay and a more general infection-age model that leads to a system of
integro-differential equations to study the persistence of bacteria and phage.

It was observed that phage can exert pressure on bacteria to make them produce
resistance through loss or modification of the receptor molecule to which a phage
binds with an inferior competition ability for nutrient uptake [25]. More recently,
biological evidences are found that there exists an adaptive immune system across
bacteria, which is the Clustered regularly interspaced short palindromic repeats
(CRISPRs) along with Cas proteins [6,13,14,18,26,27,31,41]. In this system, phage
infection is memorized via a short invader sequence, called a proto-spacer, and added
into the CRISPR locus of the host genome. And, the CRISPR/Cas system admits
heritable immunity [13,14,18,26,31]. The replication of infecting phage in bacteria
is aborted if their DNA matches the crRNAs (CRISPR RNAs) which contains these
proto-spacer. On the other hand, if there is no perfect pairing between the proto-
spacerand the foreign DNA (as in the case of a phage mutant), the CRISPR/Cas
system is counteracted and replication of the phage DNA can occur [19, 33, 34, 39].
Therefore, the CRISPR/Cas system participates in a constant evolutionary battle
between phage and bacteria [7, 13,27,47].

Mathematical models are powerful in understanding the population dynamic-
s of bacteria and phages. Han and Smith [23] formulated a mathematical model
that includes a phage-resistant bacteria, where the resistant bacteria is an inferior
competitor for nutrient. Their analytical results provide a set of sufficient condi-
tions for the phage-resistant bacteria to persist. Recently, mathematical models
have been proposed to study the contributions of adaptive immune response from
CRISPR/Cas in bacteria and phage coevolution [27,29]. In these papers, numerical
simulations are used to find how the immune response affects the coexistence of sen-
sitive strain and resistance strain of bacteria. In the present paper, we extend the
model in [23] by incorporating the CRISPR/Cas immunity on phage dynamics. Fol-
lowing [23], we focus on five state variables: R, S, M , I and P which represent the
concentrations of nutrient, sensitive bacteria and resistant bacteria, productively
infected bacteria and phage in a chemostat. The following assumptions will be used
in the formulation of mathematical model: (i) all sensitive bacteria have the poten-
tial to get the acquired immunity; (ii) only the resistance from the CRISPR/Cas
immunity is considered, which is incomplete because phage can mutate under the
pressure of CRISPR/Cas immunity; the resistant bacteria suffer the cost of com-
petitive ability [28]; (iii) the infected bacteria don’t uptake nutrient, and cannot
be infected again [23]; (iv) the latent time for phage infection is omitted because
it is small; (v) the loss of phage due to multiple phage attachment to bacteria is
omitted.

Let k be the valid phage adsorption rate to both susceptible and resistant bac-
teria, which is reasonable because the CRISPR/Cas immunity does not interfere
with phage adsorption. Following [23], we let the loss rates of phages due to ad-
sorption to susceptible bacteria and resistant bacteria be described by kSP and
kMP respectively, and the infection rate of sensitive bacteria be given by kSP .
Note that the CRISPR/Cas immunity arises during the process of phage invasion.
If ε is the probability that the CRISPR/Cas immunity is successfully established in
bacteria, then the transition rate of invaded bacteria to the resistance class is εkSP
and the transition rate to the productively infected class is (1 − ε)kSP . More-
over, we let k′ = κk denote the infection coefficient of resistant bacteria where
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0 < κ ≤ 1 describes the mutant probability of phage to escape CRISPR/Cas sup-
pression. Finally, by incorporating the terms discussed above to describe the effects
of CRISPR/Cas immunity into the model in [23], we arrive at the following model:

Ṙ = D(R0 −R)− f(R)(S + µM),

Ṡ = −DS + f(R)S − kSP,

Ṁ = −DM + µf(R)M + εkSP − k′MP,

İ = −DI + (1− ε)kSP + k′MP − δI,

Ṗ = −DP − kSP − kMP + bδI,

(1)

where a dot denotes the differentiation with respect to time t; D and R0 rep-
resent the dilution rate and nutrient supply concentration in the chemostat, re-
spectively; f(R) is the growth rate function which is taken to be Monod type:
f(R) = mR/(a + R), where m is the maximal growth rate and a is the half-
saturation constant; parameter µ with 0 < µ < 1 is the cost of bacteria’s resistance;
parameter b represents the total number of free virus particles released by each
productively infected cell over its lifespan; parameter δ is the death rate of infected
bacteria.

The paper is organized as follows. In the next section we present the mathemat-
ical analysis of the model that include the stability and bifurcation of equilibria.
Numerical simulations are provided in Section 3 to show the complicated dynamical
behaviors of the model. A brief discussion concludes in Section 4. The proofs of a
few theorems are given in Appendix.

2. Mathematical analysis. In this section, we present the mathematical analysis
for the stability and bifurcations of equilibria of (1). We start with the positivity
and boundedness of solutions.

2.1. Positivity and boundedness of solutions.

Proposition 1. All solutions of model (1) with nonnegative initial values are non-
negative. In particular, a solution (R(t), S(t),M(t), I(t), P (t)) of model (1) is posi-
tive for t > 0 in the existence interval of the solution if R(0) > 0, S(0) > 0,M(0) >
0, I(0) > 0, P (0) > 0.

Proof. We examine only the last conclusion of the proposition. First, we claim that
R(t) is positive for all t > 0 in the existence interval of the solution. Suppose not.
Then there is a time t1 > 0 such that R(t1) = 0 and R(t) > 0 for t ∈ (0, t1). Since

R(t1) = 0, we have Ṙ(t1) = DR0 > 0. Thus, there is a sufficiently small ε > 0
such that R(t) < 0 for all t ∈ (t1 − ε, t1), which is a contradiction. Hence, R(t) is
positive for t > 0. It is evident that

S(t) = S(0)e
∫ t
0
[−D−kP (θ)+f(R(θ))]dθ > 0.

In a similar way we can show the positivity of M(t), I(t) and P (t).

Proposition 2. All nonnegative solutions of model (1) are ultimately bounded.

Proof. Set

L(t) = R(t) + S(t) +M(t) + I(t) +
1

b
P (t).
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Calculating the derivative of L along the solution of (1), we obtain

L̇(t) = DR0 −DR(t)−DS(t)−DM(t)−DI(t)− 1

b
DP (t)

− 1

b
kS(t)P (t)− 1

b
kM(t)P (t)

≤ DR0 −DL(t).

It follows that the nonnegative solutions of (1) exist on [0, ∞) and

lim sup
t→∞

L(t) ≤ R0. (2)

Therefore, the nonnegative solutions of model (1) are ultimately bounded.
2.2. Infection-free equilibria. E0 = (R0, 0, 0, 0, 0) is a trivial equilibrium. To
find others, we assume

m > D, f(R0) > D. (3)

Then E1 = (λ1, R
0−λ1, 0, 0, 0) is an infection-free equilibrium, where λ1 = Da/(m−

D). Similarly, E2 = (λ2, 0, R
0 − λ2, 0, 0) is an infection-free equilibrium where

λ2 = Da/(µm−D) if

µm > D, µf(R0) > D. (4)

It is easy to see that (3) and (4) imply

λ1 < µλ2 < λ2.

Thus, the competitive exclusion in the absence of phage infection holds [24], and
the boundary equilibrium E2 is unstable. In what follows, we always assume that
(3) and (4) are available.

The basic reproduction numberR0 of phage in the population of sensitive bacteria
is computed through the matrix F of new infection and the infective transition
matrix V :

F =

(
0 (1− ε)k(R0 − λ1)
0 0

)
,

and

V =

(
D + δ 0
−bδ D + k(R0 − λ1)

)
,

and is defined as the spectral radius of FV −1 [16]. Hence,

R0 =

√
bδ(1− ε)k(R0 − λ1)

(D + δ)[D + k(R0 − λ1)]
.

Analogously, the basic reproduction number RM0 of phage in the population of
resistant bacteria is

RM0 =

√
bδκ(R0 − λ2)

(D + δ)[D + k(R0 − λ2)]
.

Theorem 2.1. The infection-free equilibrium E1 is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.

The proof of Theorem 2.1 is postponed to Appendix.

Theorem 2.2. The infection-free equilibrium E1 is globally asymptotically stable if
bk(R0 − λ1)/D < 1.
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Proof. Define a Lyapunov function by

V (t) = R(t)−R1 −
∫ R

R1

f(R1)

f(ξ)
dξ + S(t)− S1 − S1 ln

S

S1
+M(t) + I(t) +

1

b
P (t),

where R1 = λ1 and S1 = R0−λ1. Calculating the derivative of V along the solution
of (1), we obtain

V̇ (t) =

(
1− f(R1)

f(R)

)
Ṙ(t) + (1− S1

S
)Ṡ(t) + Ṁ(t) + İ(t) +

1

b
Ṗ (t)

= D(R0 −R)− D(R0 −R)f(R1)

f(R)
+ (S + µM)f(R1) + (D + kP − f(R))S1

−DS −DM −DI − D

b
P − kSP + kMP

b

= D(R0 −R1)(2− f(R1)

f(R)
− f(R)

f(R1)
)−D(R−R1)(1− f(R1)

f(R)
)−D(1− µ)M

−DI + (kS1 −
D

b
)P − kSP + kMP

b
.

Since bk(R0 − λ1)/D < 1, it follows that V̇ ≤ 0. Set

D0 = {(R,S,M, I, P ) | V̇ = 0}.

It is easy to examine that the largest invariant set in D0 is

{(R,S,M, I, P ) | R = λ1, S = S1,M = 0, I = 0, P = 0}.

It follow from the LaSalle’s invariance principle [22] that E1 is globally stable.

2.3. Infection equilibria. In this subsection, we consider the infection equilibria
of system (1) which satisfy

D(R0 −R)− f(R)S − µf(R)M = 0,

−DS + f(R)S − kSP = 0,

−DM + µf(R)M + εkSP − k′MP = 0,

−DI + (1− ε)kSP + k′MP − δI = 0,

−DP − kSP − kMP + bδI = 0.

(5)

If E3 = (R3, 0,M3, I3, P3) is an infection equilibrium dominated by the resistance
strain, we have

D(R0 −R3)− µf(R3)M3 = 0,

−DM3 + µf(R3)M3 − k′M3P3 = 0,

−DI3 + k′M3P3 − δI3 = 0,

−DP3 − kM3P3 + bδI3 = 0.

It follows that

P3 =
µf(R3)−D

k′
, M3 =

D(R0 −R3)

µf(R3)
, I3 =

k′M3P3

D + δ
,

and R3 satisfies

−DP3 − kM3P3 + bδI3 = P3(kA2M3 −D) = 0,
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where A2 = bδκ/(D+ δ)− 1. Substituting M3 = D(R0−R3)/µf(R3) and f(R3) =
mR3/(a+R3) into it, we get

g(R3) := R2
3 + (a+mA−R0)R3 −R0a = 0, (6)

where

A =
µ

k

D + δ

bδκ− (D + δ)
.

By direct calculations, we obtain

g(R0) = mAR0 > 0,

g(λ2) = (λ2 −R0)(λ2 + a) +mAλ2.

Since µf(R2) > D = µf(λ2), we have λ2 < R2. Clearly, g(λ2) < 0 if

A <
(R0 − λ2)(λ2 + a)

mλ2
=
µ(R0 − λ2)

D
,

which is equivalent to RM0 > 1. Consequently, there exists a unique infection equi-
librium E3 when RM0 > 1, where R3 lies between λ2 and R0, and E3 does not exist
when RM0 < 1. As a result, we can state the following theorem for the existence of
E3.

Theorem 2.3. The infection equilibrium E3 exists if RM0 > 1 and does not exist if
RM0 < 1.

To study the local stability of infection equilibria E3, we set

a1 =kM3 + 3D + δ + µM3f
′
(R3),

a2 =kM3(µM3f
′
(R3) + 2D − µf(R3))

+D(2D + δ) + (2D + δ + µf(R3))µM3f
′
(R3),

a3 =DkM3(µM3f
′
(R3) +D − µf(R3)) +D(D + δ)(µf(R3)−D)

+ µf(R3)µM3f
′
(R3)(2D + δ),

a4 =kA2(D + δ)(µM3f
′
(R3) +D)(µf(R3)−D).

(7)

Moreover, for κ < µ, we define

λ3 = f−1(D(1− κ)/(µ− κ)). (8)

Theorem 2.4. The infection-resistant equilibrium E3 is asymptotically stable if

κ < µ, R3 > λ3, a1a2 > a3, (a1a2 − a3)a3 − a4a21 > 0, (9)

and is unstable when κ > µ, or

κ < µ, R3 < λ3, a1a2 > a3, (a1a2 − a3)a3 − a4a21 > 0. (10)

The proof of Theorem 2.4 is given in Appendix.
Let us now consider the existence of coexistence equilibrium of (1). Denote such

an equilibrium by E4 = (R4, S4,M4, I4, P4). By (5) we have

P4 =
f(R4)−D

k
,
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M4 =
εD(R0 −R4)(f(R4)−D)

[D − µf(R4) + µε(f(R4)−D) + k′P4]f(R4)
,

S4 =
D(R0 −R4)[k′P4 +D − µf(R4)]

[D − µf(R4) + µε(f(R4)−D) + k′P4]f(R4)
,

I4 =
[(1− ε)kS4 + k′M4]P4

D + δ
.

(11)

Since P4 > 0, S4 > 0, I4 > 0 and M4 > 0, we need

f(R4) > D, k′P4 +D − µf(R4) > 0. (12)

Note that

F (R4) := k′P4 +D − µf(R4) = D(1− κ) + (κ− µ)f(R4),

where κ = k′/k is the phage mutant rate and the value of κ can represents the rela-
tive resistance of bacteria for the CRISPR/Cas immune system. Though there is no
definite relation between κ and µ in biology, which is presented as fluctuating selec-
tion dynamics [7], in this paper we simply consider two ways for the CRISPR/Cas
immune efficiency. First, we assume κ ≥ µ, which means that the mutant rate is
great than the cost of bacteria’s resistance. Secondly, we consider κ < µ, which
means that the mutant rate is inferior to the cost of bacteria’s resistance.

Note that R4 is the positive solution of the following equation:

−D +

(
bδκ

D + δ
− 1

)
kM4 +

(
bδ

1− ε
D + δ

− 1

)
kS4 = 0. (13)

Set

A1 = bδ(1− ε)/(D + δ)− 1, A2 = bδκ/(D + δ)− 1. (14)

Using (11) and f(R4) = mR4/(a+R4), we see that (13) holds if and only if

G(R4) := k(R0 −R4)

(
e1 + e2

D

f(R4)

)
− (e3f(R4) + e4) = 0,

where
e1 = κA1 − µA1 + εA2, e2 = A1 − κA1 − εA2,

e3 = µε− µ+ κ, e4 = (1− µε− κ)D.

Let g1(R4) = k(R0−R4)(e1 + e2D/f(R4)) and g2(R4) = e3f(R4) + e4. It is easy
to see that there are at most two intersection points for these two curves.

Evidently, G(R0) = −D < 0. When R4 = λ2, we get S4 = 0 and M4 = R0 − λ2.
As a result, we have

G(λ2) = −D + kA2(R0 − λ2) = (D + k(R0 − λ2))(RM − 1).

Thus, G(λ2) > 0 if and only if RM0 > 1, where RM is the square of the basic
reproduction number RM0 . Similarly, we get

G(λ1) = −D + kA1(R0 − λ1) = (D + k(R0 − λ1))(R2
0 − 1).

Hence, G(λ1) > 0 if and only if R0 > 1. From the above arguments, we conclude
that system (1) has a unique positive equilibrium E∗∗4 between λ2 and R0 when
R0 > 1 and RM0 > 1, has a unique positive equilibrium E∗4 between λ1 and λ2 when
R0 > 1 and RM0 < 1, admits two positive equilibria E∗∗4 and E∗4 if R0 < 1 and
RM0 > 1, and has no positive equilibrium if R0 < 1 and RM0 < 1.
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For the case where κ ≥ µ, F (R4) are always positive. But for the case where
κ < µ, F (R4) may be negative at the equilibrium E∗∗4 . In view of the definition of
λ3 in (8), we see F (λ3) = 0. If λ3 < R0, we have

G(λ3) = D(R0 − λ3)(e1 + e2
D

f(λ3)
)− (e3f(λ3) + e4)

= D(R0 − λ3)
εA2(1− µ)

1− κ
− µεD(1− µ)

µ− κ
.

Since 1− κ > µ(µ− κ), we see that λ3 > λ2 and positive equilibrium E∗∗4 exists
when G(λ3) ≤ 0, and does not exist when G(λ3) > 0. It is easy to examine that
G(λ3) ≤ 0 is equivalent to

λ3 ≥ R0 − µ(1− κ)

A2(µ− κ)
, (15)

and G(λ3) > 0 is equivalent to

λ3 < R0 − µ(1− κ)

A2(µ− κ)
. (16)

Solve G(λ3) = 0 in b to obtain

b∗ =
D + δ

δ

(
(µ− κ)(R0 − λ3)

(1− κ)µ
+ 1

)
.

Notice that A2 increases as b increases. Thus, E∗∗4 does not exist as b increases from
b∗. In view of F (λ3) = 0, it follows that when b = b∗, we have R4 = λ3, S4 = 0 and

P4 =
f(λ3)−D

k
=
D(1− κ)

k(µ− κ)
,

M4 =
D(R0 − λ3)(f(λ3)−D)

µf(λ3)
,

I4 =
k′M4P4

D + δ
.

Set

R∗ :=
R0

RM0
=

√
(D + k(R0 − λ2))(1− ε)(R0 − λ1)

κ(R0 − λ2)(D + k(R0 − λ1))
.

Solving R∗ = 1 in ε, we get

ε = ε∗ := 1− κ(R0 − λ2)(D + k(R0 − λ1))

(D + k(R0 − λ2))(R0 − λ1)
.

Thus, ε > ε∗(< ε∗) is equivalent to R∗ < 1(> 1).
Let us consider three cases:

(C1) κ ≥ µ, or κ < µ and λ3 ≥ R0.
(C2) κ < µ and b ≤ b∗ hold for λ3 < R0.
(C3) κ < µ and b > b∗ hold for λ3 < R0.

The following Theorem states the existence of infection equilibria of (1) according
to the above discussions.

Theorem 2.5. Let (C1) or (C2) hold. Then for ε > ε∗, we have:
(i) If 0 < R0 < R∗, there is no infection equilibrium.
(ii) If R0 = R∗, there exists one coexistence equilibrium E∗4 of multiplicity 2.
(iii) If R∗ < R0 < 1, there exist two coexistence equilibria E∗4 and E∗∗4 .
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(iv) If 1 < R0, there is only one coexistence equilibrium E∗∗4 .
For ε < ε∗ we have:

(i) If 0 < R0 < 1, there is no infection equilibrium.
(ii) If 1 < R0 < R∗, there is only one coexistence equilibrium E∗4 .
(iii) If R∗ < R0, there is only one positive equilibrium E∗∗4 .

Proof. Note that R0 = RM0 when ε = ε∗, and the condition ε > ε∗(< ε∗) is
equivalent to R0 < RM0 (> RM0 ). Furthermore, 0 < R0 < R∗ with ε > ε∗ is
equivalent to R0 < RM0 < 1, R∗ < R0 < 1 is equivalent to R0 < 1 < RM0 , and
R0 > 1 with ε > ε∗ is equivalent to 1 < R0 < RM0 . For ε < ε∗, 0 < R0 < 1
implies RM0 < R0 < 1, 1 < R0 < R∗ implies RM0 < 1 < R0, and R0 > R∗ implies
1 < RM0 < R0. Obviously, F (R4) > 0 always holds in case (C1) or case (C2). The
conclusions of this theorem follow immediately from the preceding discussions.

This theorem indicates that the system (1) exhibits a backward bifurcation as
R0 crosses unity when ε > ε∗ for case (C1) or case (C2). Moreover, it admits a
forward bifurcation when ε < ε∗.

Notice that the equilibrium E∗∗4 does not exist for case (C3). We can present
another theorem for the existence of infection equilibria.

Theorem 2.6. Let (C3) hold. The existence of infection equilibria is given as
follows:
For ε > ε∗, we have

(i) If 0 < R0 < R∗, there is no infection equilibrium;
(ii) If R∗ < R0 < 1, there are two infection equilibria E∗4 and E3;
(iii) If R0 > 1, there is only one infection equilibrium E3.

For ε < ε∗, we have
(i) If 0 < R0 < 1, there is no infection equilibrium;
(ii) If 1 < R0 < R∗, there exists one infection equilibrium E∗4 ;
(iii) If R0 > R∗, there is only one infection equilibrium E3.

The proof of this Theorem is omitted because it is similar to it for Theorem 2.5.

Theorem 2.6 presents the conditions for a forward bifurcation of the infection-free
equilibrium and a transcritical bifurcation of the coexist equilibrium. Note that for
λ3 ≥ R0, there is a backward bifurcation as R0 crosses unity, but for λ3 < R0, the
existence of a backward bifurcation depends on the relation between κ and µ. More
specifically, if κ ≥ µ, the backward bifurcation always exists and is independent of
the size of b. But for κ < µ, a critical value b∗ is needed to ensure the existence of
backward bifurcation.

2.4. Global analysis for full CRISPR/Cas immunity. We now explore the
persistence and extinction of phages in the case where κ = 0, which leads to k′ = 0
and means that CRISPR/Cas immunity can fully suppress the invaded phages.

Theorem 2.7. Let k′ = 0. Then we have the following conclusions:
(i) The positive solutions of (1) satisfy

lim
t→∞

(R(t), S(t),M(t), I(t), P (t)) = (λ1, R
0 − λ1, 0, 0, 0)

if R0 < 1.
(ii) If R0 > 1, then bacteria populations and phage infection are uniformly per-

sistent, i.e., there is a positive constant η such that each positive solution of (1)
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satisfies

lim inf
t→∞

S(t) > η, lim inf
t→∞

M(t) > η, lim inf
t→∞

I(t) > η, lim inf
t→∞

P (t) > η.

Proof. (i) For a continuous function f(t) which is bounded on [0,∞), we set

f∞ = lim sup
t→∞

f(t), f∞ = lim inf
t→∞

f(t).

First, we claim that a positive solution of (1) admits S∞ ≤ R0−λ1. Indeed, by (2)
we get

Ṡ ≤ −DS + f(R)S ≤ −DS + f(R0 + η0 − S)S, for all large t,

where η0 > 0 is sufficiently small. Then by similar arguments to those in [42], we
obtain S∞ ≤ R0 − λ1 + η0. Taking η0 → 0 leads to the conclusion as claimed. As
a result of the claim, we see from the last two equations of (1) that for all large t:

İ ≤ −DI + (1− ε)k(R0 − λ1 + η1)P − δI,

Ṗ ≤ −DP − k(R0 − λ1 − η1)P + bδI,
(17)

where η1 > 0 is sufficiently small. Let us consider a comparison system:

İ = −DI + (1− ε)k(R0 − λ1 + η1)P − δI,

Ṗ = −DP − k(R0 − λ1 − η1)P + bδI.
(18)

The Jacobian matrix of (18) is

J1 :=

(
−(D + δ) (1− ε)k(R0 − λ1 + η1)

bδ −(D + k(R0 − λ1 − η1)

)
.

Since R0 < 1, it is easy to examine that the eigenvalues of J1 have negative real
part for small η1 > 0. Thus, the positive solutions of (18) approach to (0, 0) as
t → ∞. It follows from (17) and the comparison principle that a positive solution
of (1) exhibits that (I(t), P (t))→ (0, 0) as t→∞. As a consequence, by the theory
of an asymptotically autonomous system [43], it suffices to consider the asymptotic
behaviors of the limiting system:

Ṙ = D(R0 −R)− f(R)(S + µM),

Ṡ = −DS + f(R)S,

Ṁ = −DM + µf(R)M.

(19)

Since λ1 < λ2, it follows from [24,25] that the positive solution of (1) exhibits that
(R(t), S(t),M(t))→ (λ1, R

0 − λ1, 0) as t→∞.
(ii) We first show that phage infection is uniformly persistent if R0 > 1. Set

X = {(R,S,M, I, P ) : R ≥ 0, S ≥ 0,M ≥ 0, I ≥ 0, P ≥ 0},
X0 = {(R,S,M, I, P ) ∈ X : I > 0, P > 0},
∂X0 = X \X0.

We wish to show that (1) is uniformly persistent with respect to (X0, ∂X0).
By Proposition 1, we see that both X and X0 are positively invariant for model

(1). Evidently, ∂X0 is relatively closed in X. Moreover, Proposition 2 indicates
that the nonnegative solutions of model (1) are point dissipative. Then we denote
by J∂ the largest positively invariant set of (1) in ∂X0. By similar discussions to
those in [46], we see

J∂ = {(R,S,M, I, P ) ∈ X : I = 0, P = 0}.
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It is clear that there are three equilibria E0, E1 and E2 in J∂ . Since λ1 < λ2,
by [24,25] we see that E1 is asymptotically stable in J∂ and the nonnegative solutions
of (1) in J∂ except for E0 and E2 tend to E1 as t→∞. Therefore, E0, E1 and E2

are isolated invariant sets in J∂ and no subset of {E0, E1, E2} forms a cycle in J∂ .
Note that (3) and (4) imply that a positive solution of (1) cannot approach E0

as t → ∞. We claim that this is also the case for E1. Suppose not. Then there
is a positive solution of (1) that satisfies (R(t), S(t),M(t), I(t), P (t)) → (λ1, R

0 −
λ1, 0, 0, 0) as t→∞. It follows that for all large t, we have

İ ≥ −DI + (1− ε)k(R0 − λ1 − η2)P − δI,

Ṗ ≥ −DP − k(R0 − λ1 + η2)P + bδI,
(20)

where η2 > 0 is sufficiently small. Let

J2 :=

(
−(D + δ) (1− ε)k(R0 − λ1 − η2)

bδ −(D + k(R0 − λ1 + η2)

)
.

Since R0 > 1, it is easy to examine that J2 has a positive eigenvalue with a positive
eigenvector for small η2 > 0. It follows that the positive solutions of the following
comparison system

İ = −DI + (1− ε)k(R0 − λ1 − η2)P − δI,

Ṗ = −DP − k(R0 − λ1 + η2)P + bδI
(21)

tend to infinity as t → ∞. As a result, by (20) and the comparison principle we
see that the positive solution of (1) satisfies (I(t), P (t)) → (∞,∞) as → ∞. We
are led to a contradiction. Consequently, there is no positive solution of (1) that
approaches E1 as t → ∞. In a similar way, we conclude that there is no positive
solution of (1) that approaches E2 as t→∞. Hence, W s(Ei) ∩X0 = ∅, i = 0, 1, 2.
Finally, we claim that E0, E1 and E2 are also isolated in X0. Indeed, if E1 is not
isolated, then there exists a positive solution of (1) which is so close to E1 for all
time that (20) holds. Then repeating the above arguments leads to a contradiction.
Similar discussions apply also to E0 and E2. Consequently, we conclude from [44,48]
that phage infection is uniformly persistent.

By adopting the same techniques as above, we can show that the population S
of sensitive bacteria is uniformly persistent. From the third equation and (2), we
obtain

Ṁ ≥ −DM + εkSP.

This, together with the uniform persistence of population S and population P ,
implies that the population M is uniformly persistent.

3. Numerical simulation. In this section, we implement numerical simulations
to illustrate the theoretical results and explore more interesting solution patterns
of model (1). Take the same parameter values as those in [23] where D = 0.2, m =
0.7726, R0 = 0.178212, a = 0.0727 and k′ = 0.15, δ = 0.4. Then we choose µ = 0.9
so that µf(R0) > D. First, we consider the case where κ ≥ µ. Let k = 0.15 which
means κ = 1 > 0.9 = µ. If ε = 0.8 > ε∗ = 0.023314, there is a backward bifurcation,
which is shown in panel (b) of Fig. 1. Furthermore, if ε = 0.01 < ε∗ = 0.023314,
there is a forward bifurcation, which is shown in panel (a) of Fig. 1.

To demonstrate the second case where κ < µ, we select µ = 0.8, k = 0.15, κ =
0.6666 and b = 110 ≤ b∗ = 135.618. Then (C2) holds. For ε = 0.3 < ε∗ = 0.370362,
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Figure 1. Bifurcation graphs for κ ≥ µ in case (C1). Panel (a)
shows the forward bifurcation with ε = 0.01. Panel (b) indicates
the backward bifurcation with ε = 0.8. H denotes a Hopf bifurca-
tion point, LP means a fold bifurcation point and BP represents
the branch point E1.
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Figure 2. Bifurcation graphs for case (C2). Panel (a) shows the
forward bifurcation with ε = 0.3 and panel (b) demonstrates the
backward bifurcation with ε = 0.8. H denotes a Hopf bifurca-
tion point, LP means a fold bifurcation point and BP represents a
branch point. The solid lines represent stable branches and dashed
lines mean unstable branches.

a forward bifurcation occurs, which is shown in panel (a) of Fig.2. For ε = 0.8 > ε∗,
we get a backward bifurcation shown in panel (b) of Fig.2.

To show the case (C3), we let k = 0.15, κ = 0.8, b∗ = 46.802, ε∗ = 0.218651
and b = 110 > b∗. Then (C3) holds. For ε = 0.1 < ε∗, a transcritical bifurcation
occurs at E4 and a forward bifurcation emerges at E1, which are shown in panel
(a) of Fig.3. For ε = 0.8 > ε∗, there are a backward bifurcation from E1 and a
transcritical bifurcation at E3, which are shown in Fig.3.

With the help of MatCont package [15], we obtain more information for the
dynamical behaviors of system (1), where the behaviors for κ < µ is more com-
plicated than those for κ ≥ µ when ε and R0 vary. As shown in Fig.2 where
case (C2) holds, the coexistence equilibrium E4 undergoes a Hopf bifurcation and
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Figure 3. Bifurcation graphs for case (C3). Panel (a) shows the
forward bifurcation at E1 and a transcritical bifurcation at E3 when
ε = 0.1 and panel (b) demonstrates the bistable phenomena be-
tween E1, E3 and a transcritical bifurcation at E4 when ε = 0.8.
H denotes a Hopf bifurcation point, LP means a fold bifurcation
point and BP represents a branch point. The solid lines represent
stable branches and dashed lines mean unstable branches.

a fold bifurcation. More specifically, the Hopf bifurcation point (H) occurs with
R0 = 1.277977, and a fold bifurcation point (LP) appears with R0 = 0.792644. At
the Hopf bifurcation point (H), the first Lyapunov coefficient is −5.079166× 10−2,
which means that the Hopf bifurcation is supercritical and the periodic solutions
are born stable. The fold bifurcation leads to the existence of multiple infection e-
quilibria with 0.792644 < R0 < 1. Note that the simulation results indicate that the
larger CRISPR/Cas immune efficiency ε can induce backward bifurcations, which
supports the results of our theoretical analysis.
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Figure 4. Graphs of bistable behaviors in case (C1) with κ ≥ µ.
Panel (a) shows the bistability of the infection-free equilibrium and
an coexist equilibrium where ε = 0.01, b = 130. Panel (b) indicates
the bistable coexistence of the infection-free equilibria with a stable
periodic solution where ε = 0.9, b = 260.

As discussed above, a bistable coexistence between the infection-free equilibrium
and an infection equilibrium may occur when ε > ε∗. Panel (a) of Fig.4 shows such
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a phenomenon. Interestingly, we find the bistable coexistence of the infection-free
equilibria with a stable periodic solution, which is shown in panel (b) of Fig.4.

4. Discussions. In this paper, we have developed a bacteriophage mathematical
model based on CRISPR/Cas immune system. By combining theoretical analysis
and numerical simulations, we have found that the model exhibits some new dynam-
ical behaviors than the model without the immune responses in [23]. More specif-
ically, the introduction of the CRISPR/Cas immune system induces a backward
bifurcation from the infection-free equilibrium or a transcritical bifurcation from
the coexist equilibrium, which means that although the basic infection reproduc-
tion number is below unity, the phage could coexist with bacteria. The coexistence
of a stable infection-free equilibrium with a stable infection equilibrium(or stable
coexist equilibrium), the bistable phenomenon of a stable infection-free equilibrium
and a stable periodic solution are found, which are shown in panel (a) of Fig. 4
and panel (b) of Fig. 4. They provide reasonable explanations for the complexity
of phage therapy [9, 29] or bacteria-phages coevolution [13], and the coexistence
of bacteria with phage in the biological experiments [20, 29]. In contrast, there
is no the backward bifurcation or bistable phenomena in the models of previous
studies [23,42] where the immune response is ignored.

For case (C3), the strain of sensitive bacteria may almost translated to resistent
bacteria when the phage mutant rate (means as relative resistance) is inferior to
the cost of bacteria’s resistance for every values of ε, that is said, the CRISPR/Cas
system have uninfluence on the bacteria and phages coexistence or the bacteria’s
diversity, which only influence by the released virus particles b in this case. This
analysis is consistent with [27]. The value of b∗ increases when µ increases or κ
decreases, while the effective of µ is greatly less than the change of κ. Thus, de-
creasing the values of phage mutant rate is contributed to sensitive bacteria survival
when resistant bacteria have great bacteria’s resistance cost value.

The mathematical analysis for the stability and bifurcation of equilibria of (1) in
this paper present some insights into the underlying phage infection mechanisms by
considering the CRISPR/Cas system in bacteria. It will be interesting to consider
the analytical conditions for the Hopf bifurcation and the homoclinic bifurcation of
the model and reveal how the immune response affect these bifurcations. It will be
also interesting to consider the effect of latent period of infection like it in [23] or
the nonlinear death rates like those in [29]. We leave these as future researches.

Acknowledgments. We are very grateful to the anonymous referees for careful
reading and valuable comments which have led to important improvements of our
original manuscript.

Appendix. Proof Theorem 2.1. Let S1 = R0−λ1. Evaluating the Jacobian matrix
of system (1) at E1 gives

J(E1) =


−D − S1f

′
(λ1) −D −µD 0 0

S1f
′
(λ1) 0 0 0 −kS1

0 0 −D + µD 0 εkS1

0 0 0 −D − δ (1− ε)kS1

0 0 0 bδ −D − kS1

 ,

where f
′

denotes the differentiation of function f . The characteristic equation of
J(E1) in ω is
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(ω +D)(ω + S1f
′
(λ1))[ω2 + (2D + δ + kS1)ω + f0](ω +D(1− µ)) = 0, (A-1)

where

f0 = (D + kS1)(D + δ)(1−R2
0).

Since 0 < µ < 1, it is easy to see that all the roots of characteristic equation (A-1)
have negative real parts if R0 < 1, and the characteristic equation has one positive
root if R0 > 1. It follows from the Routh-Hurwitz criterion that E1 is locally
asymptotically stable. This completes the proof.

Proof Theorem 2.4. Evaluating the Jacobian of (1) at E3 gives

J(E3) =


−D − µM3f

′
(R3) −f(R3) −µf(R3) 0 0

0 −D + f(R3) − kP3 0 0 0

µM3f
′
(R3) εkP3 0 0 −k′M3

0 (1 − ε)kP3 k′P3 −D − δ k′M3

0 −kP3 −kP3 bδ −D − kM3

 .

Using k′M3(D + δ − bδ) = −D(D + δ) and k′P3 = µf(R3) − D, we get the
characteristic equation in ω:

(ω − f(R3) + kP3 +D)(ω4 + a1ω
3 + a2ω

2 + a3ω + a4) = 0,

where ai (i=1,2,3,4) are defined by (7). Set

F1(ω) = ω − f(R3) + kP3 +D, F2(ω) = ω4 + a1ω
3 + a2ω

2 + a3ω + a4.

Note that a1 > 0 and a4 > 0. We see that the last two inequalities in (9) ensure
that all the principal minors in the Routh-Hurwitz criteria are positive. Thus,
the stability of E3 is determined by the sign of f(R3) − kP3 − D. Using k′P3 =
µf(R3)−D and f(R3) = kA2(R0 −R3)/µ, we get

f(R3)− kP3 −D = (1− µ

κ
)f(R3) + (

1

κ
− 1)D := F0(ω).

It is easy to see F0(R3) is positive for any value if κ ≥ µ, which leads to the
instability of E3. Furthermore, if κ < µ, F0(R3) is negative when

f(R3) >
D(1− κ)

µ− κ
,

which is equivalent to R3 > λ3. Consequently, E3 is asymptotically stable if (9)
holds, and is unstable if (10) is available. This completes the proof.

REFERENCES

[1] L. J. Allen and S. W. Vidurupola, Impact of variability in stochastic models of bacteria-phage
dynamics applicable to phage therapy, Stochastic Analysis and Applications, 32 (2014), 427–
449.

[2] I. Aviram and A. Rabinovitch, Bactria and lytic phage coexistence in a chemostat with
periodic nutrient supply, Bulletin of Mathematical Biology, 76 (2014), 225–244.

[3] E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection, Math-

ematical Biosciences, 149 (1998), 57–76.
[4] E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection with

latency period, Nonlinear Analysis: Real World Applications, 2 (2001), 35–74.

[5] B. J. Bohannan and R. E. Lenski, Linking genetic change to community evolution: Insights
from studies of bacteria and bacteriophage, Ecology Letters, 3 (2000), 362–377.

[6] S. J. Brouns, M. M. Jore and M. Lundgren, Small CRISPR RNAs guide antiviral defense in
prokaryotes, Science, 321 (2008), 960–964.

[7] A. Buckling and M. Brockhurst, Bacteria-virus coevolution, Evolutionary Systems Biology,

751 (2012), 347–370.

http://www.ams.org/mathscinet-getitem?mr=MR3197816&return=pdf
http://dx.doi.org/10.1080/07362994.2014.889922
http://dx.doi.org/10.1080/07362994.2014.889922
http://www.ams.org/mathscinet-getitem?mr=MR3150823&return=pdf
http://dx.doi.org/10.1007/s11538-013-9917-3
http://dx.doi.org/10.1007/s11538-013-9917-3
http://www.ams.org/mathscinet-getitem?mr=MR1629476&return=pdf
http://dx.doi.org/10.1016/S0025-5564(97)10015-3
http://www.ams.org/mathscinet-getitem?mr=MR1809864&return=pdf
http://dx.doi.org/10.1016/S0362-546X(99)00285-0
http://dx.doi.org/10.1016/S0362-546X(99)00285-0
http://dx.doi.org/10.1046/j.1461-0248.2000.00161.x
http://dx.doi.org/10.1046/j.1461-0248.2000.00161.x
http://dx.doi.org/10.1126/science.1159689
http://dx.doi.org/10.1126/science.1159689
http://dx.doi.org/10.1007/978-1-4614-3567-9_16


1376 MENGSHI SHU, RUI FU AND WENDI WANG

[8] J. J. Bull, C. S. Vegge and M. Schmerer, Phenotypic resistance and the dynamics of bacterial
escape from phage control, PloS One, 9 (2014), e94690.

[9] B. J. Cairns, A. R. Timms and V. Jansen, Quantitative models of vitro bacteriophage-host

dynamics and their application to phage therapy, PLoS Pathog, 5 (2009), e1000253.
[10] A. Calsina and J. J. Rivaud, A size structured model for bacteria-phages interaction, Nonlin-

ear Analysis: Real World Applications, 15 (2014), 100–117.
[11] A. Campbell, Conditions for existence of bacteriophages, Evolution, 15 (1961), 153–165.

[12] C. L. Carrillo, R. J. Atterbury and A. El-Shibiny, Bacteriophage therapy to reduce Campy-

lobacter jejuni colonization of broiler chickens, Applied and Environmental Microbiology, 71
(2005), 6554–6563.

[13] J. J. Dennehy, What can phages tell us about host-pathogen coevolution?, International

Journal of Evolutionary Biology, 2012 (2012), Article ID 396165, 12 pages.
[14] H. Deveau, J. E. Garneau and S. Moineau, CRISPR/Cas system and its role in phage-bacteria

interactions, Annual Review of Microbiology, 64 (2010), 475–493.

[15] A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numer-
ical bifurcation analysis of ODEs, ACM Trans Math Software, 29 (2003), 141–164.

[16] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic

equilibria for compartmental models of disease transmission, Math. Biosciences, 180 (2002),
29–48.

[17] D. H. Duckworth, Who discovered bacteriophage?, Bacteriological Reviews, 40 (1976), 793–
802.

[18] P. C. Fineran and E. Charpentier, Memory of viral infections by CRISPR-Cas adaptive im-

mune systems: Acquisition of new information, Virology, 434 (2012), 202–209.
[19] J. E. Garneau and M. Dupuis, The CRISPR/Cas bacterial immune system cleaves bacterio-

phage and plasmid DNA, Nature, 468 (2010), 67–71.
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