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Abstract. To study the impact of media coverage on spread and control of in-

fectious diseases, we use a susceptible-exposed-infective (SEI) model, including
individuals’ behavior changes in their contacts due to the influences of media

coverage, and fully investigate the model dynamics. We define the basic repro-

ductive number <0 for the model, and show that the modeled disease dies out
regardless of initial infections when <0 < 1, and becomes uniformly persistent-

ly endemic if <0 > 1. When the disease is endemic and the influence of the

media coverage is less than or equal to a critical number, there exists a unique
endemic equilibrium which is asymptotical stable provided <0 is greater than

and near one. However, if <0 is larger than a critical number, the model can

undergo Hopf bifurcation such that multiple endemic equilibria are bifurcated
from the unique endemic equilibrium as the influence of the media coverage is

increased to a threshold value. Using numerical simulations we obtain results
on the effects of media coverage on the endemic that the media coverage may

decrease the peak value of the infectives or the average number of the infectives

in different cases. We show, however, that given larger <0, the influence of the
media coverage may as well result in increasing the average number of the

infectives, which brings challenges to the control and prevention of infectious

diseases.

1. Introduction. Media coverage, awareness campaign or programs, and public
education have played an important and significant role in the control and preven-
tion of the spread of infectious diseases, such as influenza, AIDS/HIV, and SARS.
It has been shown that media coverage may change individuals’ behavior, while the
epidemic is in progress, such as reducing the individuals’ contacts or using more
safer prevention strategies, to reduce the risk of getting infected [1–3, 19]. Indeed,
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people’s response to the threat of disease is dependent on their perception of risk,
which is influenced by public and private information disseminated widely by the
media [33]. In a recent study for outbreaks of infectious diseases with high mor-
bidity and mortality, Mummert and Weiss showed that individuals closely follow
media reports of the outbreak, and that many will attempt to minimize contacts
with other individuals in order to protect themselves from infection [30]. Therefore,
understanding the effects of behavior changes due to influences of media coverage
and awareness programs can help guide more effective media plans and strategies
on the control and preventions of diseases.

Various mathematical models have been formulated for such purposes. The me-
dia coverage and awareness programs can be incorporated into disease transmission
models in a more explicit way where an equation or equations for the media coverage
or awareness programs are included into compartmental disease models [8, 27–29].
They can also be incorporated implicitly by being connected to individuals’ be-
havior changes which are expressed in the contact rates or other model terms and
therefore the infection or incidence rates [10,30,33,35–37]. In the latter case, several
types of media influence-dependent incidence rates have been proposed to reflect
the influences of media coverage. They include the reduction in contacts due to
behavioral change when the number of infectious individuals increases, and have
used such forms as e−a1E−a2I−a2H , where H denotes hospitalized individuals, I the
infectives, E exposed individuals, with nonnegative constants m, ai, i = 1, 2, 3, [23],
1/(1 +mI) [26], βe−mI [10,23,26], and c1 − c2f(I), where f(0) = 0, f ′(I) ≥ 0, and
limI→∞ f(I) = 1, [11, 32, 33]. Piecewise smooth incidence rates to represent the
reduction factor are also used in [36,37].

Employing distinct functions for media coverage in similar disease models can
certainly exhibit different model dynamics. The following three distinct function-
s to present the effects of mass media are identified and compared from various
perspectives in [9]

f(I, p1) = e−p1γI , f(I, p2) =
1

1 + p2I2
, f(I, p3) = 1− 1

p3 + I
.

It is demonstrated in [9] that, based on a same SEIR (susceptible-exposed-infectious-
recovered) compartmental model, the epidemic curves and key epidemic measure-
ments vary depending on the media functions chosen. In particular, even the models
with the distinct media functions have a very similar shape and the same basic repro-
ductive number <0 at the beginning of the epidemic, the entire resulting epidemic
curves can vary drastically.

We note that while the influence of media coverage is an important factor in the
spread of diseases, it usually does not impact the disease transmissions so rapidly
or sensitively as some other factors and thus the reactions to the media coverage
from the public are normally slow and delayed. Susceptible individuals may lack
the knowledge or information and tend to ignore the media coverage or awareness
campaigns when a disease first spreads, especially for those less fatal diseases. As
the disease spreads more widely or more severely, the public pays more attention to
the media coverage, and individuals then more seriously change their behavior. As
a result, the media impact gradually becomes more significant as the infections are
clearly increased. Apparently, most of the media functions used in many studies
mentioned above, such as e−mI and 1/(1 + mI), do not characterize such special
features of slow reactions of the public to the media impact appropriately because
they both decrease rapidly as I increases. Nevertheless, while function f(I) =
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1/(1 + aI2) is also a decreasing for I ≥ 0, it has such a feature that

f ′′(I)

{
< 0, for I < 1/

√
a,

> 0, for I > 1/
√
a,

and may thus be used more appropriately to reflect the individuals slow reactions.
To explore the dynamic features of the disease models with this media function

and investigate its possibly different impact on the disease transmissions, we con-
sider an SEI model with media coverage or awareness programs in this paper. We
assume that the media coverage or awareness programs directly affect individuals’
contact rates. We first present the model system with its basic dynamical proper-
ties in Section 2. We then derive a formula for the reproductive number <0, and
show the global stability of the disease free equilibrium as <0 < 1 in Section 3. We
prove the uniform persistence of the model for <0 > 1, determine the existence of
endemic equilibria and their stability, and verify the occurrence of Hopf-bifurcation
with varying media coverage in section 4.1, to do that, we will develop the methods
and techniques in [10, 16, 21, 22]. Numerical simulations are provided in Section 5
to demonstrate our results, and our findings are briefly discussed in Section 6.

2. The model. Considering the transmission of infectious diseases in some regions,
we divide the population into the groups of susceptible individuals, denoted by S(t),
individuals exposed to the infection but not yet infectious, denoted by E(t), and
infected individuals who are infectious, denoted by I(t). We assume that after
their recovery, the infective individuals no longer impose risk to the susceptible
individuals. We further assume that the population follows the logistic growth in
the absence of infection and then have the following baseline SEI model, in a more
general setting, for the transmission dynamics:

dS

dt
= bS

(
1− S

K

)
− ΛS,

dE

dt
= ΛS − (c+ d)E,

dI

dt
= cE − γI,

(1)

where b is the intrinsic growth rate of the human population, K is the carrying
capacity for the human population of a given region, 1/c is the incubating period, d
is the natural death rate, γ > d is the removal rate of the infectives which includes
the natural death rate, and Λ is the infection rate.

The infection rate is given by

Λ = βξ
I

N

where β is the transmission probability, ξ is the number of contacts per individual
per unit of time, and N = S+E+I. We assume random mixing between individuals
such that ξ = rN , and the contact factor r characterizes the behavior change of
individuals according to the infection level in the region. We then incorporate the
influence of media coverage into the model by assuming the contact factor to be a
function of the number of infectives with the form of

r(I) =
m

1 + aI2
,
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where m is the maximum effectiveness of the media coverage, and a ≥ 0 measures
the sensitivity of individuals to the infection level in the region. Substituting the
infection rate into (1), we arrive at the following model system

dS

dt
= bS

(
1− S

K

)
− µI

1 + aI2
S,

dE

dt
=

µI

1 + aI2
S − (c+ d)E,

dI

dt
= cE − γI,

(2)

where we write µ := βm for convenience.
Define region

D :=

{
(S,E, I) ∈ IR3 : S,E, I ≥ 0, S + E + I ≤ bK

l

}
,

where l := min{b, d, γ}. Then D is positively invariant for system (2), and for any
given initial condition (S(0), E(0), I(0)) ∈ D with S(0) > 0, there exists a unique
solution of system (2) with S(t) > 0, for all t ≥ 0.

3. Basic reproduction number and system permanence. We first derive a
formula for the basic reproduction number, <0, for system (2). Following the pro-
cedure introduced in [34], <0 = ρ(FV −1), where ρ represents the spectral radius of
a matrix, and we have two vectors F and V to represent the new infection term and
remaining transfer terms, respectively:

F =

 µSI
1+aI2

0
0

 ,V =

 (c+ d)E
−cE + γI

−bS(1− S
K ) + µSI

1+aI2

 .

The infected compartments are E and I. A straightforward calculation yields

F =

(
0 µK
0 0

)
, V =

(
c+ d 0
−c γ

)
,

FV −1 =
1

γ(c+ d)
·
(
µKc µK(c+ d)

0 0

)
.

Hence the basic reproduction number for system (2) is

<0 = ρ(FV −1) =
µcK

γ(c+ d)
,

and then from [34], the disease-free equilibrium E1 := (K, 0, 0) of system (2) is
locally asymptotically stable if <0 < 1 and unstable if <0 > 1.

We next show that E1 is globally asymptotically stable as well if <0 < 1.

Theorem 3.1. For model (2), if <0 < 1, the disease-free equilibrium E1 is globally
asymptotically stable.

Proof. We define a Lyapunov functional for system (2) as

U(t) := S(t)−K ln
S(t)

K
−K + E(t) +

c+ d

c
I(t).
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Thus we have U(t) ≥ 0 for t ≥ 0, and U(t) = 0 if and only if S(t) = K, E(t) = 0,
I(t) = 0. Differentiating U(t) along the solutions of system (2), we obtain

dU

dt

∣∣∣∣
(2)

=
S −K
S

·
(
bS(1− S

K
)− µSI

1 + aI2

)
+

µSI

1 + aI2
− (c+ d)E

+
c+ d

c
· (cE − γI)

= − b

K
· (S −K)2 +

µKI

1 + aI2
− γ(c+ d)

c
· I

= − b

K
· (S −K)2 +

γ(c+ d)

c
·
(
<0

1 + aI2
− 1

)
· I ≤ 0.

Set

A0 = {(S,E, I) ∈ D|U ′ = 0} .
Then U

′
= 0 if and only if

S(t) = K, I(t) = 0. (3)

Substituting (3) into the second equation of system (2) then yields E(t) = 0. By
the LaSalle-Lyapunov theorem ( [18], Theorem 3.4.7), the largest compact invariant
set of A0 is the singleton point E1. Thus we conclude that E1 is globally attractive
in D. Since E1 is locally asymptotically stable, E1 is globally asymptotically stable
in D as <0 < 1.

We further show that system (2) is permanence if the basic reproduction number
<0 > 1.

Theorem 3.2. Assume <0 > 1. Then there is a positive constant ε such that every
solution (S(t), E(t), I(t)) of (2) in D satisfies

lim
t→∞

inf(S(t), E(t), I(t)) ≥ η := (ε, ε, ε),

and thus system (2) is permanence.

Proof. Define sets

X := {(S,E, I):S ≥ 0, E ≥ 0, I ≥ 0},
X0 := {(S,E, I) ∈ X:S > 0, E > 0, I > 0},

and

∂X0 := X\X0.

Let φ(t) : X → X be the solution semiflow of system (2). As shown above, the
solution semiflow φ(t) of (2) has a global attractor on X. Since X0 is relatively
closed in X and system (2) is positively invariant and point dissipative in D, X0 is
positively invariant for φ.

Define

Ω∂ := {φ(t) ∈ ∂X0,∀t ≥ 0}.
We now claim that

Ω∂ = {φ(t) ∈ ∂X0 : E(t) = 0 and I(t) = 0,∀t ≥ 0}. (4)

Let φ(t) ∈ Ω∂ . Without loss of generality, we only need to prove that E(t) =
0,∀t ≥ 0.

Assume otherwise. Then there exists nonnegative constant t0 such that E(t0) >
0. Following the definition of Ω∂ , one must have I(t0) = 0. Notice by system (2)
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that X is invariant for φ. Thus by the second equation in (2), we have
dE(t)

dt
≥

−(c+ d)E(t),∀t ≥ t0, showing that E(t) > 0, ∀t ≥ t0.

On the other hand, by the last equation in (2), we have
dI(t)

dt

∣∣∣∣
t=t0

= cE(t0) > 0.

Thus, we get I(t) > 0 for any t > t0 and t − t0 sufficiently small. Similarly to the
arguments above, we also have I(t) > 0, ∀t > t0. Thus we get I(t) > 0, E(t) >
0, ∀t > t0, which contradicts φ(t) ∈ ∂X0,∀t ≥ 0.

We now let

Ψ0 :=
⋂
x∈Z0

w(x).

Here Z0 is the global attractor of φ(t) restricted to ∂X0. We claim that Ψ0 =
{E0}

⋃
{E1}. In fact, Ψ0 ⊆ Ω∂ = {(S(t), 0, 0)}. From system (2), we obtain S = 0

or S = K. Thus E0, E1 ∈ Ψ0.
Since {E0}, {E1} are two isolated invariant sets of φ(t) in Ω∂ , using the similar

arguments from Theorem 3.1 and <0 > 1, we can prove that E1 is asymptotically
stable in Ω∂ , defined in (4). Hence Ψ0 has an acyclic covering.

Next, we prove that W s((0, 0, 0)) ∩X0 = φ. Suppose that it is not true. Then
for any ε1 > 0, there exists T0 > 0 such that (S(t), E(t), I(t)) < ξ1 := (ε1, ε1, ε1), as
t > T0.

By the first equation of (2), we have

Ṡ

S
= b

(
1− S

K

)
− µI

1 + aI2
> b

(
1− ε1

K

)
− µε1 > 0, t > T0,

where we let a = 0 and ε1 small enough. Thus S(t)→∞ as t→∞, which leads to
a contradiction.

Next, we prove W s((K, 0, 0)) ∩ X0 = φ. Suppose that it is not true. For any
ε2 > 0, there exists T1 > 0 such that (|S(t) −K|, E(t), I(t)) < ξ2 := (ε2, ε2, ε2), as
t > T1.

By the second equation and the third equation in (2) and a = 0, we have(
Ė

İ

)
=

(
µSI

1+aI2 − (c+ d)E

cE − γI

)
≥
(
−(c+ d) µ(K − ε2)

c −γ

)
·
(
E
I

)
.

Let

A =

(
−(c+ d) µ(K − ε2)

c −γ

)
.

The characteristic polynomial of A takes the form∣∣∣∣λ+ (c+ d) −µ(K − ε2)
−c λ+ γ

∣∣∣∣ = λ2 + (c+ d+ γ)λ+ (c+ d)γ − cµ(K − ε2).

As ε2 small enough and <0 = µcK
γ(c+d) > 1, we have (c + d)γ − cµ(K − ε2) < 0.

Thus A has a simple positive eigenvalue. Using the comparison theorem, we have
either E(t) → ∞ or I(t) → ∞, as t → ∞. By [39, Theorem 1.3.2], we conclude
that there exists ξ > 0 such that limt→∞ inf(S(t), E(t), I(t)) ≥ ξ. This shows the
uniform persistence of solutions of system (2).

4. Equilibria and media impact. Letting the right hand side of (2) equal zero,
we find that the origin E0 = (0, 0, 0) is an equilibrium with eigenvalues b,−(c +
d),−γ, and model (2) has one disease free equilibrium at E1 = (K, 0, 0). Clearly,
E0 is a hyperbolic saddle point.
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From model (2), an endemic equilibrium satisfies the following equations:

bS

(
1− S

K

)
=

µSI

1 + aI2
=

(c+ d)γI

c
, (5)

which leads to

µS − α(1 + aI2) = 0, (6)

bS(K − S)− αKI = 0, (7)

where we write α := (c+d)γ
c .

Solving (6) for I yields

I = f1(S) =

√
µ

aα

(
S − α

µ

)
, (8)

which is a parabola for S ≥ α
µ . Define

I = f2(S) =

√
b

Kα
(K − S), (9)

for 0 ≤ S ≤ K.
Clearly, the curves of functions f1 and f2 intersect once if K

2 < α
µ < K, that is

1 < <0 ≤ 2. The situation for α
µ < K

2 could be complex. it follows from (6) and

(7) that

F (I) = I4 +
1

a
(2−<0)I2 +

µ<0

a2b
I +

1

a2
(1−<0) = 0. (10)

Notice that as <0 > 1, equation (10) has at least one positive root and has at
most three positive roots. More specifically, equation (10) has one positive root as
1 < <0 ≤ 2. To investigate the existence of multiple endemic equilibria, we only
consider the Case <0 > 2.

We first give a simple lemma for convenience.

Lemma 4.1. The cubic equation

H(x) := Ax3 −Bx+ C = 0,

with A, B, and C all positive, has no, one, or two positive solutions if and only if

27AC2 > 4B3, 27AC2 = 4B3, 27AC2 < 4B3,

respectively.

Proof. Function H has a positive critical point x̄ =
√

B
3A , and then has no, one, or

two positive solutions if and only if H(x̄) > 0, H(x̄) = 0, or H(x̄) < 0, respectively.
Substituting x̄ into H(x̄) leads to

H(x̄) =
1

3
x̄(3Ax̄2 −B) +

1

3
Bx̄−Bx̄+ C = C − 2

3
Bx̄.

Then the conclusion follows directly by substituting x̄ into H(x̄) again.

Apply Lemma 4.1 to

F ′(I) = 4I3 +
2

a
(2−<0)I +

µ<0

a2b
= 0 (11)
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and define

ah :=
27µ2<2

0

8b2(<0 − 2)3
. (12)

Then F ′(I) has no critical points, and thus F (I) has a unique positive solution if
a ≤ ah.

Assume a > ah. Then F ′(I) has two critical points 0 < I1 < I2; that is, F (I)
has two local extreme values at Ik, k = 1, 2.

We consider the case where F (I) = 0 has two positive solutions. To this end,
it is necessary to have a unique positive solution to both F (I) = 0 and F ′(I) = 0.
Substituting (11) into (10) yields

F (I) = I

(
I3 +

1

2a
(2−<0)I +

µ<0

4a2b

)
+

1

2a
(2−<0)I2 +

3µ<0

4a2b
I +

1

a2
(1−<0)

=
1

2a
(2−<0)I2 +

3µ<0

4a2b
I +

1

a2
(1−<0) := G(I).

It follows from <0 > 2 that the quadratic equation G(I) = 0 has a unique positive
solution if and only if

(
3µ<0

4a2b
)2 = 4(

1

2a
(2−<0)

1

a2
(1−<0)),

that is

a = ac :=
9µ2<2

0

32b2(2−<0)(1−<0)
. (13)

Under condition (13), the unique positive solution to G(I) = 0 is

I =
3µ<0

4a2b

2a

2(<0 − 2)
=

3µ<0

4ab(<0 − 2)
. (14)

Substituting (14) into F ′(I) = 0 leads to(
3µ<0

4ab(<0 − 2)

)3

+
2−<0

2a

3µ<0

4ab(<0 − 2)
+
µ<0

4a2b
=

(
3µ<0

2ab(<0 − 2)

)3

− µ<0

2a2b
= 0,

or equivalently,

a =
27µ2<2

0

8b2(<0 − 2)3
= ah.

That is, there exists a positive solution to both F (I) = 0 and F ′(I) = 0 if only
if a = ac = ah. However, as shown above, F (I) has a unique positive solution if
a = ah. Therefore, it is impossible to have two positive solutions to F (I) = 0.

Under the assumption of a > ah, there exist two critical points I1 < I2 to F (I).
If F (I1)F (I2) < 0, function F (I) has three positive solutions. In summary, we have

Theorem 4.2. Assume R0 > 2. Equation (10) has a unique positive solution if
a ≤ ah where ah is given in (12). It is impossible to have two positive solutions to
F (I) = 0 in any case. If ac > ah, function F (I) has two critical points 0 < I1 < I2,
and if F (I1)F (I2) < 0, equation (10) has three positive solutions.

Proposition 1. Consider model (2) with all parameters positive. Clearly we could

always find parameter a0 = µcbS∗

<0
+ bc( 2S∗

K − 1)(µK<0
− 2µK2

<2
0S
∗ ). If <0 > 1, then model

(2) has one or three positive equilibrium. Furthermore,
• if 0 < a ≤ a0, the model has a unique endemic equilibrium;
• if a > a0, the model has three endemic equilibria;
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4.1. Endemic equilibrium for sufficiently small media impact a. In this
section, we study the stability and Hopf bifurcation of the endemic equilibria and
determine how the media impact can influence the periods of the oscillations of
disease transmissions.

The case a = 0 is same as [10], and from [10] we have the following conclusions:
• When a = 0, model (2) has a unique endemic equilibrium (S∗0 , E

∗
0 , I
∗
0 ), and

the associate characteristic equation of model (2) is

λ3 + (c+ d+ γ +
b

<0
)λ2 +

b

<0
(c+ d+ γ)λ+ bγ(c+ d)(1− 1

<0
) = 0.

Let

RH0 = 1
2 [1 + (c+d+γ)2

γ(c+d) +
√

1 + 2(c+d+γ)(2b+c+d+γ)
γ(c+d) + (c+d+γ)4

γ2(c+d)2 ]. (15)

Obviously, for any positive parameters we have RH0 > 1.
• For model (2) with a = 0, the endemic equilibrium (S∗0 , E

∗
0 , I
∗
0 ) is locally

asymptotically stable if 1 < <0 < RH0
.

• For model (2) with a = 0, when <0 = RH0
, (S∗0 , E

∗
0 , I
∗
0 ) becomes unstable and

model (2) undergoes a Hopf bifurcation.

4.2. Stability for <0 slightly larger than 1. When <0 > 1 and 0 ≤ a ≤ a0,
model (2) has a unique endemic equilibrium E2 = (S∗, E∗, I∗). The Jacobian matrix
evaluated at E2 is

JE2
=

 − bS
∗

K 0 µK
<0
− 2µK2

<2
0S
∗

b(1− S∗

K ) −(c+ d) −µK<0
+ 2µK2

<2
0S
∗

0 c −γ

 ,

and the characteristic equation of JE2
is given by

λ3 + a2λ
2 + a1λ+ a0 = 0, (16)

where

a2 = c+ d+ γ + bS∗

K ,

a1 = bS∗

K (c+ d+ γ) + 2µcK
<0
− 2µcK2

<2
0S
∗ .

(17)

The coordinates of the endemic equilibrium (S∗, E∗, I∗) are smooth functions of a.
When 0 < a ≤ a0 is sufficiently small, we can expand the coordinates for S∗ as

S∗ = S∗0 + aS∗1 +O(a2) (18)

where particularly, by (5) we have

S∗0 = K
<0
, S∗1 = S∗0

b
µ (1− 1

<0
). (19)

Next, we study the impact of the media coverage on the dynamics of the disease
transmissions, and consider the case of 0 < a ≤ a0 and sufficiently small.

It is easy to verify that (16) has a pair of purely imaginary roots if and only if
a1a2 = a0. Let

∆ = a1a2 − a0. (20)
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If ∆ = 0, the endemic equilibrium has a pair of purely imaginary roots. Now we
calculate equation (20) as follows:

∆ = a1a2 − a0

= (c+ d+ γ +
bS∗

K
)

[
bS∗

K
(c+ d+ γ) +

2µcK

<0
− 2µcK2

<2
0S
∗

]
−µcbS

∗

<0
− bc(2S∗

K
− 1)(

µK

<0
− 2µK2

<2
0S
∗ )

=
1

<2
0S
∗ [
b<2

0S
∗2

K
(c+ d+ γ)2 + 2µcK<0S

∗(c+ d+ γ)

−2µcK2(c+ d+ γ) +
b2<2

0S
∗3

K2
(c+ d+ γ) + bµc(K<0S

∗

+2KS∗ −<0S
∗2 − 2K2)]. (21)

By (17), (18) and (19), we have

∆ =
1

<5
0S
∗ · (∆̃(a,<0) +O(a2)), (22)

where

∆̃(a,<0) =
b<5

0(c+ d+ γ)2

K

[
K2

<2
0

+
2abK2

µ<2
0

(1− 1

<0
)

]
+2µcK<4

0(c+ d+ γ)

[
K

<0
+
abK

µ<0
(1− 1

<0
)

]
−2µcK2<3

0(c+ d+ γ) +
b2<5

0(c+ d+ γ)

K2
[
K3

<3
0

+
3abK3

µ<3
0

(1

− 1

<0
)] + bcµ<3

0[(2K +K<0)

[
K

<0
+
abK

µ<0
(1− 1

<0
)

]
−2K2 −<1

0

[
K2

<2
0

+
2abK2

µ<2
0

(1− 1

<0
)

]
]

= <3
0[bK(c+ d+ γ)2(1 +

2ab

µ
) + 2cK2ab(c+ d+ γ) + bcµK2(

ab

µ
− 1)]

+<2
0[−2ab2K(c+ d+ γ)2

µ
+ b2K(c+ d+ γ)(1 +

3ab

µ
)

−2abcK2(c+ d+ γ)− ab2cK2 + bµcK2]

+<0[−3ab3K(c+ d+ γ)

µ
]. (23)

It is not difficult to verify that ∆ = 0 is equivalent to ∆̃(a,<0) = 0. Note that

when ∆̃(a,<0) = 0, the endemic equilibrium has a pair of purely imaginary roots
λ = ±ωi, where

ω2 =
bS∗

K
(c+ d+ γ) +

2µcK

<0
− 2µcK2

<2
0S
∗ . (24)

If the parameters a and <0 satisfy ∆̃(a,<0) = 0, a Hopf bifurcation could occur.

Next we investigate the function determined by ∆̃(a,<0) = 0.

Lemma 4.3. Consider ∆̃(a,<0) = 0 for <0 > 1 and 0 < a ≤ a0. In the neigh-
borhood of (0, RH0), there exists a unique smooth function <0 = <0(a) such that
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∆̃(a,<0(a)) = 0 for 0 < a ≤ a0 sufficiently small. Furthermore, we have

<0(a) = RH0
+ aRH1

+O(a2), (25)

where RH0
is defined as in (15) and satisfy

R2
H0
γ(c+ d)−RH0

[(c+ d+ γ)2 + γ(c+ d)]− b(c+ d+ γ) = 0 (26)

and

RH1 =
−R2

H0
[ 2b

2K(c+d+γ)2

µ + 2bcK2(c+ d+ γ) + b2cK2]

3RH0
[bK(c+ d+ γ)2 − bµcK2] + 2[b2K(c+ d+ γ) + bµcK2]

+
RH0 [ 2b

2K(c+d+γ)2

µ − 3b3K(c+d+γ)
µ + 2bcK2(c+ d+ γ) + b2cK2]

3RH0
[bK(c+ d+ γ)2 − bµcK2] + 2[b2K(c+ d+ γ) + bµcK2]

+

3b3K(c+d+γ)
µ

3RH0
[bK(c+ d+ γ)2 − bµcK2] + 2[b2K(c+ d+ γ) + bµcK2]

. (27)

Proof. Note that

∆̃(0, RH0) = R3
H0

[
bK(c+ d+ γ)2 − bcK2µ

]
+R2

H0

[
b2K(c+ d+ γ) + bcK2µ

]
= 0

where in the neighborhood of (0, RH0), we have

∂∆̃

∂<0
|a=0,<0=RH0

= 3R2
H0

[
bK(c+ d+ γ)2 − bcK2µ

]
+2RH0

[
b2K(c+ d+ γ) + bcK2µ

]
= −RH0

[
b2K(c+ d+ γ) + bcK2µ

]
6= 0. (28)

then by the Implicit Function Theorem, there exists a unique smooth function

<0 = <0(a) such that ∆̃(a,<0(a)) = 0 for a > 0 sufficiently small. If we write the
Taylor expansion for <0(a) in terms of a in (25) and bring it into (23), we have

∆̃(a.<0(a))

= ∆̃(a,RH0
+ aRH1

+O(a2))

= (R3
H0

+ 3aR2
H0
RH1

)[bK(c+ d+ γ)2(1 +
2ab

µ
) + 2cK2ab(c+ d+ γ)

+bcµK2(
ab

µ
− 1)] + (R2

H0
+ 2aRH0RH1)[−2ab2K(c+ d+ γ)2

µ

+b2K(c+ d+ γ)(1 +
3ab

µ
)− 2abcK2(c+ d+ γ)− ab2cK2

+bµcK2] + (RH0 + aRH1)[−3ab3K(c+ d+ γ)

µ
] = 0 (29)

Equalizing the same power terms of parameter a on both sides in (29), at the same
time taking into (26), we have

3R2
H0
RH1

[bK(c+ d+ γ)2 − bµcK2]

+R3
H0

[
2b2K(c+ d+ γ)2

µ
+ 2bcK2(c+ d+ γ) + b2cK2]

+2RH0RH1 [b2K(c+ d+ γ) + bµcK2]
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+R2
H0

[−2b2K(c+ d+ γ)2

µ
+

3b3K(c+ d+ γ)

µ
− 2bcK2(c+ d+ γ)− b2cK2]

+RH0
[−3b3K(c+ d+ γ)

µ
]

= 0 (30)

thus we solve RH1
.

Theorem 4.4. Consider model (2). If 1 < <0 < <0(a), where <0(a) is defined in
(25), then E2 = (S∗, E∗, I∗) is locally asymptotically stable.

Proof. When R0 > 1, if a2 > 0, a0 > 0 and a2a1 − a0 > 0, then all eigenvalues
of (16) have negative real parts by Routh-Hurwitz criteria [31], we can prove this
conclusion. Obviously, a2 > 0. In the following, we need to prove a0 > 0 and
a2a1 − a0 > 0. By (18) and (19), we have for a > 0 small that

a0 =
µcbS∗

<0
+ bc(

2S∗

K
− 1) · (µK

<0
− 2µK2

<2
0S
∗ )

=
µcb

<0S∗
· (3S∗2 −KS∗ − 4KS∗

<0
+

2K2

<0
)

=
µcbK2

<2
0S
∗ ·
[
(1− 1

<0
)(1 +

2ab

<0µ
− ab

µ
) +O(a2)

]
.

(31)

if 1 < <0 ≤ 2, obviously a0 > 0; if 2 < <0, from relationship of root and coefficient
in (10), we can obtain a < µ<0

b(<0−2) , the same as a0 > 0.

Next, we prove a1a2 − a0 > 0. By (18) and (19), we straightforward calculate

a2a1 − a0 =

(
c+ d+ γ +

bS∗

K

)
·
[
bS∗

K
(c+ d+ γ) +

2µcK

<0
− 2µcK2

<2
0S
∗

]
−
[
µcbS∗

<0
+ bc(

2S∗

K
− 1) · (µK

<0
− 2µK2

<2
0S
∗ )

]
=

bK

<5
0S
∗ · [<

3
0(42 − µcK + T1a) + <2

0(b4+ µcK − T1a

+T2a)−<0T2a+ T2a+O(a2)]

=
bK

<5
0S
∗ · [<

3
0(42 − µcK) + <2

0(b4+ µcK)

+<2
0T1a(<0 − 1) + <0T2a(<0 − 1)] > 0

(32)

where 4 = c+ d+ γ, T1 = 2b(c+d+γ)2

µ + 2cK(c+ d+ γ) + bcK and T2 = 3b2(c+d+γ)
µ .

Hence according to Routh-Hurwitz criteria [31], E1 = (S∗, E∗, I∗) is locally asymp-
totically stable when 1 < <0 < <0(a) and a > 0 is sufficiently small.

4.3. Hopf bifurcation for <0 larger than some critical value.

Theorem 4.5. Consider model (2). If <0 = <0(a), 0 < a ≤ a0, then system
undergoes a Hopf bifurcation.

Proof. Differentiating (16) with respect µ, we get

dλ
dµ = −dS∗

dµ ·
B1

B2
, (33)
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where

B1 = b
Kλ

2 + [ bK (c+ d+ γ) + 2Kr(c+d)
<0S∗2

]λ+ bγ(c+ d)( 3
K −

2K
<0S∗2

),

B2 = 3λ2 + 2(c+ d+ γ + bS∗

K ) · λ+ bS∗

K (c+ d+ γ) + 2µcK
<0
− 2µcK2

<2
0S
∗ .

(34)

When <0 = <0(a), equation (16) has a pair of purely imaginary roots λ = ±ωi with

ω2 = bS∗

K (c+ d+ r) + 2µcK
<0
− 2µcK2

<2
0S
∗ . Note that

S∗ =
γ(c+ d)

µc
+
ab2c(K − S∗)2S∗2

µK2γ(c+ d)
,

so
dS∗

dµ
= −S

∗

µ
+

2ab2c(K − S∗)(K − 2S∗)S∗

µK2γ(c+ d)
· dS∗

dµ
,

dS∗

dµ
= −bcS(K − S)

<0a0
.

Hence we have dS∗

dµ < 0. Following from (33) and dS∗

dµ < 0, we get

sign

{
d(Reλ)

dµ

}
λ=iω

= sign

{
Re

(
dλ

dµ

)}
λ=iω

= sign

Re
 b

K
ω2 − [ b

K
(c+ d+ γ) + 2Kγ(c+d)

<0S∗2
] · iω − bγ(c+ d)( 3

K
− 2K
<0S∗2

)

−3ω2 + 2(c+ d+ γ + bS∗
K

) · iω + bS∗
K

(c+ d+ γ) + 2µcK
<0
− 2µcK2

<2
0S
∗


= sign{Re( b

K
ω2 − [

b

K
(c+ d+ γ) +

2Kγ(c+ d)

<0S∗2
] · iω − bγ(c+ d)(

3

K
− 2K

<0S∗2
))

×(−2ω2 − 2(c+ d+ γ +
bS∗

K
) · iω)}

= sign{2b
K
ω4 + 2ω2[

b

K
(γ − c+ d

2
)2 +

3(c+ d)2

4
+ cd] + (c+ d+ γ)

b2S∗

K2
+

(c+ d+ γ + b+
bS∗

K
)
2Kγ(c+ d)

<0S∗2
]} > 0.

(35)

Therefore, the system undergoes a Hopf bifurcation when <0 = <0(a) and a is
small.

5. Numerical simulations. To analyze our results, we provide numerical exam-
ples in this section.

We choose parameter a from Table 1. The other parameters K is 5000000 people,
b is selected as 0.001 day−1, c is chosen as 0.1 day−1, d is 0.001 day−1 and µ is
selected as 1.2× 10−8 day−1. We let γ and a vary.

First, we consider the case where the removal rate from the infected compartment
is relatively higher, that is γ = 0.05 day−1. We then <0 = 1.1765 and RH0 = 5.5206.
As shown in Fig. 1 (a), (b), the green thin curve represents the case when a = 0,
where the application of media was not consider; the blue thick curve and the red
thicker curve represent the cases when a = 1×10−11 and a = 1×10−10, respectively.
In Table 1, if γ = 0.05 day−1, <0 = 1.1765 and RH0

= 5.5206, we solve for the
solutions of system (2) as a increases from 0 to 1×10−11, to 1×10−10, and we found
that S∗ becomes gradually larger and E∗, I∗ become smaller when a increases. From
Fig. 1 and Table 1, it is not difficult to find that the endemic equilibrium is local
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Table 1. Endemic equilibrium (S∗, E∗, I∗) when a > 0 is varied.
In the table, expect for the parameters given in Table 2, here we
have γ = 0.05. In this case, <0 = 1.1765 and RH0

= 5.5206

Parameter a S∗ E∗ I∗

a = 0 4208333 6597 13194
a = 1× 10−11 4215551 6548 13096
a = 1× 10−10 4272153 6157 12314

asymptotically stable, and the effective media coverage (larger values of a) not only
stabilizes the oscillation but also reduces the number of the infected individuals in
the course of transmission.

Fig. 2 (a), (b) simulate the media impact to the transmission when γ = 0.02
day−1. As shown in Fig. 2 (a), (b), the trough of the number of susceptible
individuals reduce and come sooner, but the peak rise and retard as the parameters
γ decreases, simultaneously the trough of the infected individuals also reduce and
come sooner, nevertheless the peak of the infected individuals rise and come sooner.
The number of the peak and the trough of the susceptible individuals or the infected
individuals all improve when the media impact parameter a increases, and when
a increases to a specific value, the number of the susceptible individuals and the
infected individuals tend to stable, but is less than γ = 0.05.

Fig. 3 describes the change of the maximum infected individuals when a increases
from 0 to 1× 10−8. It is obvious that the maximum value of infected individuals is
from falling sharply to steady reduction as the media impact parameter a increases.

6. Discussion. In this paper, we explore the impact of media coverage a to the
transmission of infection diseases. In [10], Cui et al. used a contact transmission
rate β(I) = µe−mI . However, the contact transmission rate in [10] fails to satisfy
that it is unsensitive to the increase of infectious diseases, at least in the early
outbreak stage. For further study, we consider the more realistic media function
β(I) = µSI

1+aI2 to reflect the impact of media coverage and alertness. Comparing

to contact transmission rate in model [10], our media function is weaken in the
beginning period of the outbreak for some infectious diseases, and once the media
impact reaches to a certain degree, the declining on the infectives for the contact
transmission rate tends to gentle.

We derive formulas for the basic reproductive number of infection <0. If <0 < 1
(Theorem 3.1), the disease free equilibrium E1 is globally asymptotically stable. If
<0 > 1 (Theorem 3.2), system (2) is uniformly persistent with endemic equilibrium.
If 0 ≤ a ≤ a0, the model is shown to have only a unique endemic equilibrium, and
system (2) is uniformly persistent with the unique endemic equilibrium. If a > a0,
it is shown that the model may have three endemic equilibria and it is uniformly
persistent with the maximum endemic equilibrium. The case of a = 0 has been
studied by Cui et al. in [10], so we only investigate the case of 0 < a ≤ a0 with a
sufficiently small. When 0 < a ≤ a0 and 1 < <0 < <0(a), where <0(a) is defined
in 25, then E2 = (S∗, E∗, I∗) is locally asymptotically stable (Theorem 4.4). If
<0 = <0(a), 0 < a ≤ a0, then system (2) undergoes a Hopf bifurcation (Theorem
4.5).
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Figure 1. Effects of media impact a on the value of S(t), I(t)
under different media impacts. Here, γ = 0.05 and the initial point
are all (5× 106,1,1); <0 = 1.1765 and RH0

= 5.5206.

From the numerical simulations, we obtain that the media coverage a impacts
multiple peaks and troughs. In fact, if <0 > 1 and close to RH0

, the disease will be
endemic with multiple peaks and troughs when a = 0. The time between the two
peaks or two troughs can be approximated by

T0 =
2π

ω
=

2π√
b
<0

(c+ d+ γ)
.
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Figure 2. Effects of media impact a on the value of S(t), I(t)
under different media impacts. Here γ = 0.02, the initial point is
(5× 106,1,1); <0 = 3 and RH0 = 8.2523.

But when the media impact parameter a is introduced, or when 0 < a ≤ a0 is
sufficiently small, if there are multiple peaks and multiple troughs, the time between
each of the two peaks or the two troughs can be approximated by

Ta =
2π√

b(c+d+γ)
<0

+ a b
2(c+d+γ)
µ<0

(1− 1
<0

) + 2µcK
<0

(1− 1
1+a bµ (1−

1
<0

)
)

This shows that the media alert shortens the time of the secondary peak and trough
of the disease transmission. This effect is also verified by the simulations in Fig. 2
(a), (b).
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Figure 3. The peak value of the infective number Imax when a
from 0 to a = 1× 10−8.

For the case where <0 > 2, because of the complexity of the contact transmission
rate, we are unable to calculate the endemic equilibrium of system (2). The stability
analysis for each of the solutions seems analytically untractable when system (2)
has three endemic equilibria, and further investigations of the impact of parameter
a on the model dynamics become more challenging, that we leave in our future
work.
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