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Abstract. The stochastic nature of cell-specific signal molecules (such as

transcription factor, ribosome, etc.) and the intrinsic stochastic nature of gene
expression process result in cell-to-cell variations at protein levels. Increasing

experimental evidences suggest that cell phenotypic variations often depend

on the accumulation of some special proteins. Hence, a natural and funda-
mental question is: How does input signal affect the timing of protein count

up to a given threshold ? To this end, we study effects of input signal on the

first-passage time (FPT), the time at which the number of proteins crosses a
given threshold. Input signal is distinguished into two types: constant input

signal and random input signal, regulating only burst frequency (or burst size)
of gene expression. Firstly, we derive analytical formulae for FPT moments in

each case of constant signal regulation and random signal regulation. Then,

we find that random input signal tends to increases the mean and noise of
FPT compared with constant input signal. Finally, we observe that different

regulation ways of random signal have different effects on FPT, that is, burst

size modulation tends to decrease the mean of FPT and increase the noise of
FPT compared with burst frequency modulation. Our findings imply a fun-

damental mechanism that random fluctuating environment may prolong FPT.

This can provide theoretical guidance for studies of some cellular key events
such as latency of HIV and lysis time of bacteriophage λ. In conclusion, our

results reveal impacts of external signal on FPT and aid understanding the

regulation mechanism of gene expression.

1. Introduction. According to genetic central dogma, gene expression includes
two main processes of transcription of genetic information to mRNA, and translation
of each mRNA to protein. It is basically a biochemical process, which involves
recruitment of transcription factors and polymerases, transition between active state
and inactive state of promoter and chromatin remodeling, etc [2, 47, 3, 51, 31, 71,
49, 30, 59]. The concentration of some specific factors, such as RNA polymerases,
eRNA and transcriptional factors, is significantly different even in the isogenic cell
population [33, 28, 48, 61]. Variations in these specific factors and the inherent
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randomness of biochemical reactions can result in stochasticity in the number of
protein level across identical cells [49, 33, 62]. This implies that the timing of a
cellular event that protein level triggers at a critical value is stochastic in nature.
So, many biologists have been paying close attention to the study of the critical
thresholds of some special proteins and showed that phenotypic diversity and cell
fate decision often depend on the number of the particular protein [1, 10, 15].
Phenotype of B. subtilis switching to competence depends on the number of ComK
molecules up to a certain amount [49, 57, 35]. Some researchers showed that lysis
time for bacteriophage λ relies on the accumulation of holin protein in the cell
membrane exceeding a threshold [10, 17, 53]. Naturally, stochastic switching of
phenotypes or cellular functions is linked closely with stochasticity in the minimal
time, at which the number of some certain proteins hits a critical threshold. In the
context of gene expression, such minimal time is often called as the first passage
time (FPT) [53, 52, 21]. FPT provides a frame-work for studying the time for
cellular functions conversion caused by crossing a threshold.

So far, the study of dynamical behaviour of FPT has been receiving increasing
attention [53, 52]. In [53], authors revealed mechanisms that transcription and
translation efficiencies independently modulate the mean and variation of FPT. The
impacts of different models of transcriptional and translational bursts on the mean of
FPT were discussed in [52]. However, these studies did not investigate the influence
of external stimuli on FPT. In fact, cells are always in a fluctuating environment
and regulated by different kinds of random factors (kinases, ligands, eRNA, etc.)
[27, 46, 11, 9, 20, 13, 34]. Owing to the small number of such molecules and random
births and deaths of molecules, the stochasticity of the input signal is unneglectable
[20]. Increasing investigation has shown that external signals play an important role
in cellular function, for instance, a new treatment of HIV was proposed by using
input noise [8]. An oscillating signal modulation may increase the mean of protein
and decrease the noise of protein compared with a constant signal modulation [64].
A random signal modulation may decrease the rate of gene state switching compared
with a constant signal modulation [22]. Therefore, the fluctuating environment can
indeed result in different conclusions compared with homogeneous environment.
So, taking the effect of external stimulus into consideration, many of the previous
conclusions would be modified and the mechanism how input signals impact on
FPT remains elusive. In order to gain more insight into the regulation mechanism
of input signal on FPT, we discuss the effects of random input signal on FPT.

Quantifying the effect of signal modulation on FPT is an important step towards
understanding cellular functional variability. In order to make up for the lack that
the previous studies ( [10, 57, 17, 53, 52, 45, 66] ) did not consider the influence
of input signal on FPT moments, we are going to investigate the mechanism of
FPT in the case of signal regulation by using gene expression models. Based on the
fact that gene expression is almost in a geometric bursting manner both in mRNA
synthesis [7, 12, 38, 70, 6] and in protein synthesis [70, 36, 4, 44] from a single
mRNA, further research [24] revealed that the total number of proteins produced
in a single burst event follows conditional geometric distribution. We distinguish
signal into two types: noiseless and noisy signals. The regulation ways of noisy
signal on gene expression are further classified into two regulation ways: burst
frequency modulation and burst size modulation. Here, burst frequency modulation
means that input signal regulates the burst times per unit time, whereas burst
size modulation means that input signal regulates the number of proteins in a
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bursty event [66]. The main results of this paper are as follows. Firstly, analytical
calculations of FPT moments are derived in each case of noiseless signal modulation
and noisy signal modulation. This is the first time to obtain theses analytical
results in lately literatures. In addition, our numerical results show that random
input signal tends to increases the mean and noise of FPT compared with constant
input signal for a given protein threshold. Our numerical results also show that
burst size modulation tends to produce a larger noise of FPT than that of burst
frequency modulation. In conclusion, our results show that random signal may
prolong the mean of FPT. This implies that the randomness of environment may
prolong the latency of some diseases (such as HIV [5]). Given the prevalence of
random signal, illuminating the effects of stochasticity of signal molecules on FPT
can aid understanding of their regulatory roles in biological processes.

2. Gene expression models and analytical formulas for FPT moments.
In order to clearly reveal the mechanism of how input signal modulates FPT, we
distinguish input signal into two cases: noiseless and noisy signals. In the case of
noiseless signal, a gene expression model is given in Figure 1(A): A gene produces
mRNA in a bursty fashion with rate λ and mean burst size b1, and each mRNA
degrades with rate δm; Production of protein from a mRNA is in a bursty manner
with rate kp and mean burst size b2. Based on the study [24], burst size of proteins
from a transcription burst event, say Y , follows the following conditional geometric
distribution,

Q(0) = Pr{Y = 0} =
1

1 + b1
+

b1
1 + b1

1

1 + (b1 + 1)b2
,

Q(n) = Pr{Y = n} =
b1

1 + b1

(b1 + 1)nbn2
(1 + (b1 + 1)b2)n+1

, n = 1, 2, 3, · · ·

The reference [41] indicated that the loss of highly stable proteins is mainly due to
dilution through growth and cell division. This paper mainly discusses the dynamics
of FPT before cell division. Therefore the degradation of protein is not considered
in the following models.

According to references [53, 56, 58, 25], the waiting time between two consecutive
transcription burst events obeys exponential distribution. In addition, the lifetime
of mRNA is far shorter than the cell cycle and mRNA degrades instantaneously
after producing protein in a burst manner [53]. Thus, we only need to consider
gene expression wherein the interval time between two consecutive protein burst
events (the time of protein burst equal to transcription time) follows an exponential
distribution with parameter λ, and the number of protein burst follows conditional
geometric distribution with mean b1b2 .

Randomness in the level or localization of regulation factors, such as Calcium [42],
eRNA [33, 40], Bicoid [16, 14] and NF-kB [68, 67], has been observed in diverse gene
regulation network. So far, a number of studies have been focusing on the influences
of input signal on regulated-gene product. But the impact of random signal on FPT
has been poorly understood. Our main purpose is to quantify the impacts of input
signal on FPT by employing a gene regulation model wherein random signal only
regulates burst frequency ( burst size) shown in 1© ( 2© ) in Figure 1(B). Here,
the number z(t) of random signal molecules obeys the equilibrium distribution of a
Markov birth-death process [22] characterized by birthing at a constant rate α per
unit time and degrading with a constant rate β per unit time.
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Figure 1. Schematic diagram for a gene model with burst manner.
A: Constant input signal regulates gene expression. Transcription
rate is denoted by λ. Protein count from a single mRNA and mR-
NA count from a transcription event are in the form of geometric

burst and their means are denoted as b2 =
kp
δm
, b1 respectively. B:

Random input signal regulates gene expression. Here, signal reg-
ulation is distinguished into two cases. 1© represents that input
signal z(t) regulates burst rate λz(t). 2© represents input signal
z(t) regulates the mean b1z(t) of transcriptional burst.

In order to study the effects of random signal on FPT, we distinguish signals into
two types: noiseless and noisy signals, to show theoretical analysis. For both cases,
finding random characters of FPT, such as mean, variance and noise, become a
common interest in understanding the stochastic properties of gene expression. We
will mainly concentrate on the calculation of the analytical expression for the mean,
variance and noise of FPT in each case of noiseless and noisy signal regulations.

The intrinsic randomness of biochemical reactions leads to that the protein count
P (t) at time t is a stochastic process. In this paper, we set P (0) = 0. Notably, FPT
can be defined as the minimal time that the protein count P (t) up to a given
threshold m (m 6= 0). Let Fm represent FPT at which the number of protein
reaches the critical threshold m. Therefore, we can write Fm as follows

Fm = inf{t : P (t) ≥ m}.

Further, let Pn be the protein count after n gene expression events, and Nm be the
random variable which represents the minimum number of protein burst event that
takes for protein count to reach the given threshold m. Then

Nm = inf{n : Pn ≥ m}.

Let Ti be the waiting time from the (i− 1)th to the ith protein burst event. Then
Ti, i = 1, 2, 3, · · · are independent identical distribution. Furthermore, according to
the definitions of Nm and Ti, we have

Fm =

Nm∑
i=1

Ti.

Let Pr{D} represent the probability of event D. Next, we focus on finding the
mean, variance and noise of FPT. The basic idea is first to introduce the properties
of conditional expectation, and then solve a set of recurrence equations. In addition,
based on introducing the Kolmogorov backward equation, probability generating
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functions, we solve two differential equations. The overall procedure for finding
such random characters is technical.

By using the property for conditional expectation, we can obtain

E(Fm) =E

(
Nm∑
i=1

Ti

)
= E

(
E

(
Nm∑
i=1

Ti|Nm

))

=

∞∑
n=1

E

(
Nm∑
i=1

Ti|Nm = n

)
Pr(Nm = n)

=E(T1)E(Nm)

(1)

and

V ar(Fm) =E

(Nm∑
i=1

Ti

)2
− E2

(
Nm∑
i=1

Ti

)

=

∞∑
n=1

[
V ar

(
n∑
i=1

Ti

)
+ E2

(
n∑
i=1

Ti

)]
Pr{Nm = n} − E2(Ti)E

2(Nm)

=V ar(T1)E(Nm) + E2(T1)V ar(Nm).

(2)

Let η represent the noise of Fm. Then

η =
V ar(Fm)

E2(Fm)
=

V ar(T1)

E2(T1)E(Nm)
+
V ar(Nm)

E2(Nm)
. (3)

In order to calculate the mean, variance and noise of FPT, we only need to give
exact formulae for the mean and variance of both Ti and Nm by (1), (2) and (3).

Next, we focus on the mean and noise of FPT in each case of noiseless and noisy
signal regulations.

2.1. Mean and noise of FPT with noiseless case. Genetically identical
cell populations exposed to the same extracellular environment exhibit consider-
able variability in gene expression [54]. The same extracellular environment means
that transcription rate λ and the mean b1b2 of burst size in gene expression are
constant. Hence variations in gene product result from random births and deaths
of individual molecules. This part consider the random characters of FPT in the
case of homogenous environment.

Since Ti (i = 1, 2, 3, 4, · · · ) are independent and identically exponential distribu-
tion, we obtain

E(Ti) =
1

λ
, V ar(Ti) =

1

λ2
.

Next, we concentrate on the first and second moments of Nm. Let Xi (i =
1, 2, · · · ) be the random variable denoting the number of proteins produced in the
ith burst expression. Notably, Xi are independent and identically distribution.
Then we have

Pr{Xi = 0} = Q(0) =
1

1 + b1
+A,

Pr{Xi = n} = Q(n) = ABn, n = 1, 2, 3, · · ·
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where

A =
b1

1 + b1

1

1 + (b1 + 1)b2
and B =

(b1 + 1)b2
1 + (b1 + 1)b2

.

By the definition of random variable Nm, the probability of stochastic event {Nm =
n} (n = 1, 2, 3, · · · ) can be denoted as

Pr{Nm = 1} = Pr{X1 ≥ m} = 1− Pr{X1 < m} = 1−
m−1∑
k=0

Q(k)

and

Pr{Nm = n} = Pr{Pn ≥ m,Pn−1 ≤ m− 1}

=
m−1∑
k=0

Pr{Pn ≥ m,Pn−1 ≤ m− 1, X1 = k}

=
m−1∑
k=0

Pr{Pn ≥ m,Pn−1 ≤ m− 1|X1 = k}Pr{X1 = k}

=
m−1∑
k=0

Pr{Pn−1 ≥ m− k, Pn−2 ≤ m− k − 1}Pr{X1 = k}

=
m−1∑
k=0

Pr{Nm−k = n− 1}Pr{X1 = k},

for n = 2, 3, 4, · · · . In addition, we can get E(Nm) by the following calculation

E(Nm) =

∞∑
n=1

nPr{Nm = n}

=Pr{Nm = 1}+

∞∑
n=2

m−1∑
k=0

nPr{Nm−k = n− 1}Pr{X1 = k}

=1 +

m−1∑
k=0

E(Nm−k)Q(k).

(4)

It is easy to show by induction for a given threshold m,

E(Nm) =ma+ ab2 + 1. (5)

Similarly to the aforementioned derivation, we can also get that

E(N2
1 ) = 2E2(N1)− E(N1), V ar(N1) = E(N1)(E(N1)− 1).

It implies that

E(N2
1 ) = [2a(1 + b2) + 1][a(1 + b2) + 1], V ar(N1) = a(1 + b2)[a(1 + b2) + 1].

For k = 2, 3, 4 · · · , we can derive the following recurrence formula of E(N2
m),

E(N2
m) = E(N1)

m−1∑
k=1

E(N2
m−k)Q(k) + 2E(Nm)E(N1)− E(N1). (6)

Therefore, we obtain

E(N2
m) =E(N2

m−1) + 2[ma2 + 2a2b2 + 2a]− a. (7)

By using mathematical induction, we can find the formula of E(N2
m) for a given

threshold m,

V ar(Nm) =(2a2b2 + a2 + a)m+ ab2(ab2 + 1). (8)
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Thus, we get

E(Fm) =
1

λ
[ma+ ab2 + 1] (9)

and

V ar(Fm) =
1

λ2
[ma+ ab2 + 1] +

1

λ2
[(2a2b2 + a2 + a)m+ ab2(ab2 + 1)]

=
1

λ2
[(2a2b2 + a2 + 2a)m+ ab2(ab2 + 2) + 1].

(10)

Further, we can obtain the noise ηc of Fm as follows

ηc =
(2a2b2 + a2 + 2a)m+ ab2(ab2 + 2) + 1

a2m2 + 2a(1 + ab2)m+ ab2(ab2 + 2) + 1
. (11)

Interestingly, the noise of Fm is independent of burst frequency. Note that (9),
(10) and (11) are exact for any values of the system parameters, and hence can be
directly used for numerical calculations.

2.2. Mean and noise of FPT with noisy case. In a single cell, the creation
of mRNA and protein occurs in a bursty, intermittent manner. Burst frequency
and burst size are two main indexes of burst dynamics [55]. The frequency and
size of bursts affect the magnitude of noise [50] and the modality of probability
distribution of protein [23], and even may play a critical role in the realization and
switching of biological functions [55]. Meanwhile, recent advances in experimental
technology have confirmed that the stochastic nature of cell-signaling molecules,
such as tumor necrosis factor (TNF) and adenosine triphosphate (ATP), influences
burst frequency and/or burst size of gene in vitro and vivo cells [26]. The regu-
lation ways of input signals on gene expression are generally classified into three
different but common modes [54, 66, 55, 32]: burst frequency regulation (without
regard to burst size), burst size regulation (without regard to burst frequency) and
simultaneous regulation on both burst frequency and burst size. There have been
some theoretical studies on input signal modulations [22, 54, 45, 66, 43, 39], for
instance, for burst frequency modulation, random input signal can cause stochastic
focusing [43], make regulated-gene product generate a bimodal steady state output
[39] and increase the switch rate [22]. For burst size modulation, random input
signal dramatically increases noise compared with burst frequency modulation [54].
Therefore, burst frequency regulation and burst size regulation on gene expression
result in different effects. Since litter was known about the effects of such two regu-
lating ways of random input signal on FPT, the study on impacts of input signal on
FPT is of great significance. In this subsection, we only focus on different effects of
burst frequency regulation and burst size regulation on FPT. Of course, burst fre-
quency and burst size may be regulated by the same signal, such as, trichostatin A
can regulate simultaneously burst frequency and burst size [60]. For the final case of
simultaneous regulation in both burst frequency and burst size, we will investigate
its regulation effects on FPT in another paper.

Since the number z(t) of input signal molecules follows the equilibrium distri-
bution of a Markov birth-death process characterized by birthing at rate α and
degrading with rate β, z(t) follows poisson distribution,

Pr{z(t) = k} = e−
α
β

(α/β)k

k!
, k = 0, 1, 2, 3, · · · .
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2.2.1. The case of burst frequency modulation. Cells are often exposed to chang-
ing environment. They sense such changing environment with cell-surface receptors
and/or ion channels. This ultimately leads to the change of the concentration of
regulation factors. Although some studies on regulation factors have been recently
begun, such as long non-coding RNAs (lncRNAs) and microRNA, their potential
functions and mechanisms on gene expression still is incompletely understood [48].

In this subsection, we consider the case when the random factor z(t) only reg-
ulates burst frequency without being regarded to burst size. The modulation way
reflects the fact that burst rate is not longer a constant λ but given by λz(t) [54]
and burst size is not affected by signal. That is to say, proteins are produced at
rate λz(t) in a burst manner. Given that signal molecules do not affect burst size,
the number of proteins produced in a burst event is independent of z(t). Thus, we
have

E(Nm) = ma+ ab2 + 1; V ar(Nm) = (2a2b2 + a2 + a)m+ ab2(ab2 + 1). (12)

Next, we calculate the first two moments of interval time Ti (i = 1, 2, 3, · · · ). Note
that input signal obeys the equilibrium distribution of a Markov birth-death process,
this implies that Ti(i = 1, 2, 3, · · · ) are independent and identically distribution.
Since the mean of Ti cannot be expressed simply by λ and E(z(t)), we should
consider the probability density function of Ti. Now, suppose that the number z(t)
of signal molecules equals to n, we can write the Kolmogorov backward equation
for ρi,n(t) as follows,

ρ′i,n(t) =− (α+ βn+ λn)ρi,n(t) + αρi,n+1(t) + βnρi,n−1(t), (13)

where ρi,n(t) denotes the probability density function for Ti. We multiply both

sides of (13) by e−
α
β

(α/β)n

n! xnt, integrate t and sum over all nonnegative integer n,
then we can get

(βx+ λx− β)G′1(x) + α(1− x)G1(x) = e−
α
β (1−x), (14)

where

G1(x) = e−
α
β

∞∑
n=0

xn
1

n!

(
α

β

)n ∫ ∞
0

tρi,n(t)dt.

From (14), we get

G1(x) =
x0
β

(x− x0)−
α
β (1−x0)x0e

α
β x0x

∫ x

x0

e−
α
β [1−t+x0t](t− x0)

α
β (1−x0)x0−1dt (15)

Note that E(Ti) =
∞∑
n=0

e−
α
β

(α/β)n

n!

∫∞
0
tρi,n(t)dt = G1(1), combing with (15) we

have

E(Ti) =
x0
β

(1− x0)−
α
β (1−x0)x0e−

α
β (x0−1)2

∫ 1

x0

e
α
β (1−x0)(x−x0)(x− x0)

α
β (1−x0)x0−1dx,

(16)

where x0 = β
β+λ .

Therefore, by (1), (12) and (16) we have

E(Fm) =G1(1)(ma+ ab2 + 1). (17)
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To calculate the second moment of waiting time, we multiply both sides of (13)

by e−
α
β

(αβ )n

n! x
nt2, integrate over all t and sum over all integer n, then we get

(βx+ λx− β)G′2(x) + α(1− x)G2(x) = 2G1(1), (18)

where G2(x) = e−
α
β

∞∑
n=0

xn 1
n! (

α
β )n

∫∞
0
t2ρi,ndt. From (18), we get

G2(x) =
2x0G1(1)

β
(x− x0)−

α
β (1−x0)x0e

α
β x0x

∫ x

x0

e−
α
β x0t(t− x0)

α
β (1−x0)x0−1dt (19)

Note that E(T 2
i ) =

∞∑
n=0

e−
α
β

(α/β)n

n!

∫∞
0
t2ρi,n(t)dt = G2(1), combing with (19) we

have

E(T 2
i ) =2G1(1)

∫ 1

x0

1

((β + λ)x− β)
e

α
β+λ (1−x)

(
x− x0
1− x0

) αλ
(β+λ)2

dx

=G1(1)

∫ 1

x0

2x0
β(x− x0)

e
α
β x0(1−x)

(
x− x0
1− x0

)αx0(1−x0)
β

dx.

(20)

On the basis of (2), we obtain

V ar(Fm) =(G2(1)−G2
1(1))E(Nm) +G2

1(1)V ar(Nm). (21)

All the analytical results in this part are exact but some of them are not intuitive
because of these integrals.

2.2.2. The case of bursting size modulation. In this subsection, we consider the
case when the random factor z(t) only regulates the burst size. The modulation
way reflects the fact that the mean of transcription burst size is b1z(t) and burst
rate is a constant λ. That is, proteins are produced at rate λ in a burst manner and
the number of proteins synthesized at time t when z(t) = k follows the following
probability distribution:

Qk(0) =
1

1 + b1k
+Ak, Qk(n) = AkB

n
k , n = 1, 2, 3, · · ·

where Ak = kb1
1+kb1

1
1+(kb1+1)b2

, Bk = (kb1+1)b2
1+(kb1+1)b2

, k = 1, 2, 3, · · · .
Given that signal molecules do not affect the burst rate, the interval time between

two consecutive burst events is independent of z(t). So we have

E(Ti) =
1

λ
, V ar(Ti) =

1

λ2
. (22)

In order to obtain the mean, variance and noise of Fm, we will derive recurrence
formulae for calculating E(Nm) and E(N2

m) by means of conditional expectation.
Now, suppose that the ith protein burst event occurs at time ti, we have

E(Nm) =E[E(Nm|z(t1))] =

∞∑
k=0

e−µ
µk

k!
E[Nm|z(t1) = k], (23)

where µ = α
β . For z(t1) = 0, we have Pr{Nm = 0|z(t1) = 0} = 0 and Pr{Nm =

1|z(t1) = 0} = 0. According to the properties of conditional expectation, we have
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E[Nm|z(t1) = 0] =

∞∑
n=2

nPr{Nm = n|z(t1) = 0}

=

∞∑
n=2

nPr

{
n∑
i=1

Xi ≥ m,
n−1∑
i=1

Xi ≤ m− 1|z(t1) = 0

}

=

∞∑
n=2

nPr

{
n∑
i=1

Xi ≥ m,
n−1∑
i=1

Xi ≤ m− 1|X1 = 0, z(t1) = 0

}
Pr{X1 = 0|z(t1) = 0}

+

∞∑
n=2

nPr

{
n∑
i=1

Xi ≥ m,
n−1∑
i=1

Xi ≤ m− 1|X1 ≥ 1, z(t1) = 0

}
Pr{X1 ≥ 1|z(t1) = 0}

=

∞∑
n=2

nPr

{
n∑
i=2

Xi ≥ m,
n−1∑
i=2

Xi ≤ m− 1

}
= 1 + E(Nm).

(24)

Combing (23) and (24), we obtain the following formula

E(N1) =

∞∑
k=0

e−µ
µk

k!
E(N1|z(t1) = k)

=e−µ(1 + E(N1)) + e−µ
∞∑
k=1

µk

k!
(1−Qk(0))

+ e−µ
∞∑
k=1

µk

k!

∞∑
n=2

n[Pr{N1 = n− 1}Qk(0)]

=e−µ(1 + E(N1)) + e−µ
∞∑
k=1

µk

k!
(1−Qk(0)) + e−µ

∞∑
k=1

µk

k!
(1 + E(N1))Qk(0)

=1 +

∞∑
k=0

ak(µ)E(N1),

(25)

where ak(µ) = e−µ µ
k

k! ( 1
1+kb1

+Ak). Furthermore, we can obtain E(N1) as follows

E(N1) =
1

g(µ)
, (26)

where g(µ) = e−µ
∞∑
k=1

µk

k!
kb1b2

1+(1+kb1)b2
. From (23), we obtain the next formula

E(Nm) =e−µ
∞∑
k=0

µk

k!
E(Nm|z(t1) = k)

=e−µ[1 + E(Nm)] + e−µ
∞∑
k=1

µk

k!
[1−

m−1∑
j=0

Qk(j)]

+ e−µ
∞∑
k=1

µk

k!

∞∑
n=2

n

m−1∑
j=0

Pr{Nm−1 = n− 1}Qk(j)
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=e−µ[1 + E(Nm)] + e−µ
∞∑
k=1

µk

k!
[1−

m−1∑
j=0

Qk(j)]

+ e−µ
∞∑
k=1

µk

k!

m−1∑
j=0

[1 + E(Nm−j)]Qk(j)

=1 +

∞∑
k=0

ak(µ)E(Nm) +

∞∑
k=1

m−1∑
j=1

ck,j(µ)E(Nm−j),

(27)

where ck,j(µ) = e−µ µ
k

k! AkB
j
k. On the basis of (26) and (27), we can obtain the

recurrence formula of E(Nm) as follows

E(Nm) =E(N1) + E(N1)

∞∑
k=1

m−1∑
j=1

ck,j(µ)E(Nm−j). (28)

Similar to the previous analyses, we obtain the exact formula of E(N2
1 )

E(N2
1 ) =

2− g(µ)

g2(µ)
(29)

and the recurrence formula of E(N2
m)

E(N2
m) =− E(N1) + 2E(N1)E(Nm) +

∞∑
k=1

m−1∑
j=1

ck,j(µ)E(N2
m−j)E(N1). (30)

Now, in terms of (1), (2),(28) and (30), we can obtain the analytical expressions for
the mean and variance of Fm. The recurrence formulae of E(Fm) and V ar(Fm) are
omitted because of their complex forms.

3. Main results. The above analytical results about the mean and noise of FPT,
in principle, lay a solid foundation for understanding of how the two regulations
ways of input signal affect FPT moments. Now we perform numerical calculations
to give intuitive results for these impacts (shown in Figures 2 and 3).

3.1. Comparison between random and constant input signals. Recently,
some studies have confirmed that biological fate selections are driven by the levels of
protein. For example, differentiation in B. subtilise [57], lysis in bacteriophage λ [10,
53], viral latency of human immunodeciency virus (HIV)-1 [5, 37], latency of herpes
simplex virus (HSV, subfamily-) in infected neurons [63, 29], latency in Kaposi’s
sarcoma-associated herpesvirus (KSHV) [19, 65], viral latency in cytomegalovirus
infection in the lung [18] and so on, these all depend on the accumulation of proteins
reaching a given threshold. Cell-to-cell variations in protein level mainly result from
the randomness of external environment and biochemical reactions involved in gene
expression [45]. However, the previous studies [10, 53, 52] rarely considered the
impacts of random signal on FPT.

Now, we will interpret how random signal regulation affects the mean and noise
of FPT. More precisely, compared with constant input signal, random input sig-
nal tends to increase the mean and noise of FPT in the case of burst frequency
modulation. For burst size modulation, the conclusion holds only when the mean
of transcription times is larger than a threshold. These results provide theoretical
guidance for studies of cell fate decision caused by protein level upping to the critical
threshold, such as lysis time of bacteriophage λ and latency of HIV and so on. It
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Figure 2. Effects of input signals on FPT moments, where the
blue solid lines represent the regulation on burst frequency by con-
stant input signal; the black solid lines represent the regulation on
burst size by constant input signal; the yellow dashed lines rep-
resent the regulation on burst frequency by random input signal;
the red dashed lines represent the regulation on burst size by ran-
dom input signal. A, B: The dependence of the mean and noise
of FPT on the mean of input signal in the case of burst frequency
modulation. C, D: The dependence of the mean and noise of FPT
on the mean of input signal in the case of burst size modulation.
It confirms that noisy signal regulations tend to increase the mean
and noise of FPT compared with noiseless signal regulations. Here,
the parameters value λ = 0.2, b1 = 50, b2 = 0.4, β = 0.5,m = 500.

reveals that both lysis time of bacteriophage λ and latency of HIV in homogeneous
environment may become smaller and stabler than in random environment.

Next, we will perform numerical calculations to further reveal quantitative effects
of random signal on FPT shown in Figure 2(A,B). For burst frequency modulation,
we observe the following three conclusions. The first is that the mean of FPT
under random input signal modulation is larger than that under constant input
signal modulation. This implies that random input signal may suppress expression
of protein via prolonging waiting time. The second is that the mean of FPT is a
monotonically decreasing function of input signal intensity, without regard to modes
of input signals. The difference in the mean of FPT between noiseless modulation
and noisy modulation is smaller with the increase of input signal strength. The
conclusion is qualitatively invariant, independent of its related parameters. The
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final one is that the noise of FPT under random input signal modulation becomes
larger than that under constant input signal modulation. The difference in the noise
of FPT between them tends to become larger with the increase of small input signal
strengths and become smaller after input signal strength exceeding a threshold.

For burst size modulation, we have the following four conclusions shown in Figure
2(C,D). The first is that the mean of FPT under random input signal modulation
is larger than that under constant input signal modulation. The second is that
the mean of FPT is a monotonically decreasing function of input signal intensity
without being regarded to modes of input signals. The difference in the mean of
Fm between them becomes smaller with the increase of input signal intensity. The
third is that the noise of FPT under random input signal modulation tends to be
larger than that under constant input signal modulation. The final one is that the
noise of FPT is a monotonically increasing function of input signal strength in each
case of noiseless and noisy signal modulation. The difference in the noise of FPT
between them becomes very smaller when the strength is beyond a threshold.

Summarizing the above analyses, we can conclude that random input signals play
an important role in increasing the mean and noise of FPT no matter how input
signal regulates gene expression. Therefore, constant input signal regulation can
better modulate FPT, compared with the corresponding random signal regulation.

3.2. Comparison between random burst size modulation and random
burst frequency modulation. The effects of burst size regulated by random
signal on gene product are somewhat different from that burst frequency regulated
by random signal. For example, Singh et al. [54] found that burst size regulation
can enlarge both intrinsic and extrinsic noises but burst frequency regulation only
increases extrinsic noise. However, their effects of the two regulations ways on FPT
in gene regulation is still not clear. So, we compare the effects on FPT caused by
burst frequency modulation and burst size modulation shown in Figure 3.

We observe the following two results by performing numerical calculations. On
one hand, we observe that the mean of Fm in the case of burst frequency modulation
is larger than that in the case of burst size modulation and the difference between
them becomes smaller with the increase of input signal intensity. On the other hand,
the noise of Fm in the case of burst frequency modulation is smaller than that in
the case of burst frequency regulation and the difference between them becomes
larger with the increase of input signal intensity. In conclusion, burst frequency
modulation can better modulate FPT than burst size modulation, remarkably in
large strength cases. These conclusions may reveal that both lysis time of λ phage
and latency of HIV in the case of burst frequency modulation may be stabler than
in the case of burst size modulation.

4. Discussion. The inherent randomness of biochemical reactions can lead to cell-
to-cell variability in the timing of proteins crossing a given threshold even in homoge-
nous environment, let alone cells are often exposed to the changing environment.
Hence, cells are always affected by various random signal molecules, but how signals
quantitatively and qualitatively influence the timing of cellular key events, such as
lysis, B.subtilis differentiation and HIV latency, is till not clear. To investigate the
impact of signal on the timing of cellular key events, we considered the first-passage
time of proteins up to a given threshold. Here, we have systematically analyzed a
gene expression model where input signal only regulates burst frequency (or burst
size) of gene expression. By analysis, we obtained the following main results:
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Figure 3. Effects of random input signal under different regu-
lating ways, where the muddy circle dotted lines represent burst
frequency regulation by random signal; the red square dotted lines
represent the burst size regulation by random signal. A: A com-
parison between the effect of burst frequency regulation and the
effect of burst size regulation on the mean of FPT. B: A compari-
son between the effects of burst frequency regulation and burst size
regulation on the noise of FPT. The parameter values are the same
as those used in Figure 2.

a) Analytical calculations for FPT moments, either noiseless or noisy signal reg-
ulation, are derived.

b) Compared with constant input signal, random input signal tends to increase
the mean and noise of FPT.

c) Compared with burst size modulation, burst frequency modulation tends to
increase the mean of FPT and decrease the noise of FPT.

The analytical and numerical methods used in this paper allow us to explore how
stochastic fluctuations of input signals affect FPT and can be extended to similar
multistate gene regulation models. Realization and changing of some biological
functions tend to depend on the fact that protein count reaches a given threshold,
such as bacterial cell division in biological systems [1, 15]. In the future, we will
study how to combine our theoretical research with specific biological problems,
such as cell division and latency of viruses.
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