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Abstract. Circadian rhythms of physiology and behavior are widespread
mechanisms in many organisms. The internal biological rhythms are driven

by molecular clocks, which oscillate with a period nearly but not exactly 24

hours. Many classic models of circadian rhythms are based on a time-delayed
negative feedback, suggested by the protein products inhibiting transcription

of their own genes. In 1999, based on stabilization of PER upon dimerization,

Tyson et al. [J. J. Tyson, C. I. Hong, C. D. Thron, B. Novak, Biophys. J. 77
(1999) 2411–2417] proposed a crucial positive feedback to the circadian oscil-

lator. This idea was mathematically expressed in a three-dimensional model.

By imposing assumptions that the dimerization reactions were fast and dimeric
proteins were in rapid equilibrium, they reduced the model to a pair of nonlin-

ear ordinary differential equations of mRNA and total protein concentrations.
Then they used phase plane analysis tools to investigate circadian rhythms. In

this paper, the original three-dimensional model is studied. We explore the ex-

istence of oscillations and their periods. Much attention is paid to investigate
how the periods depend on model parameters. The numerical simulations are

in good agreement with their reduced work.

1. Introduction. Wide-type fruit flies, Drosophila melanogaster, might be the
most extensively studied organism in circadian rhythm research. The researches
of endogenous activity rhythm on Drosophila generally involve two different kinds
of clock genes, called period (per, for short) [14, 10] and timeless (tim, for short)
[20, 27]. Their encoded proteins, PER and TIM, bind to each other [5, 20, 27, 29].

PER protein and per mRNA cycle in a 24-hour period [7]. When PER protein
is at a high level, per mRNA expression is repressed, suggesting that PER is an
inhibitor of per mRNA accumulation [7]. The expression of per and tim genes is
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regulated by dCLOCK and CYC, and PER inhibits the transcription of per and tim
by inactivating dCLOCK and CYC [1, 3, 18]. This negative feedback, introduced by
PER inhibiting its own mRNA transcription, is the basis of many classic theoretical
models of circadian rhythms [6, 17, 15, 19].

An alternative way to study circadian rhythms is based on a positive feedback,
introduced by PER phosphorylation being an activator to PER [26]. Phosphory-
lation of PER is operated by a double-time gene encoded kinase, DOUBLE-TIME
(DBT, for short) [13, 16]. As suggested by the dbt mutants phenotypes, PER
phosphorylation might be precluded to its degradation. PER and TIM stimulate
transcription of per and tim genes by activating dClOCK [2]. Experimental re-
sults suggest that per mRNA is stabilized by PER/TIM dimers [24], and PER is
stabilized by dimerization with TIM [13, 16].

The idea that PER phosphorylation introduces a positive feedback in PER ac-
cumulation can be expressed in a model of three-dimensional ordinary differential
equations [26] (see (1) below). In [26], by imposing assumptions that the dimer-
ization reactions were fast and dimeric proteins were in rapid equilibrium, they
reduced the three-dimensional model to a pair of nonlinear ordinary differential
equations of mRNA and total protein concentrations (see (2) below). Then they
used the powerful phase plane portraiture to study the simplified two-dimensional
model. In this paper, we explore the original three-dimensional model directly. It is
shown that the circadian rhythms occur if the model possesses a unique equilibrium
which is unstable. Furthermore, we deeply investigate how circadian rhythms are
affected by several model parameters, including mRNA translation, mRNA degra-
dation, monomer phosphorylation, protein proteolysis, association of PER/TIM
protein and equilibrium constant for dimerization. The results help to explain some
former-observed phenomena of circadian rhythms. In particular, our numerical re-
sults extremely agree with those given in [26], indicating that their reduction work
is greatly reasonable.

2. Mechanism and mathematical model. In this section, we restate the model
proposed by Tyson et al. [26]. The molecular mechanism for the circadian rhythm
in Drosophila is summarized in Figure 1. Here the total PER (monomer + dimer)
degradation rate does not increase proportionally with the total PER concentra-
tion’s increasing.

The mechanism in Figure 1 could be translated into a set of six differential
equations, for per and tim mRNAs, PER and TIM monomers, and PER/TIM
dimers in the cytoplasm and nucleus. Such a complicated set of equations could not
efficiently illustrate the importance of positive feedback in the reaction mechanism.
So by noticing that PER and TIM messages and proteins followed roughly similar
time courses in vivo, Tyson et al. [26] lumped them into a single pool of clock
proteins. In addition, they assumed that the cytoplasmic and nuclear pools of
dimeric protein were in rapid equilibrium. Then they established the following
differential equations for [mRNA]=M , [monomer]=P1, and [dimer]=P2:

dM

dt
=

vm

1 + (P2/Pcrit)2
− kmM,

dP1

dt
= vpM −

k
′
p1
P1

JP + P1 + rP2
− kp3P1 − 2kaP

2
1 + 2kdP2,

dP2

dt
= kaP 2

1 − kdP2 −
kp2P2

JP + P1 + rP2
− kp3P2.

(1)

Here monomer was assumed to be phosphorylated more quickly than dimer, i.e.,
k

′

p1
� kp2 . The parameter r determined the inhibition of dimer to monomer



INVESTIGATION ON MODELS OF CIRCADIAN RHYTHMS 1249

Figure 1. A simple molecular mechanism for the circadian clock
in Drosophila. Redrawn from [26]. PER and TIM proteins are syn-
thesized in the cytoplasm, where they may be destroyed by prote-
olysis or they may combine to form relatively stable heterodimer-
s. Heteromeric complexes are transported into the nucleus, where
they inhibit transcription of per and tim mRNA. Here it is assumed
that PER monomers are rapidly phosphorylated by DBT and then
degraded. Dimers are assumed to be poorer substrates for DBT.

phosphorylation. For convenience, in this paper we follow them by taking r = 2.
In their work, it was further assumed that the dimerization reactions were fast

(ka and kd are large) such that monomers and dimers were always in equilibrium
with each other. Then, by equilibrium conditions: P2 = KeqP

2
1 , Keq = ka/kd, they

obtained the reduced two-dimensional system:
dM

dt
=

vm
1 + (Pt(1− q)/(2Pcrit))2

− kmM,

dPt

dt
= vpM −

kp1
Ptq + kp2

Pt

JP + Pt
− kp3

Pt,
(2)

where Pt = P1 + 2P2 = [ total protein ], kp1
= k

′

p1
− kp2

≈ k
′

p1
, and

q = q(Pt) =
2

1 +
√

1 + 8KeqPt

.

Two widely concerned points of circadian rhythms are whether the endogenous
rhythms exist and how long the periods are. Since the mechanism has already
been translated into mathematical models, attentions are drawn to examine the
existence of periodic orbits and calculate the periods. In their work, system (2) has
been thoroughly analyzed. In this paper, we try to study system (1). A typical
oscillating solution of system (1) is illustrated in Figure 2, where the corresponding
parameter values are chosen from Table 1.
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Table 1. Parameter values suitable for circadian rhythm of

wild-type fruit flies

Name Value Units Ea/RT Description

vm 1 Cm
h

6 Maximum rate of synthesis of mRNA

km 0.1 h−1 4 First-order rate constant for mRNA degradation

vp 0.5
Cp

Cmh
6 Rate constant for translation of mRNA

kp1
10

Cp

h
6 Vmax for monomer phosphorylation

kp2 0.03
Cp

h
6 Vmax for dimer phosphorylation

kp3
0.1 h−1 6 First-order rate constant for proteolysis

Keq 200 C−1
p -12 Equilibrium constant for dimerization

Pcrit 0.1 Cp 6 Dimer concen at the half-maximum transcription rate

JP 0.05 Cp -16 Michaelis constant for protein kinase (DBT)

This table is adapted from Tyson et al. [26]. Parameters Cm and Cp represent characteristic

concentrations for mRNA and protein, respectively. Ea is the activation energy of each rate

constant (necessarily positive) or the standard enthalpy change for each equilibrium binding

constant (may be positive or negative). The parameter values are chosen to ensure temperature

compensation of the wild-type oscillator.

3. Method and result. It is well-known that for higher dimensional ordinary
differential equations, there is no so-called Poincaré-Bendixson theory: any limit
set is a limit cycle if it contains no steady state. So, in order to use the powerful
phase plane analysis tools, Tyson et al. [26] reduced (1) into (2) by imposing some
assumptions. Fortunately, we observe that (1) is a three-dimensional competitive
system in some sense [8, 9, 22, 23]. For n-dimensional competitive ordinary dif-
ferential equations, the dynamics is co-dimensional one. Every limit set lies on a
Lipschitz manifold with one dimension lower, and this manifold is homeomorphic to
an (n−1)-dimensional Euclidean space [28]. As for a three-dimensional competitive
system, though there is no phase plane, one has a two-dimensional Lipschitz mani-
fold (qualitatively exists but is unknown), where recurrent motions of system lie in.
As a result, any limit set for such a system consists of either limit cycle, or steady
state, or steady states connected with homoclinic or heteroclinic orbits. Suppose
that all forward orbits for a three-dimensional competitive system are bounded and
the system has a unique steady state. Then by the Perron-Frobenius theory, the
linearized matrix at the steady state has a negative eigenvalue. The system has a
one-dimensional stable manifold which is a strictly monotone curve [21], so it also
rules out the third choice for limit set. For more details, please see [23] or the
Appendix. We summarize the above discussion into the following theorem which
can be found in [30]:
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Figure 2. Numerical solution of (1). Parameter values are chosen
as in Table 1. We take ka = 106 and kd = ka/Keq.

Theorem 3.1. Suppose (1) has a unique steady state E. If the linearized matrix
of (1) at E has one negative eigenvalue and two positive real part eigenvalues, then
(1) has at least one stable limit cycle.

Numerical calculation suggests that (1) has a unique equilibrium in a large region
of parameter values. However, limit cycles do not exist all the time. According to
Theorem 3.1, when either Keq or ka is small, (1) has no limit cycles but a unique
equilibrium (see Table 2), and the equilibrium appears to be a global stable steady
state.

Comparing with the two-dimensional system (2), there are two more parameters
ka and kd in system (1). Considering the equilibrium condition, Keq = ka/kd, one
only needs to detect how periods of (1) are influenced by ka. As shown in Table 3
and Figure 3E, if we take Keq = 200, periodic orbits occur when ka is larger than
a critical value k∗a = 0.9. In that region, as ka goes up, the period starts with a
rapid decline, and then becomes quite insensitive. At first, we guess that the period
is decreasing when ka is sufficiently large, but numerical calculations tell that it is
not the case. In fact, the period even has a tendency to increase when ka is larger
than 2.9 × 106 (see Table 3). The similar situations are observed with Keq = 15
(see Table 4).

Based on Tables 3 and 4, one can choose a suitable value of ka to calculate
the rhythms for wild-type and mutant flies. The numerical results are presented
in Table 5, where temperature compensation is found in wild-type flies but not in
perL mutant flies.

Table 5 is due to the original three-dimensional system (1). As a comparison, we
state Table 6, which is cited from [26] and based on the reduced two-dimensional
system (2). Clearly, one can see that Table 5 and Table 6 are almost the same, which
indicates that the reduction in [26] is greatly reasonable from this perspective.
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Table 2. Equilibrium of (1) and corresponding ei-
genvalues of its Jacobian matrix vary with Keq and
ka.

Keq ka Equilibrium1 Eigenvalues

200 10−6 (10.00, 0.05, 0) {−50.20,−0.40,−0.1}
10−3 (10.00, 0.05, 6× 10−6) {−50.19,−0.40,−0.1}
1 (8.62, 0.10, 0.04) {−25.96, 0.01± 0.11i}
103 (1.38, 0.04, 0.24) {−164.97, 0.11± 0.41i}
106 (1.36, 0.04, 0.25) {−1.47× 105, 0.12± 0.42i}

15 10−6 (10.00, 0.05, 0) {−50.20,−0.40,−0.1}
10−3 (10.00, 0.05, 6× 10−6) {−50.19,−0.40,−0.1}
1 (9.60, 0.08, 0.10) {−30.77,−0.03± 0.08i}
102 (5.09, 0.08, 0.10) {−63.98, 0.66± 0.28i}
103 (5.03, 0.08, 0.10) {−417.94, 1.43, 0.54}
106 (5.02, 0.08, 0.10) {−3.9× 105, 1.57, 0.52}

1 10−6 (10.00, 0.05, 0) {−50.20,−0.40,−0.1}
10−3 (10.00, 0.05, 6× 10−6) {−50.19,−0.40,−0.1}
1 (10.00, 0.05, 2× 10−3) {−46.81,−1.13,−0.10}
103 (10.00, 0.05, 3× 10−3) {−1240,−28.12,−0.10}
106 (10.00, 0.05, 3× 10−3) {−1.2× 106,−28.49,−0.10}

1 Those zeros in equilibrium terms are actually very small positive numbers.

Other parameter values are as given in Table 1.

Table 3. Period of endogenous rhythms of wild-type flies

varies as ka (Keq = 200) varies.

ka 0.001 0.1 0.8 0.9 1 10 100

Period none none none 72.44 63.10 50.89 32.51

ka 500 1000 5000 104 5× 104 105 5× 105

Period 28.61 26.90 24.86 24.54 24.27 24.24 24.21

ka 106 2× 106 2.5× 106 2.9× 106 3× 106

Period 24.21 24.21 24.21 24.30 24.44

Periodic oscillations happen when ka is larger than the bifurcation value k∗a = 0.9. Other

parameter values are as given in Table 1.

In the next section, we will see more about the relation between circadian rhythms
and parameters of (1).

4. Discussion. In the actual experiment, parameters of the circadian rhythms
models are hard to be measured, or even unmeasurable. Parameter values in Table
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Table 4. Period of endogenous rhythms of perL mutant

varies as ka (Keq = 15) varies.

ka 0.001 0.1 1.1 1.2 2 10 100 500

Period none none none 57.19 55.67 41.34 30.98 29.21

ka 1000 2000 5000 104 105 7× 105 7× 105 7× 105

Period 28.94 28.80 28.71 28.67 28.65 28.65 29.20 30.37

Periodic oscillations occur when ka is beyond the bifurcation value k∗a = 1.2. Other

parameter values are as in Table 1.

Table 5. Period of the endogenous rhythms of wild-type

and mutant flies based on (1).

Genotype Keq Temp Period Genotype kp1
kp2

Period

Wild type 245 20 24.2 dbt+(1×) 10 0.03 24.2

200 25 24.2 dbt+(2×) 15 0.06 24.3

164 30 24.2 dbt+(3×) 20 0.09 25.7

perL 18.4 20 26.5 dbtS 10 0.3 17.6

15.0 25 28.7 dbt+ 10 0.03 24.2

12.3 30 30.4 dbtL 10 0.003 25.1

To simplify the integration, we take ka = 106 for wild-type flies and ka = 5000 for

mutant flies. Other conditions are as in Table 6.

1 have been chosen to yield a period close to 24-hours and ensure temperature
compensation of the wild-type oscillator. The parameter values are arbitrary. Other
combinations of parameter values may also yield circadian oscillations with possibly
different periods.

It is significant to study how parameters of (1) affect its periodic oscillations.
The numerical results are given in Figure 3, where the following parameters are
considered: mRNA translation, mRNA degradation, monomer phosphorylation,
protein proteolysis, association of PER/TIM protein and equilibrium constant for
dimerization.

As shown in Figure 3A, periodic oscillation disappears when the protein synthesis
rate vp is below a critical value. That coincides with the truth that the inhibiting
effect of protein synthesis may eventually suppress the circadian rhythmicity [11, 4,
25]. Moreover, the period decreases when the protein synthesis rate is greater than
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Table 6. Period of the endogenous rhythms of wild-type

and mutant flies based on (2).

Genotype Keq Temp Period Genotype kp1
kp2

Period

Wild type 245 20 24.2 dbt+(1×) 10 0.03 24.2

200 25 24.2 dbt+(2×) 15 0.06 24.4

164 30 24.2 dbt+(3×) 20 0.09 25.7

perL 18.4 20 26.5 dbtS 10 0.3 17.6

15.0 25 28.7 dbt+ 10 0.03 24.2

12.3 30 30.5 dbtL 10 0.003 25.2

This table is copied out of Tyson et al. [26]. It is assumed that each parameter k

varies with temperature according to k(T ) = k(298) exp{εa(1 − 298/T )}, with values

for k(298) and εa = Ea/(0.592kcalmol−1) given in Table 1. The dbt+(n×) means n

copies of the wild-type allele.

a certain value. That matches the observations of anisomycin in the mollusk Bulla
[12].

The PER/TIM complex formation plays a key role in the model. Circadian
rhythm is markedly affected by the dimerization reaction, precisely in the model,
by the association rate constant ka and dissociation rate constant kd. In Figure 3E
the period decreases as ka increases, which coincides with the suggestion that the
heterodimeric dimerization is attenuated in the long-period perL mutant [5]. Here
the attenuation is probably due to the competition of PER homodimeric complexes
[10]. Note again that it always has kd = ka/Keq in this paper. The results of Figure
3F imply that circadian rhythm occurs only when kd is in a bounded range, and
the period can be recognized as an increasing function of the dimer disassociation
rate.

In Figure 3B we show how the oscillation is affected by mRNA synthesis. Peri-
odic rhythm requires the mRNA synthesis rate km to be bounded, implying that
the oscillation may be destroyed if mRNA synthesizes either too slow or too fast.
Moreover, the period of oscillation becomes shorter as the mRNA synthesis rate
goes up. The qualitatively similar results (Figure 3D) are detected when we consid-
er the proteins proteolysis rate kp3 , except that periodic oscillation happens even if
there is no proteins proteolysis.

According to Theorem 3.1, in Figure 4 we inspect the dependence of oscillations
on parameters Keq and kp1

. A U-shape region is found, whose boundary is almost
the same as the locus of Hopf bifurcation in [26] (see Figure 4 in [26]). Within that
region the system exhibits periodic oscillations, and in the outside area the system
exhibits no limit cycle but a stable steady state. Figure 3C and 3F help to investigate
the variation of period in this U-shape region. In Figure 3C, periodic oscillation
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Figure 3. Relation between the oscillator period of (1) and some
parameter values. In each diagram, other parameter values are
chosen as in Table 1 and ka = 106, and periodic oscillations occur
only when the correlate parameter is in the interval [ a, b ]. In case
A, a = 0.2 and b = 1.4; in case B, a = 0.02 and b = 0.44; in case C,
a = 7 and b = 46; in case D, a = 0 and b = 0.4; in case E, a = 0.9
and b =∞; in case F, a1 = a2 = 4, b1 = 570 and b2 = 588. For the
convenience of numerical integration, curve (1) is shown only with
Keq ≥ 40 in case F. As for 4 ≤ Keq ≤ 40, a decreasing period is
suggested by curve (2) with increasing Keq. Particularly, on curve
(1) the period maintains 24.2–25.2 when the parameter Keq varies
in the interval [ c, d ] = [ 50, 460 ].

requests that kp1
is neither too small nor too large, which means that protein

monomers are sufficient but not too unstable. In Figure 3F, periodic oscillation
vanishes when Keq is smaller than a critical value, which implies that the proteins
tend to dimerize. Meanwhile, when Keq varies within a quite large region beyond
a certain value, the period of (1) remains virtually unchanged, suggesting that the
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Figure 4. Two-parameter (Keq and kp1
) bifurcation diagram for

system (1). Here Keq and kp1
are allowed to vary, and other pa-

rameter values are fixed as in Table 1. We take ka = 106. Periodic
oscillations happen only within the U-shape region bounded by the
two curves. Outside this region the system evolves toward a sta-
ble steady state. We note that for any Keq one can find a kp1

such that oscillations happen, which differs from the boundedness
requirement of Keq as in Figure 3F.

wild-type oscillation has temperature compensation (see also Table 5). Furthermore,
when Keq decreases in a large region the period increases, which agrees with the
consensus that perL mutant introduces a longer period for the perL-encoded protein
to reduce its tendency to form dimers [5, 10]. By Table 5, one can also tell that
perL mutant loses temperature compensation.

Appendix. The concentrations of mRNA, monomers and dimers are naturally
nonnegative. We therefore focus on the first orthant R3

+ = {(M,P1, P2) : M ≥
0, P1 ≥ 0, P2 ≥ 0}. It is easy to see that R3

+ is a positively invariant set of system
(1), i.e., any solution ((M(t), P1(t), P2(t)) of system (1) through a point in the first
orthant lies in it when t ≥ 0.

Let a > vm/km, b > vp a/kp3
, c = Keqb

2 and B(a, b, c) = {(M,P1, P2) : 0 ≤
M ≤ a, 0 ≤ P1 ≤ b, 0 ≤ P2 ≤ c}. Denote (f1, f2, f3) the vector field of (1). By
estimating the sign of the vector field at vertexes on the boundary of B(a, b, c), one
has 

f1(a, P1, P2) =
vm

1 + (P2/Pcrit)2
− kma < vm − kma < 0,

f2(M, b, P2) = vpM −
k

′

p1
b

JP + b + rP2
− kp3b− 2kab

2 + 2kdP2

< vpa− kp3
b < 0,

f3(M,P1, c) = kaP
2
1 − kdc−

kp2
c

JP + P1 + rc
− kp3c

< − kp2c

JP + P1 + rc
− kp3

c < 0.
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The vector field for (1) on the boundary of B(a, b, c) is shown in Figure 5, which
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Figure 5. The vector field for (1) on the boundary of B(a, b, c).

implies that B(a, b, c) is positively invariant. Note that for any point in R3
+, one

can find such (a, b, c) satisfying that box B(a, b, c) contains the point. It follows
immediately that any forward solution of system (1) is bounded. We summarize
the above discussion into the following proposition:

Proposition 1. For any a > vm/km, b > vp a/kp3 and c = Keqb
2, B(a, b, c) is

positively invariant for (1), that is, all forward solutions for (1) are bounded.

From Proposition 1, there are at least one steady state in B(a, b, c). Suppose
that the steady state E is unique and there is no zero real part eigenvalue for the
linearized matrix at E. Then the equilibrium E is either locally asymptotically
stable, or has a two-dimensional unstable manifold. The following arguments show
that the latter case provides the existence of limit cycles.

By computing the Jacobian matrix of (1), one has

Df =

 − 0 −
+ − +
0 + −

 ,

where “−” represents that the entry is strictly negative and “+” means strict pos-
itivity. According to [23], the system is competitive with respect to the cone
K = {(M,P1, P2) ∈ R3 : M ≥ 0, P1 ≤ 0, P2 ≥ 0}. By applying the theory on
competitive systems in [23], we have

Theorem A. Suppose (1) has a unique steady state E. If the linearized matrix of
(1) at E has one negative eigenvalue and two positive real part eigenvalues, then (1)
has at least one stable limit cycle.

Therefore, in order to study the oscillations for (1), one only needs to discuss its
steady state and the local stability of the steady state.
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