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Abstract. In this paper, we formulate a virus dynamics model with the re-

cruitment of immune responses, saturation effects and an intracellular time

delay. With the help of uniform persistence theory and Lyapunov method, we
show that the global stability of the model is totally determined by the basic

reproductive number R0. Furthermore, we analyze the effects of the recruit-

ment of immune responses on virus infection by numerical simulation. The
results show ignoring the recruitment of immune responses will result in over-

estimation of the basic reproductive number and the severity of viral infection.

1. Introduction. In recent years, virus dynamics attracts more and more atten-
tions of researchers and plays a crucial role in many diseases research, including
AIDS, hepatitis and influenza. Many mathematical models have provided insights
into virus infection and dynamics, as well as on how an infection can be managed,
reduced or even eradicated ([3], [4], [7], [15], [17], [27], [38], [43], [44]). Since the
basic three-dimensional viral infection model was proposed by Nowak et al. [21],
Perelson et al. [26], Perelson and Nelson [25], Nowak and May [20], many peo-
ple have established different within-host infection model, which help us to better
understand virus infection and various drug therapy strategies by mathematical
analysis, numerical simulations and clinical data ([13], [19], [22], [28], [29]). Note
that immune responses play a critical part in the process of viral infections. Con-
cretely, cytotoxic T lymphocyte (CTL) cells can attack infected cells, and antibody
cells can neutralize viruses. To better understand the role of the immune function
during virus infection, Wodarz proposed the following model with both CTL and
antibody immune responses [41],

Ṫ (t) = λ− d1T (t)− βT (t)V (t),

İ(t) = βT (t)V (t)− d2I(t)− pI(t)C(t),

V̇ (t) = rd2I(t)− d3V (t)− qA(t)V (t),

Ċ(t) = k1I(t)C(t)− d4C(t),

Ȧ(t) = k2A(t)V (t)− d5A(t),

(1)

where a dot denotes the differentiation with respect to time t, T (t), I(t), V (t), C(t)
and A(t) are the concentrations of healthy cells, infected cells, free virus, CTL cells
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and antibody cells at time t, respectively. d1, d2, d3, d4, d5 are the death rates of
healthy cell, infected cell, free virus, CTL cells and antibody cells, respectively. λ
represents a constant production of the healthy cells. The term βTV represents
the rate for the heathy T cells to be infected by virus. Furthermore, infected cells
are killed by CTL cells at a rate pIC. Free virus are produced by infected cells
at a rate rd2I, and are killed by antibody responses at a rate qAV . CTL immune
responses are activated at a rate proportional to the abundance of CTL cells and
infected cells, k1IC. Antibody responses are produced at a rate proportional to
the abundance of antibodies and free virus, k2AV . Biologically, all parameters are
positive.

After that, some researchers have taken into account the effect of immune re-
sponses including CTL responses or antibody responses ([24], [35], [36], [37], [39]).
Some other researchers have incorporated the effect of CTL responses and intracel-
lular delays ([11], [16], [18], [32], [45]). Concretely, the global dynamics of (1) with
and without intracellular time delay is given in [24] and [42], respectively. Note
that model (1) assumes that CTL and antibody responses are produced at bilinear
rates. However, De Boer [5] pointed out that the bilinear rates cannot model sev-
eral immune responses that are together controlling a chronic infection. In [5], De
Boer has proposed an immune response function with the saturation. Incorporat-
ing the saturation effects of immune responses and the delay, [12] also obtained the
global stability of the model, which is totally determined by the corresponding re-
productive numbers. These results preclude the complicated behaviors such as the
backward bifurcations and Hopf bifurcations which may be induced by saturation
factors and time delay.

Note also that most of models assume CTL responses are activated by infected
cells/antigenic stimulation, and antibody responses are activated by virus in these
studies. However, as pointed out by Nowak and May [20], CTL responses have
another function of self-regulating, i.e., the CTL responses are triggered by encoun-
tering foreign antigen and then adopts a constant level which is independent of the
concentration of virions or infected cell. Bocharvor et al. have provided evidence
the export of precursor CTL cells from the thymus [2]. Pang and Cui et al. have
studied the export of specific precursor CTL cells from the thymus in [23], but they
didn’t considered intracellular time delay and antibody responses. Similarly, Wang
and Wang have considered that neutralizing antibodies are produced at a constant
rate after the injection [37], but they didn’t take into account the effect of CTL
responses and intracellular time delay.

Motivated by the above studies, we will formulate and analyze a virus dynamics
model with the recruitment of immune responses, saturation effects of immune
responses and an intracellular time delay, which can be described by the following
functional differential equations:

Ṫ (t) = λ− d1T (t)− βT (t)V (t),

İ(t) = βT (t− τ)V (t− τ)e−sτ − d2I(t)− pI(t)C(t),

V̇ (t) = rd2I(t)− d3V (t)− qA(t)V (t),

Ċ(t) = λ1 + k1I(t)C(t)
h1+C(t) − d4C(t),

Ȧ(t) = λ2 + k2A(t)V (t)
h2+A(t) − d5A(t).

(2)

Here, we use λ1 to describe the export of specific precursor CTL cells from the
thymus, λ2 to describe the recruitment rate of antibody responses. The production
of infected cells is delayed in such a way that the production of new virus at time t
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depends on the population of virus and infected cells at a previous time t− τ , and
only a fraction of e−sτ can survive after the interval τ , where 1/s is the average
lifetime of infected cells without reproduction. h1, h2 are saturation constants.
Other parameters are same as that in model (1).

The main aim of the present paper is to explore the effects of the recruitment of
immune responses on virus infection. The organization of this paper is as follows. In
the next section, some preliminary analyzes of the model (2) will be given. Stability
of all equilibria are given in Section 3. In Section 4, some numerical simulations
are given to explain the effects of λ1, λ2, i.e., the term of recruitment of immune
responses. Lastly, some brief conclusions are given in Section 5.

2. Preliminary analyses of the model. In this section, we will first prove the
positivity and boundedness of solutions, and then derive the expression of the basic
reproduction number for model (2).

2.1. Positivity and boundedness of solutions. Let X := C([−τ, 0], R5) be the
Banach space of continuous functions from [−τ, 0] to R5. For φ = (φ1, φ2, φ3, φ4,

φ5) ∈ X, define ‖ φ ‖=
∑5
i=1 ‖ φi ‖∞, in which ‖ φi ‖∞= max

θ∈[−τ,0]
|φi(θ)|. The

initial functions for model (2) are provided with φ ∈ X+ = C([−τ, 0], R5
+).

Proposition 1. Under the above initial conditions, all solutions of model (2) are
nonnegative. In particular, the solution (T (t), I(t), V (t), C(t), A(t)) of model (2) is
positive for t > 0 in its existence interval if T (0) > 0, I(0) > 0, V (0) > 0, C(0) >
0, A(0) > 0.

Proof. We first verify that T (t) is positive in the existence interval of the solution.
Suppose not. Then there is t1 > 0 such that T (t1) = 0 and T (t) > 0, t ∈ [0, t1).

Indeed, if T (0) = 0, we have Ṫ (0) = λ > 0. Thus, T (t) > 0 for small positive t.
Evidently, this remains valid if T (0) > 0. As a result, the existence of t1 follows if

the claim is not true. Note that Ṫ (t1) = λ > 0. Thus, there is a sufficiently small
ε > 0, such that T (t) < 0 for all t ∈ (t1 − ε, t1). We get a contradiction because
T (t) > 0, t ∈ [0, t1). Hence, T (t) is positive in the existence interval of the solution.
In the same way, we obtain C(t) and A(t) are positive in the existence interval of
the solution. Then, we verify that I(t) and V (t) are positive. In the same way, we
assume that there is a first time t2 such that V (t2) = 0, from the third equation of
model (2) we have

V̇ (t2) = rd2I(t2).

By solving the second equation of model (2), we obtain

I(t2) = e
∫ t2
0 −(d2+pC(ξ))dξ[I(0) +

∫ t2

0

βT (θ − τ)V (θ − τ)e−sτe
∫ θ
0
(d2+pC(ξ))dξdθ] > 0.

It follows that V̇ (t2) > 0, hence V (t) > 0. Furthermore,

I(t) = e
∫ t
0
−(d2+pC(ξ))dξ[I(0) +

∫ t

0

βT (θ − τ)V (θ − τ)e−sτe
∫ θ
0
(d2+pC(ξ))dξdθ].

From the above expression of I(t) solution, we get I(t) > 0.
It follows easily that I(t) ≥ 0, V (t) ≥ 0 in the existence interval of the solution

if the initial functions are in X+, and I(t) > 0, V (t) > 0, C(t) > 0, A(t) > 0 in the
existence interval of the solution if I(0) > 0, V (0) > 0, C(0) > 0, A(0) > 0.

Proposition 2. All solutions of model (2) in X+ are ultimately bounded.
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Proof. Set

L(t) = T (t) + I(t+ τ) +
1

3r
V (t+ τ) +

d2
3k1

C(t+ τ) +
d3

4k2r
A(t+ τ).

Calculating the derivative of L along the solution of (2), we get

L̇(t) =λ− d1T (t)− βT (t)V (t) + βT (t)V (t)− d2I(t+ τ)− pI(t+ τ)C(t+ τ)

+
d2
3
I(t+ τ)− d3

3r
V (t+ τ)− q

3r
A(t+ τ)V (t+ τ) +

d2
3k1

λ1

+
d2
3

I(t+ τ)C(t+ τ)

h1 + C(t+ τ)
− d2

3k1
d4C(t+ τ) +

d3
4k2r

λ2

+
d3
4r

A(t+ τ)V (t+ τ)

h2 +A(t+ τ)
− d3

4k2r
d5A(t+ τ).

(3)

Since
C(t+ τ)

h1 + C(t+ τ)
≤ 1,

A(t+ τ)

h2 +A(t+ τ)
≤ 1,

we obtain

L̇(t) ≤λ− d1T (t)− d2I(t+ τ) +
d2
3
I(t+ τ)− d3

3r
V (t+ τ) +

d2
3k1

λ1 +
d2
3
I(t+ τ)

− d2
3k1

d4C(t+ τ) +
d3

4k2r
λ2 +

d3
4r
V (t+ τ)− d3

4k2r
d5A(t+ τ)

≤λ+
d2
3k1

λ1 +
d3

4k2r
λ2 − d1T (t)− d2

3
I(t+ τ)− d3

4

1

3r
V (t+ τ)

− d4
d2
3k1

C(t+ τ)− d5
d3

4k2r
A(t+ τ)

≤λ+
d2
3k1

λ1 +
d3

4k2r
λ2 −mL(t),

where m = min {d1, d2/3, d3/4, d4, d5}. It follows that the nonnegative solutions of
(2) exist on [0,∞) and are ultimately bounded. Moreover,

lim sup
t−→∞

L(t) ≤ λ

m
+

d2λ1
3k1m

+
d3λ2

4k2rm
.

From the first equation of model (2), we get

Ṫ (t) ≤ λ− d1T (t).

It follows that

lim sup
t−→∞

T (t) ≤ λ

d1
.

Set F (t) = T (t) + I(t+ τ), then

Ḟ (t) = Ṫ (t) + İ(t+ τ) ≤ λ− nF (t), n = min {d1, d2},

thus

lim sup
t−→∞

F (t) ≤ λ

n
.

Then,

lim sup
t−→∞

(T (t) + I(t+ τ)) ≤ λ

n
. (4)
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From the third equation of model (2) and (4), we have

lim sup
t−→∞

V (t) ≤ rd2λ

d3n
.

Further, let

M = max { λ
d1
,
λ

n
,
rd2λ

d3n
,
λ

m
+

d2λ1
3k1m

+
d3λ2

4k2rm
}.

The dynamics of model (2) can be analyzed in the following bounded feasible
region

Γ =
{

(T, I, V, C,A) |0 ≤ T ≤M, 0 ≤ T + I ≤M, 0 ≤ V ≤M,

0 ≤ C ≤M, 0 ≤ A ≤M
}
.

2.2. The basic reproductive number. Based on the concept of the basic re-
productive number for an epidemic disease presented in [6, 35], we know the basic
reproductive number R0 of virus is the expected number of viruses that one virion
gives rise to in an totally uninfected cell population during its lifetime.

From model (2), it is clear that healthy cells, CTL cells and antibody cells will
stabilize to λ/d1, λ1/d4 and λ2/d5 if there is not infection, i.e., I(t) = V (t) = 0. In
this case, suppose that one virion is introduced, it can produce a maximum amount
of P1(ϕ1) = β λ

d1
e−sτϕ1 infections during its mean lifetime of ϕ1 = 1/(d3 + q λ2

d5
). In

addition, an infected cell has an average lifetime of ϕ2 = 1/(d2 + pλ1

d4
), and hence,

it can averagely generate P2(ϕ2) = rd2ϕ2 virus. Therefore, the basic reproduction
number of virus for model (2) can be defined as

R0 = P1(ϕ1)P2(ϕ2) = β
λ

d1

rd2

(d2 + pλ1

d4
)

1

(d3 + q λ2

d5
)
e−sτ .

Based on the above expression, we know that there are inverse proportional rela-
tionship between the basic reproduction number of virus (R0) and the recruitment
rate of immune responses (λ1 and λ2). Thus, R0 will decreases along with λ1, λ2
increasing, which means that ignoring the effects of recruitment rate of immune
responses will overestimate the basic reproduction number of virus.

3. Stability of the equilibria. In this section, we first discuss the existence of
infection-free equilibrium, and then analyze its stability. Besides, using the uni-
form persistence theory, we obtain the existence of an endemic equilibrium. After
that, the stability of an endemic equilibrium was proved by constructing Lyapunov
functional.

3.1. Infection-free equilibrium. Apparently, there is always an infection-free
equilibrium in system (2): E0 = (T0, 0, 0, C0, A0), where

T0 =
λ

d1
, C0 =

λ1
d4
, A0 =

λ2
d5
.

Next, we discuss the stability of the infection-free equilibrium E0.

Theorem 3.1. When R0 < 1, the infection-free equilibrium E0 is globally asymp-
totically stable in region Γ.
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Proof. First we define a Lyapunov functional L0 by

L0 =

∫ T (t)

T0

(S − T0)

S
dS + esτI(t) + (

1

r
+
pC0

rd2
)esτV (t)

+
pesτ

k1

∫ C(t)

C0

(h1 + S)(S − C0)

S
dS

+
(d2 + pC0)

rd2

qesτ

k2

∫ A(t)

A0

(h2 + S)(S −A0)

S
dS

+

∫ 0

−τ
βT (t+ θ)V (t+ θ)dθ.

Calculating the time derivative of L0 along the solution of system (2), we obtain

L̇0 =λ− d1T (t)− βT (t)V (t)− T0
T (t)

(λ− d1T (t)− βT (t)V (t))

+ βT (t− τ)V (t− τ)− d2I(t)esτ − pI(t)C(t)esτ +
1

r
(rd2I(t)esτ

− d3V (t)esτ − qA(t)V (t)esτ ) +
pC0

rd2
(rd2I(t)esτ − d3V (t)esτ

− qA(t)V (t)esτ ) +
pesτ

k1
(h1 + C(t)){λ1 − d4C(t) +

k1I(t)C(t)

h1 + C(t)

− C0

C(t)
(λ1 +

k1I(t)C(t)

h1 + C(t)
− d4C(t))}+

(d2 + pC0)

rd2

qesτ

k2
(h2

+A(t)){λ2 +
k2A(t)V (t)

h2 +A(t)
− d5A(t)− A0

A(t)
(λ2 +

k2A(t)V (t)

h2 +A(t)

− d5A(t))}+ βT (t)V (t)− βT (t− τ)V (t− τ).

Since λ = d1T0, λ1 = d4C0, λ2 = d5A0, it follows that

L̇0 =2d1T0 − d1T (t)− T0
T (t)

d1T0 + βT0V (t)− pI(t)C(t)esτ − d3
r
V (t)esτ

− q

r
A(t)V (t)esτ + pI(t)C0e

sτ − pC0

rd2
d3V (t)esτ − pC0

rd2
qA(t)V (t)esτ

+
pesτ

k1
λ1(h1 + C(t)) + pI(t)C(t)esτ − pesτ

k1
d4C(t)(h1 + C(t))

− pesτ

k1
λ1(h1 + C(t))

C0

C(t)
− pI(t)C0e

sτ +
pesτ

k1
d4C0(h1 + C(t))

+
(d2 + pC0)

rd2

qesτ

k2
λ2(h2 +A(t)) +

(d2 + pC0)

rd2
esτqA(t)V (t)

− (d2 + pC0)

rd2

qesτ

k2
d5A(t)(h2 +A(t))− (d2 + pC0)

rd2

qesτ

k2
λ2

A0

A(t)
(h2

+A(t))− (d2 + pC0)esτ

rd2
qA0V (t) +

(d2 + pC0)

rd2

q

k2
esτd5A0(h2 +A(t))

=d1T0(2− T (t)

T0
− T0
T (t)

) +
(d2 + pC0)(d3 + qA0)esτ

rd2
(R0 − 1)V (t)

− pd4e
sτ

k1
(C(t)− C0)2 +

p

k1
λ1h1e

sτ (2− C0

C(t)
− C(t)

C0
)
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− (d2 + pC0)qesτ

rd2k2
d5(A(t)−A0)2 +

(d2 + pC0)qesτ

rd2k2
λ2h2(2− A0

A(t)
− A(t)

A0
).

Since the geometric mean is less than or equal to the arithmetical mean, it follows
from R0 < 1 that L̇0 ≤ 0. Let

D0 = {(T (t), I(t), V (t), C(t), A(t))|L̇0 = 0}.
It is easy to show that E0 = (T0, 0, 0, C0, A0) is the largest invariant set in D0.
By the Lyapunov-LaSalle invariance principle [8], E0 is globally asymptotically
stable.

3.2. Uniform persistence. In order to obtain the the existence of an endemic
equilibrium, in this subsection, we investigate the uniform persistence of (2). We
first introduce a preliminary theory. Let X be a metric space and Φ be a semiflow on
X. Suppose that X0 is an open set in X, X0 ⊂ X,X0∩X0 = ∅, and X0∪X0 = X.
Define M∂ = {x ∈ X0 : Φt(x) ∈ X0, t ≥ 0}, which may be empty. A continuous
p : X → [0,∞) satisfying condition: p(Φt(x)) > 0 for t > 0 if either p(x) = 0 and
x ∈ X0 or if p(x) > 0, will be called a generalized distance function for Φ.

Lemma 3.2. ([31], Theorem 3) Let p be a generalized distance function for semiflow
Φ. Assume that

(H1) Φ has a global attractor Ã.

(H2) There exists a finite sequence M̃ = {M1, ...,Mk} of pairwise disjoint, com-
pact and isolated sets in X0 with the following properties:

(i)
⋃
x∈M̃∂

ω(x) ⊂
⋃k
i=1Mi,

(ii) no subset of M̃ forms a cycle in X0,
(iii) Mi is isolated in X,
(iv) W s(Mi)

⋂
p−1(0,∞) = ∅, i = 1, ...k.

Then there exists δ > 0 such that for any compact chain transitive set L with
L 6⊂Mi for i = 1, ..k, there holds minx∈L p(x) > δ.

By applying Lemma 3.2 to (2), we can obtain the following result for the uniform
persistence of (2).

Theorem 3.3. If R0 > 1, then system (2) is uniformly persistent, i.e., there exists
ε > 0 (independent of initial conditions), such that, lim inf

t→+∞
T (t) ≥ ε, lim inf

t→+∞
I(t) ≥

ε, lim inf
t→+∞

V (t) ≥ ε, lim inf
t→+∞

C(t) ≥ ε, lim inf
t→+∞

A(t) ≥ ε, for all solutions of (2) with

initial condition.

Proof. Let

X0 = {φ̃ ∈ X+ : φ̃2(θ) ≡ 0, φ̃3(θ) ≡ 0 for θ ∈ [−τ, 0]},
X0 = X+ \X0,

M∂ = {ψ ∈ X+ : Φt(ψ) ∈ X0, t ≥ 0}.
Basic analysis of (2) implies that X0 is a positive invariant set for (2). The

positive invariance of X0 follows from Proposition 1. For any initial value condition
φ0 ∈ X+, define Φt(φ0) for t ≥ 0 as Φt(φ0) := (Tt(θ), It(θ), Vt(θ), Ct(θ), At(θ)) for
θ ∈ [−τ, 0] , where (Tt(θ), It(θ), Vt(θ), Ct(θ), At(θ)) is the solution of (2) with initial
condition φ0. By Proposition 1 and Proposition 2 we have Φt(φ0) is dissipative in
X+, and hence by Arzelà-Ascoli theorem, condition (H1) of Lemma 3.2 is satisfied.
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Let ω(ψ) be the omega limit set of the orbit Φ(t) through ψ ∈ X+. Note that
system (2) has an unique boundary equilibrium E0 = (λ/d1, 0, 0, λ1/d4, λ2/d5). For
any ψ ∈M∂ , i.e., Φt(ψ) ∈ X0, we have It(ψ) ≡ 0, Vt(ψ) ≡ 0 for all t ≥ 0 and

Ṫ (t) = λ− d1T (t),

Ċ(t) = λ1 − d4C(t),

Ȧ(t) = λ2 − d5A(t).

(5)

It then follows from the result in [14] that (Tt(ψ), Ct(ψ), At(ψ)) → (T0, C0, A0) as
t → +∞. Thus,

⋃
ψ∈M∂

ω(ψ) = E0. Furthermore, by Theorem 3.1, E0 is unstable

if R0 > 1. Then {E0} is isolated and acyclic covering and the conditions (i), (ii)
and (iii) of Lemma 3.2 are satisfied.

Since

R0 = β
λ

d1

rd2

d2 + pλ1

d4

1

d3 + q λ2

d5

e−sτ > 1,

we have

(d2 + p
λ1
d4

)(d3 + q
λ2
d5

) < β
λ

d1
rd2e

−sτ . (6)

Thus, there is sufficiently small σ such that

(d2 + p(
λ1
d4

+ σ))(d3 + q(
λ2
d5

+ σ)) < β(
λ

d1
− σ)rd2e

−sτ .

Suppose W s(E0) ∩X0 6= ∅. There exists a positive solution (T ∗(t), I∗(t), V ∗(t),
C∗(t), A∗(t)) such that

(T ∗(t), I∗(t), V ∗(t), C∗(t), A∗(t))→ (λ/d1, 0, 0, λ1/d4, λ2/d5) as t→ +∞.

For sufficiently large t∗1, when t ≥ t∗1, we have

λ

d1
− σ < T ∗(t) <

λ

d1
+ σ,

λ1
d4
− σ < C∗(t) <

λ1
d4

+ σ,

λ2
d5
− σ < A∗(t) <

λ2
d5

+ σ,

if t > t∗1 + τ , it follows that{
İ∗(t) ≥ −d2I∗(t) + βV ∗(t)( λd1 − σ)e−sτ − pI∗(t)(λ1

d4
+ σ),

V̇ ∗(t) ≥ −d3V ∗(t) + rd2I
∗(t)− q(λ2

d5
+ σ)V ∗(t).

(7)

Since

Aσ =

(
−d2 − p(λ1

d4
+ σ) β( λd1 − σ)e−sτ

rd2 −d3 − q(λ2

d5
+ σ)

)
, (8)

the non-diagonal elements of (8) are positive, and from (6), we obtain |Aσ| < 0.
By Perron-Frobrniuss Theorem, we can obtain the maximum eigenvalue α > 0 of
Aσ, and it has an eigenvector u = (u1, u2), u1 > 0, u2 > 0 , then choose sufficiently
small l such that I∗(t0) > lu1, V

∗(t0) > lu2.
Now consider the following auxiliary system{

İ∗(t) = −d2I∗(t) + βV ∗(t)( λd1 − σ)− pI∗(t)(λ1

d4
+ σ),

V̇ ∗(t) = −d3V ∗(t) + rd2I
∗(t)− q(λ2

d5
+ σ)V ∗(t).

(9)
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Note I(t), V (t) are solutions of (9) with initial condition I(t0) = lu1, V (t0) = lu2.
Since the model (9) is monotone, and Aσu > 0, by [[30] Corollary 5.2.2], we have
I(t) → +∞, V (t) → +∞ as t → +∞. Using the comparison theorem, we have
I∗(t)→ +∞, V ∗(t)→ +∞ for t→ +∞, which is a contradiction. Hence, W s(E0)∩
X0 = ∅.

Define a continuous function p : X+ → R+ by

p(φ) = min{φ2(0), φ3(0)},∀φ ∈ X+.

It is clear that p−1(0,∞) ⊂ X0 and if p(φ) > 0 then p(Φt(φ)) > 0 for all t > 0
(see e.g. [1]). Based on the above proof, and by Lemma 3.2, it then follows that
there exists δ > 0 such that lim inf

t→∞
p(Φt(φ)) ≥ δ for all φ ∈ X0, which implies that

there is a positive η0 such that lim inf
t→∞

(I(t), V (t)) ≥ (η0, η0) i.e., lim inf
t→∞

I(t) ≥ η0,

lim inf
t→∞

V (t) ≥ η0.

Furthermore, from the first equation of (2), Proposition 2 and the above results,
we have

Ṫ (t) = λ− d1T (t)− βT (t)V (t) > λ− d1T (t)− βMT (t) = λ− (d1 + βM)T (t),

Thus,

lim inf
t→+∞

T (t) >
λ

d1 + βM
.

From the fourth equation of (2),

Ċ(t) = λ1 +
k1I(t)C(t)

h1 + C(t)
− d4C(t) ≥ λ1 − d4C(t),

we have

lim inf
t→+∞

C(t) ≥ λ1
d4
.

From the fifth equation of (2),

Ȧ(t) = λ2 +
k2A(t)V (t)

h1 +A(t)
− d5A(t) ≥ λ2 − d5A(t),

Therefore, taking ε = min {η0, λ1/d4, λ2/d5, λ/(d1 + βM)}, we can conclude that

lim inf
t→+∞

T (t) ≥ ε, lim inf
t→+∞

I(t) ≥ ε, lim inf
t→+∞

V (t) ≥ ε, lim inf
t→+∞

C(t) ≥ ε, lim inf
t→+∞

A(t) ≥ ε

are valid for any solution of system (2) with initial condition in X0. This completes
the proof.

From the Theorem 3.1, we are easy to get that E0 is unstable if R0 > 1, and
by Proposition 2 and the uniformly persistent of system (2), we can obtain that if
R0 > 1, system (2) exists at least one endemic equilibrium E1 = (T1, I1, V1, C1, A1).

3.3. The endemic equilibrium. Now, we discuss the stability of the endemic
equilibrium E1.

Theorem 3.4. When R0 > 1, the endemic equilibrium E1 is globally asymptotically
stable in region Γ.

Proof. Set

m1 =
βT1V1
rd2I1

.

Define a Lyapunov functional L1 by
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L1 =

∫ T (t)

T1

(S − T1)

S
dS + esτ

∫ I(t)

I1

(S − I1)

S
dS +m1

∫ V (t)

V1

(S − V1)

S
dS

+
pesτ

k1

∫ C(t)

C1

(h1 + C(t))(S − C1)

S
dS +

m1q

k2

∫ A(t)

A1

(h2 +A(t))(S −A1)

S
dS

+ βT1V1

∫ 0

−τ
(
T (t+ θ)V (t+ θ)

T1V1
− 1− ln

T (t+ θ)V (t+ θ)

T1V1
)dθ.

Calculating the time derivative of L1 along the solution of system (2), we obtain

L̇1 =λ− d1T (t)− βT (t)V (t)− T1
T (t)

(λ− d1T (t)− βT (t)V (t))− pI(t)C(t)esτ

+ βT (t− τ)V (t− τ)− d2I(t)esτ − I1
I(t)

(βT (t− τ)V (t− τ)− d2I(t)esτ

− pI(t)C(t)esτ ) +m1(rd2I(t)− d3V (t)− qA(t)V (t))−m1
V1
V (t)

(rd2I(t)

− d3V (t)− qA(t)V (t)) +
pesτ

k1
(h1 + C(t)){λ1 +

k1I(t)C(t)

h1 + C(t)
− d4C(t)

− C1

C(t)
(λ1 +

k1I(t)C(t)

h1 + C(t)
− d4C(t))}+

qm1

k2
(h2 +A(t)){λ2 +

k2A(t)V (t)

h2 +A(t)

− d5A(t)− A1

A(t)
(λ2 +

k2A(t)V (t)

h2 +A(t)
− d5A(t))}+ βT (t)V (t)

− βT (t− τ)V (t− τ) + βT1V1 ln
T (t− τ)V (t− τ)

T (t)V (t)
.

Since

λ = d1T1 + βT1V1, βT1V1 = (d2I1 + pI1C1)esτ , rd2I1 = d3V1 + qA1V1,

λ1 +
k1I1C1

h1 + C1
= d4C1, λ2 +

k2A1V1
h2 +A1

= d5A1,

we have

L̇1 = d1T1(2− T (t)

T1
− T1
T (t)

) + βT1V1 − βT1V1
T1
T (t)

+ βT1V (t)

− I1
I(t)

βT (t− τ)V (t− τ) + d2I1e
sτ + pI1C(t)esτ −m1d3V (t)

−m1qA(t)V (t)− βT1V1
V1I(t)

V (t)I1
+m1d3V1 +m1qA(t)V1

+
pesτ

k1
λ1(h1 + C(t))− pesτ

k1
d4C(t)(h1 + C(t))− pesτ

k1

C1

C(t)
λ1(h1

+ C(t)) +
pesτ

k1
d4C1(h1 + C(t)) +m1

q

k2
λ2(h2 +A(t)) +m1qA(t)V (t)

−m1
q

k2
d5A(t)(h2 +A(t))−m1

q

k2

A1

A(t)
λ2(h2 +A(t))−m1qA1V (t)

+m1
q

k2
d5A1(h2 +A(t)) + βT1V1 ln

T (t− τ)V (t− τ)

T (t)V (t)

=d1T1(2− T (t)

T1
− T1
T (t)

) + βT1V1(1− T1
T (t)

+ ln
T1
T (t)

) + βT1V1(1
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− I1T (t− τ)V (t− τ)

I(t)T1V1
+ ln

I1T (t− τ)V (t− τ)

I(t)T1V1
) + βT1V1(1− V1I(t)

I1V (t)

+ ln
V1I(t)

I1V (t)
) +

p

k1
λ1h1e

sτ (2− C(t)

C1
− C1

C(t)
)− p

k1
d4e

sτ (C(t)− C1)2

+m1
q

k2
λ2h2(2− A1

A(t)
− A(t)

A1
)−m1

q

k2
d5(A(t)−A1)2.

Since the geometric mean is less than or equal to the arithmetical mean and 1 −
x+ lnx ≤ 0 for any x > 0, it follows that L̇1 ≤ 0 . Let

D1 = {(T (t), I(t), V (t), C(t), A(t))|L̇1 = 0}.
It is easy to verify that L̇1(t) = 0 if and only if

T1
T (t)

=
I1T (t− τ)V (t− τ)

I(t)T1V1
=
V1I(t)

I1V (t)
= 1.

Thus, T (t) = T1 and

Ṫ (t) = λ− d1T1 − βT1V (t) = 0.

As a result, we have V (t) = V1, and then I(t) = I1. From the second equation and
the third equation of model (2), we have{

İ(t) = βT1V1e
−sτ − d2I1 − pI1C1 = 0,

V̇ (t) = rd2I1 − d3V1 − qA1V1 = 0,

which implies C(t) = C1, A(t) = A1. Therefore, the largest invariant set in D1

is E1. Thus, when R0 > 1, all positive solutions converge to E1 by the LaSalle
invariance principle [8].

4. Numerical simulations. In this section, we implement numerical simulations
to explore the effects of the recruitment of immune responses (λ1 and λ2) on the
infected cells (I1) and virus load (V1) at the endemic equilibrium E1. The parameter
values are chosen from literatures ([2], [26], [33], [32], [41], [38], [40], [46]). Especially,
according to [9], we choose the range of λ1, λ2 from 0 to 1.

The all parameter values are shown in Table 1.
Figure 1 illustrates that I1, V1 decrease along with λ1, λ2 increasing in which

implies that ignoring the recruitment of immune responses will overestimate the
severity of the infection.

Figure 1. Illustration of the proportion of infected cells (I1) and
virus load (V1) at the endemic equilibrium E1. Here parameters are
λ = 50, β = 5 × 10−7, d1 = 0.008, d2 = 0.8, d3 = 3, d4 = 0.05, d5 =
0.1, p = 0.05, r = 2500, q = 0.2, k1 = 0.12, h1 = 1200, k2 = 1.5, s =
0.001, τ = 1.5.
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Table 1. Parameter definitions and values used in numerical simulations

Par. Value Description Ref.

λ 0-50 cells ml-day−1 Recruitment rate of healthy cells [33, 38]

d1 0.007 − 0.1day −1 Death rate of healthy cells [38]

β 5 × 10−7 − 0.5 ml virion-day−1 Infection rate of target cells by virus [33, 38]
d2 0.2 − 0.8 day−1 Death rate of infected cells [41, 46]

r 10 − 2500 virions/cell Burst size of virus [38]

d3 2.4 − 3 day−1 Clearance rate of free virus [38]
p 0.05 − 1 day−1 Killing rate of CTL cells [41, 40]

q 0.1 − 1 day−1 Neutralizing rate of antibody [41]

k1 0.1 − 0.12 day−1 Proliferation rate of CTL response [2, 41]
k2 1.5 day−1 Production rate of antibody response [41]

d4 0.05 − 2 day−1 Mortality rate of CTL response [2, 40]
d5 0.1 day−1 Clearance rate of antibody [41]

s 0.001 − 1.4 1/s is the average time [32, 47]

τ 0 − 2 days Virus replication time [38]
h1 1200 Saturation constant Assumed

h2 1500 Saturation constant Assumed

λ1 Varied Rate of CTL export from thymus [9]
λ2 Varied Recruitment rate of antibody [9]

5. Conclusions. In this paper, the global dynamics of a within-host model with
immune responses and intracellular time delay has been studied. By the method
of Lyapunov functional and persistence theory, we obtain the global stability of the
model (2) are completely determined by the values of the reproductive number.
The results imply that the complicated behaviors such as backward bifurcations
and Hopf bifurcations do not exist in the model with both immune responses and
time delay.

Considering the basic reproductive number of virus

R0 = R(τ) =
λβrd2e

−sτ

d1(d2 + pλ1

d4
)(d3 + q λ2

d5
)

as a function of τ , we can find that it is decreasing in τ and it tends to 0 if the
time delay tends to ∞. Furthermore, comparing with the previous studies ([11],
[12], [16], [23], [24], [39], [42], [45]), we find that the expression of R0 for model (2)
is different, i.e., it includes the parameters λ1, λ2 which reflect the recruitment of
immune responses. This implies that ignoring the recruitment of immune responses
will result in overestimation of the reproductive number. Numerical simulations
also show that the part of V1, I1 at steady state will decrease along with λ1, λ2
increasing (see Fig.1), which mean that the recruitment of immune responses play a
significant role in eradication of diseases. To sum up, we can conclude that ignoring
the recruitment of immune responses will overestimate the infection degree and the
severity of disease. These may provide a new insight for developing antiviral drug
therapy strategies, which is to increase the recruitment rate of immune responses.
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