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Abstract. When a network reaches a certain size, its node degree can be con-

sidered as a continuous variable, which we will call continuous degree. Using
continuous degree method (CDM), we analytically calculate certain structure

of the network and study the spread of epidemics on a growing network. First-

ly, using CDM we calculate the degree distributions of three different growing
models, which are the BA growing model, the preferential attachment acceler-

ating growing model and the random attachment growing model. We obtain

the evolution equation for the cumulative distribution function F (k, t), and
then obtain analytical results about F (k, t) and the degree distribution p(k, t).

Secondly, we calculate the joint degree distribution p(k1, k2, t) of the BA model

by using the same method, thereby obtain the conditional degree distribution
p(k1|k2). We find that the BA model has no degree correlations. Finally, we

consider the different states, susceptible and infected, according to the node
health status. We establish the continuous degree SIS model on a static net-

work and a growing network, respectively. We find that, in the case of growth,

the new added health nodes can slightly reduce the ratio of infected nodes,
but the final infected ratio will gradually tend to the final infected ratio of SIS

model on static networks.

1. Introduction. Complex networks are good models for describing and studying
complex systems [6, 1, 21]. It ignores many properties that are not related to the
study, and describes the system as a graph containing only nodes and edges, in
which nodes represent the elements of the system and edges represent the inter-
actions between them. Some real world networks include the WWW(World Wide
Web) networks [8], Internet networks, collaboration networks, citation network-
s, metabolism networks etc, and some constructed networks include Euler graph,
‘small world’ network [25], BA network [3], etc.
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To study complex networks and their properties, we should first study some
basic special quantities characterizing the topology structure of the networks. Tra-
ditionally, these characteristic quantities are borrowed from graph theory, such as
degree distribution p(k), average degree 〈k〉, joint degree distribution p(k1, k2), aver-
age path length l, clustering coefficient C, and degree-degree correlation coefficient
Ck1,k2 , etc. Among them, the degree distribution is the most important topological
quantity of the network. Its calculation method mainly includes: the Mean-field
method [2], the master equation method [4], the rate equation method [13], and
Markov chain-based numerical method [23], etc [5]. The Mean-field method consid-
ers degree as continuously changing, and obtains continuous rate of change of ki [2].
Inspired by this idea, here we also use the continuous degree method (CDM). It will
transform the network evolution model into a partial differential equation, which
can be analysed easily. Using the CDM, we establish a partial differential equation
on the cumulative distribution function F (k, t) with the growing network, analytical
results of the cumulative distribution function F (k, t) and the degree distribution
p(k, t) are obtained. In addition to the degree distribution, the joint degree dis-
tribution p(k1, k2) is also another important topology quantity of a network. It is
defined as the fraction of directed edges whose nodes have degrees k1 and k2. So far
the calculation method of joint degree distribution is mainly the rate equation [14].
In this paper, we calculate the joint degree distribution of BA model by also apply-
ing the CDM. As a consequence, we calculate the conditional degree distribution
p(k1|k2) and the degree correlation of the networks.

Transmission dynamics on complex networks is another focus of network research.
Its dynamical behavior is often influenced by the network topology. Regarding the
spread of epidemic, for example, different network topologies often have different
threshold and propagation behavior. The main existing epidemic models are node-
based model [22, 26, 16], pairwise models [11, 12], effective degree models [15], and
edge-based models [20, 19, 18, 24]. Although these models have different styles, they
all divide the nodes and edges into different classes according to the node degree.
Here we also consider the node degree as a continuous variable, and apply the
CDM to establish a continuous degree SIS epidemic model on static BA network.
Simultaneously, we also take into account the evolution of the network, and build
a continuous degree SIS epidemic model on a BA growing network.

The rest of this paper is organized as follows. In Section 2, applying the CDM,
we calculate the degree distribution of three different growing models, which are
the BA growing model, the preferential attachment accelerating growing model
and the random attachment growing model. In Section 3, we calculate the joint
degree distribution of the BA model also using the CDM, and study its degree
correlation. In Section 4, we establish a continuous degree SIS model on a static
degree uncorrelated network and a BA growing network, respectively. Finally, in
Section 5, we conclude the paper.

2. Some calculations of the degree distribution of growing networks with
CDM. In this section, we use CDM to calculate the degree distribution of the fol-
lowing three growing models: the BA growing model, the preferential attachment
accelerating growing model and the random attachment growing model. The main
notations are defined in Table 1.
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Table 1. The definition of main notations.

Notation Definition
m0 The total number of nodes in the initial network.
l0 The total number of edges in the initial network.
Πi The probability for the node i connect to the new added node.
N(t) The total number of nodes at time t.

N̂(k, t)
The total number of nodes which degree not more than k at time
t (note there has a hatˆon letter N).

F (k, t)
The cumulative distribution function of node degree, or the pro-
portion of nodes which degree not more than k, at time t.

p(k, t)
The degree distribution, or the probability density of node which

degree equal to k, at time t, p(k, t) = ∂F (k,t)
∂k .

L(t) The total number of directed edges at time t.

L̂(k1, k2, t)
The total number of directed edges which degree sequentially not
larger than k1 and k2 at time t (also note the hat).

F (k1, k2, t) The joint cumulative distribution function at time t.

p(k1, k2, t) The joint degree distribution at time t, p(k1, k2, t) = ∂2F (k1,k2,t)
∂k1∂k2

.

p(k2|k1, t) The conditional degree distribution at time t.
q(k, t) The marginal distribution at time t.

FS(k, t)
The cumulative distribution function of susceptible nodes at time
t.

FI(k, t) The cumulative distribution function of infected nodes at time t.

pS(k, t)
The probability density of susceptible nodes which degree equal
to k at time t.

pI(k, t)
The probability density of infected nodes which degree equal to k
at time t.

Θk
The probability that a edge emitted by degree k node points to
an infected node.

Θ
The probability that a edge points to an infected node in degree
unrelated network.

2.1. Calculation of the degree distribution of the BA growing model with
CDM. First, we recall the BA model, whose evolution mechanism contains two
aspects:

H1: Growth: Starting with a small number (m0) of nodes, we add a new node
with m(≤ m0) edges at every time step. The node added at ith time step is
marked as i.

H2: Preferential attachment: the probability Πi that node i connects to a new
node is proportional to its degree ki, i.e., Πi = ki∑

j kj
.

We consider that the time t and the node degree k change continuously. Let
N(t) represent the total number of nodes at time t, N̂(k, t) represent the number
of nodes with degree less than or equal to k at time t. Let F (k, t) represent the
cumulative distribution function of network (or the proportion of nodes with degree
less than or equal to k) at time t, and let the derivative of F (k, t) with respect to
k represent the degree distribution p(k, t), in fact the probability density, at time t.
In the continuous degree case, obviously, we have the following relation:

N̂(k, t) = N(t)F (k, t) = N(t)

∫ k

0

p(x, t) dx. (1)
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It’s not difficult to find that the growth of the BA model satisfies the Markov
property. That is to say, the network structure at time t + ∆t depends only on
the structure at the most recent time t and does not depend on the history of the
evolution. Based on this we can establish the evolution equation for F (k, t).

For a node with degree k(> m) at time t, say node A, because of the addition
of the new node and new edges, the degree of node A will become k + θkt at time
t + ∆t in the continuous degree cases, where θkt = m∆t kΣk is the increased degree
of node A. Meanwhile, for those nodes with degree less than node A’s degree (equal
to k) at time t, their degree is still less than A’s degree (k + θkt ) at time t + ∆t
due to the co-evolution of nodes. Taking into account the adding of new nodes,
N̂(k + θkt , t + ∆t) includes two parts, the old nodes N̂(k, t) and the newly added

nodes ∆N̂(k, t), so we have the following relation:

N̂(k, t) + ∆N̂(k, t) = N̂(k + θkt , t+ ∆t). (2)

(2) presents the quantitative relation between N̂(k, t) and N̂(k + θkt , t + ∆t) at

time t and time t + ∆t. ∆N̂(k, t) is the newly added nodes with degree less than

or equal to k in time ∆t. We have ∆N̂(k, t) = ∆t, Σk = 2(l0 + mt) (l0 see Table
1). Substituting these and (1) into (2), we obtain

N(t)F (k, t) + ∆t = N(t+ ∆t)F

(
k +

m∆tk

2(l0 +mt)
, t+ ∆t

)
. (3)

According to the evolution mechanism of the model, we have N(t) = m0 + t.
Substituting it into (3), we obtain

(m0 + t)F (k, t) + ∆t = (m0 + t+ ∆t)F

(
k +

m∆tk

2(l0 +mt)
, t+ ∆t

)
. (4)

Taking the Taylor expansion for F (k + m∆tk
2(l0+mt) , t+ ∆t), retaining only the first

order terms of ∆t and simplifying, we have

m∆tk

2(l0 +mt)

∂F (k, t)

∂k
+ ∆t

∂F (k, t)

∂t
+

∆t(F (k, t)− 1)

m0 + t
= o(∆t). (5)

Dividing by ∆t on both sides of the above equation, and letting ∆t→ 0, we get
the following partial differential equation on F (k, t):

mk

2(l0 +mt)

∂F (k, t)

∂k
+
∂F (k, t)

∂t
+
F (k, t)− 1

m0 + t
= 0, (6)

in the feasible region D = {(k, t)|k ≥ m, t ≥ 0}. We know that the degree of the
new node added at time t is the minimum degree at that moment, and that the new
node is attached with m edges when it is added to the network at time t, so the
minimum degree of the nodes is m at that time. Thereby we have following initial
and boundary conditions: {

F (k, 0) = Ψ(k),

F (m, t) = 0, ∀t > 0,
(7)

where, Ψ(k) is the cumulative distribution function of the initial network. Note
that this boundary condition defaults the degree k of initial nodes is greater than
m. In this way, the calculation of the cumulative distribution function F (k, t)
reduces to solving an initial-boundary value problem, which is easier to deal with
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mathematically. Using the characteristic line method to solve (6), and substituting
(7) into the general solution, we can get

F (k, t) =


1− 1

m0+t

(
m0 + ml0+m2t

k2 − l0
m

)
, if m ≤ k ≤ m(1 + mt

l0
)

1
2 ;

t
m0+t + m0

m0+tΨ

(
k

(1+mt
l0

)
1
2

)
, if k > m(1 + mt

l0
)

1
2 .

(8)

This equation means that, for given time t > 0, the nodes with degree m ≤ k ≤
m(1+ mt

l0
)

1
2 are the newly added t nodes from time 0 to time t, whose degree change

depending on the boundary condition, and the nodes with degree k > m(1 + mt
l0

)
1
2

are the initial m0 nodes, whose degree change depending on the initial condition.
Assuming that the derivative of cumulative distribution function Ψ(k) with re-

spect to k is the probability density function p(k, 0), then differentiating (8) with
respect to k, we get the degree distribution:

p(k, t) =
∂F (k, t)

∂k

=


2ml0+2m2t

m0+t k−3, if m ≤ k ≤ m(1 + mt
l0

)
1
2 ;

m0

(m0+t)(1+mt
l0

)
1
2
p

(
k

(1+mt
l0

)
1
2
, 0

)
, if k > m(1 + mt

l0
)

1
2 .

(9)

As we can see, m0 is a very small number when time t is large enough. If we

don’t consider the initial m0 nodes this result is very close to 2m2t
m0+t

1
k3 in [2], and

both are asymptotically equal to the stationary state 2m2k−3 when time t is large
enough. In Figure 1, we show the simulation results and corresponding analytical
results with different parameter m and time t, respectively.

We assume p(k, 0) satisfies
∫∞
m
kp(k, 0) dk = 2l0

m0
, then with the degree distribu-

tion (9), we can calculate the average degree

〈kt〉 =

∫ ∞
m

kp(k, t) dk =
2(l0 +mt)

m0 + t
.

From this expression, we can easily understand that the average degree 〈kt〉 is
equal to the ratio of two times the actual number of edges and the total number
of nodes. Furthermore, the average degree 〈kt〉 is approximately equal to 2m when
time is large enough.

2.2. Calculation of the degree distribution of the preferential attachment
accelerating growing model with m-varying with CDM. Different from BA
model, many real networks exhibit accelerating growth, such as the Internet and
WWW [8, 23, 5, 9], where the edge number grows faster than the nodes number-
s. Here we use the CDM to calculate the degree distribution of one preferential
attachment accelerating growing model with m-varying.

Let mtα be the new edge number attached with the new node added at time
t, 0 ≤ α < 1. That means the new node added at time t will connect to mtα

different existing nodes. The rest of the evolution mechanism remains the same as
the BA model described in Section 2.1. Similar to the analysis in Section 2.1, the
cumulative distribution function F (k, t) satisfies the following relation from time t
to t+ ∆t:

N(t)F (k, t) + ∆t = N(t+ ∆t)F
(
k + θkt , t+ ∆t

)
, (10)
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Figure 1. The degree distribution of the BA growing model. The
marked points are the simulation results, and the corresponding
solid lines are the analytical results. (a): t = 20000 with m0 =
m = 2, 4 and 7. (b): m0 = m = 4 with t = 200, 2000, 10000 and
20000.

where θkt =
∫ t+∆t

t
mxα dx k

Σk '
(α+1)k∆t

2t . Substituting this into (10) and taking
the Taylor expansion, we get

(α+ 1)k

2t

∂F (k, t)

∂k
+
∂F (k, t)

∂t
+
F (k, t)− 1

m0 + t
= 0, (11)

in the feasible region D = {(k, t)|k > mtα, t > 0}. For degree k(> mtα) nodes, the

coefficient (α+1)k
2t in (11) can be regarded as the changing rate of degree over time t.

And this rate of change is larger than the add rate of new node (mtα)′ = αmtα−1,
since 0 ≤ α < 1. So the minimum degree of the nodes is mtα which is the degree of
new added node at time t. Thus, the boundary condition will be

F (mtα, t) = 0, ∀t > 0. (12)

Solving this boundary problem, we obtain

F (k, t) = 1− 1

m0 + t

(
m0 +

(
k

m

) 2
α−1

t
1+α
1−α

)
. (13)

Consequently, the degree distribution is

p(k, t) =
∂F (k, t)

∂k
=

2

(m0 + t)(1− α)
m

2
1−α t

1+α
1−α k−

3−α
1−α

≈ 2

1− α
m

2
1−α t

2α
1−α k−

3−α
1−α .

(14)

This result is completely equivalent to (24) in [23]. The simulation results and
analytical results are showed in Figure 2.

2.3. Calculation of the degree distribution of the random attachment
growing model with CDM. In this subsection, we will calculate the degree
distribution of random attachment growing model using CDM. Same as the BA
model, the random attachment growing model also starts with a small number
(m0) of nodes, and add a new node with m(≤ m0) edges at every time step. But
the difference is that the newly added node in this model is randomly connected
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Figure 2. The degree distribution of the preferential attachment
accelerating growing model with m-varying. The marked points
are the simulation results, and the corresponding solid lines are
the analytical results. (a): t = 5000, α = 0.2 with m = 2, 4 and
7. (b): t = 5000, m = 4 with α = 0.1, 0.2 and 0.3. (c): m = 4,
α = 0.2 with t = 200, 500, 2000 and 5000.

with the old ones. That is to say, for one edge the probability each old node be
chosen to connect is the same, equal to 1

N(t) .

Similar to the BA growing model, we also have the following relationship on
cumulative distribution function F (k, t)

N(t)F (k, t) + ∆t = N(t+ ∆t)F
(
k + θkt , t+ ∆t

)
, (15)

where θkt = m∆t 1
N(t) = m∆t

m0+t . Substituting this into (15) and dealing with it using

the same processing method as Section 2.1 and 2.2, we get

m

m0 + t

∂F (k, t)

∂k
+
∂F (k, t)

∂t
+
F (k, t)− 1

m0 + t
= 0, (16)

also in the feasible region D = {(k, t)|k > m, t > 0}. As the same with BA model,
this partial differential equation has the initial and boundary conditions (7).

Solving (16), and substituting (7) into the general solution, we get

F (k, t) =

{
1− e1− k

m , m < k ≤ m+ ln (m0+t
m0

)m;
t

m0+t + m0

m0+tΨ
(
k + ln ( m0

m0+t )
m
)
, k > m+ ln (m0+t

m0
)m.

(17)
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Figure 3. The degree distribution of the random attachmen-
t growing model. The marked points are the simulation results,
and the corresponding solid lines are the analytical results. (a):
t = 20000 with m0 = m = 2, 4 and 7. (b): m0 = m = 4 with
t = 200, 2000, 10000 and 20000.

If we ignore the initial m0 nodes, the degree distribution is

p(k, t) =
∂F (k, t)

∂k
=

1

m
e1− k

m , m < k ≤ m+ ln (
m0 + t

m0
)m. (18)

This result is the same as the (17) in [2], which verifies the accuracy of CDM
again. In Figure 3, we show the simulation results as well as analytical results.

3. Calculation of the joint degree distribution of the BA growing model
with CDM. In Section 2, we have shown that the CDM can be used to calculate
the degree distribution of some growing models. In this section, with the help of
the CDM, we will calculate the joint degree distribution of BA model.

Assume that the edges have direction, so the total number of directed edges,
written as L(t) = 2(l0 +mt), is twice the number of actual edges. The joint degree
distribution p(k1, k2) here we study is the fraction of directed edges that connect
nodes of degree k1 and degree k2.

In the continuous degree case, let L̂(k1, k2, t) represent the total number of di-
rected edges whose degrees are sequentially not larger than k1 and k2 at time t, let
F (k1, k2, t) represent the joint cumulative distribution function at time t, namely,
the proportion of directed edges whose degrees are sequentially not larger than k1

and k2 at time t. It is well known that the second order partial derivative p(k1, k2, t)
of joint cumulative distribution function sequentially with respect to k1 and k2 rep-
resents the joint degree distribution, actually the joint probability density. So we
have the following relations:

L̂(k1, k2, t) = L(t)F (k1, k2, t), (19)

F (k1, k2, t) =

∫ k1

0

∫ k2

0

p(x1, x2, t) dx1 dx2. (20)

For a directed edge which from one node with degree k1 point to another node
with degree k2 at time t, due to the addition of new nodes and new edges, the
degrees of its two nodes sequentially will be k1 + θk1t and k2 + θk2t at time t + ∆t.

Therefore, similar to the thought of degree distribution, the L̂(k1 +θk1t , k2 +θk2t , t+
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Figure 4. The schematic diagram of added directed edges ∆L1

and ∆L2.

∆t) consists of the old directed edges L̂(k1, k2, t) and some newly added directed

edges ∆L̂(k1, k2, t) whose degrees are sequentially not larger than k1 and k2, namely,

L̂(k1, k2, t) + ∆L̂(k1, k2, t) = L̂(k1 + θk1t , k2 + θk2t , t+ ∆t). (21)

Substituting (19) into (21), we have

L(t)F (k1, k2, t) + ∆L̂(k1, k2, t) = L(t+ ∆t)F (k1 + θk1t , k2 + θk2t , t+ ∆t), (22)

where, θkt , as described in Section 2, is the increased degree of the node at time

t + ∆t whose degree is k at time t. ∆L̂(k1, k2, t) is consists of two parts, shown
in Figure 4, one part is the directed edges which point to the new node, denoted
as ∆L1. ∆L1 is equal to the accumulation number of new edges connected nodes
with degree from m to k1. The other part is the directed edges emitted by the new
node, denoted as ∆L2. Similar to ∆L1, ∆L2 is equal to the accumulation number
of new edges connected nodes with degree from m to k2. So we have the expression
∆L̂(k1, k2, t) = ∆L1 + ∆L2. Where

∆L1 = m∆t

∫ k1
m
kN(t)p(k, t) dk∫∞

m
kp(k, t)N(t) dk

, (23)

and

∆L2 = m∆t

∫ k2
m
kN(t)p(k, t) dk∫∞

m
kp(k, t)N(t) dk

. (24)

In the above two equations, m∆t represents the number of added directed edges
which are point to or emitted by the new node. ∆L1 and ∆L2 are piecewise func-
tions due to the p(k, t) is a piecewise function. Now we only calculate the directed

edges between the young nodes, m < k1, k2 ≤ m
(

1 + mt
l0

) 1
2

, which are added in

the process of the evolution of the network not the initial nodes.
Substituting L(t) = 2(l0 + mt), N(t) = m0 + t, (9), (23) and (24) into (22), we

have

2(l0 +mt)F (k1, k2, t) +m∆t

(
2− m

k1
− m

k2

)
= 2(l0 +mt+m∆t)F (k1 + θk1t , k2 + θk2t , t+ ∆t),

(25)
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where θkit = m∆t ki
2(l0+mt) , i ∈ 1, 2. Taking the Taylor expansion for the right side

of (25), both sides divided by ∆t, and let ∆t→ 0, finishing

mk1

2(l0 +mt)

∂F (k1, k2, t)

∂k1
+

mk2

2(l0 +mt)

∂F (k1, k2, t)

∂k2
+
∂F (k1, k2, t)

∂t

+
m

l0 +mt

(
F (k1, k2, t) +

m

2k1
+

m

2k2
− 1

)
= 0,

(26)

in the feasible region D = {(k1, k2, t)|m < k1, k2 ≤ m
(

1 + mt
l0

) 1
2

, t > 0}. And the

boundary conditions is F (k1,m, t) = 0, ∀t > 0,m < k1 ≤ m
(

1 + mt
l0

) 1
2

,

F (m, k2, t) = 0, ∀t > 0,m < k2 ≤ m
(

1 + mt
l0

) 1
2

.
(27)

Using the characteristic line method to solve this boundary value problems, we
get

F (k1, k2, t) = 1− m

k1
− m

k2
+

m2

k1k2
. (28)

This joint cumulative distribution function applies only to the directed edges be-
tween the young nodes. The proportion of these directed edges to the total directed

edges is F

(
m
(

1 + mt
l0

) 1
2

,m
(

1 + mt
l0

) 1
2

, t

)
, which is equal to

(
1−

(
l0

l0+mt

) 1
2

)2

,

and this result tends to 1 when the time t is large enough. So (28) can be seen as
the joint cumulative distribution function of the total directed edges on the steady
state .

Differentiating the (28) sequentially with respect to k1 and k2, we obtain the
joint degree distribution

p(k1, k2, t) =
∂2F

∂k2∂k1
=

m2

k2
1k

2
2

. (29)

From (29) we can see that the joint degree distribution p(k1, k2, t) does not
contain the time variable t, that is to say, the joint degree distribution does not
vary over time t. So we denote p(k1, k2, t) as p(k1, k2).

For the joint degree distribution in (29), it is easy to verify that p(k1, k2) satisfies
the following three properties:

1. Symmetry, namely

p(k1, k2) = p(k2, k1), ∀k1, k2 ≥ m, (30)

2. Normalization, namely∫ ∞
m

∫ ∞
m

p(k1, k2) dk2 dk1 = 1, (31)

3. Marginal distribution, namely

q(k2) =

∫ ∞
m

p(k1, k2) dk1 =
m

k2
2

, (32)

where m denotes the minimum of node degrees. The marginal distribution q(k) can
be defined as the probability that a randomly chosen neighbor of a randomly chosen
node will have degree k. q(k) can be also regarded as the fraction of directed edges
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which send out by nodes of degree k. In general, the marginal distribution q(k) is
different from the degree distribution p(k).

Now, we consider the conditional degree distribution p(k2|k1, t), which is defined
as the probability that a randomly chosen neighbor of a node of degree k1 have
degree k2. From (9) and (29), we have

p(k2|k1, t) =
〈kt〉p(k1, k2, t)

k1p(k1, t)
=
m

k2
2

. (33)

From (33), we know that in BA growing network the conditional degree distri-
bution p(k2|k1) does not depend on the start nodes of degree k1, only relates to
the point nodes of degree k2, and is equal to the marginal distribution of degree k2

node q(k2). So we say the BA model has no degree correlations.
Next, we study the degree correlation of BA model by using the assortativity

coefficient Ck1,k2 = 〈k〉N [k1k2]
k1[k1]k2[k2] in [10], which compares the true number of pairs of a

given degree with the expected number of pairs connected at random. In the case of
continuous degree, [k1k2] represents the true density of pairs of k1 -k2 node, which
equals to L(t)p(k1, k2). [k] represents the node density of degree k, which equals to
N(t)p(k, t). Substituting these into Ck1,k2 , we have

Ck1,k2 =
〈k〉N [k1k2]

k1[k1]k2[k2]
= 1. (34)

From (34) we can get that the edge number of k1 - k2 pairs connected at random
is equal to the actual number of edges. In other words, the BA networks have no
degree correlations, which is of great significance in the study of network spreading
dynamics.

4. The SIS model on degree uncorrelated networks based on the CDM.
In addition to the structure of the network, we will use the CDM to study the
epidemic spreading on static and growing networks, respectively.

4.1. The SIS model on static network. In order to establish a continuous de-
gree SIS model on a static degree uncorrelated network, first, let each node exist
only in two discrete states, susceptible or infected. We use N̂S(k, t) and N̂I(k, t)
to represent the number of susceptible nodes and infected nodes whose degree is
less than or equal to k at time t. We use FS(k, t) and FI(k, t) to represent the
cumulative distribution functions of susceptible nodes or infected nodes at time
t. Thus their partial derivatives with respect to variable k, pS(k, t) and pI(k, t),
represent the probability density of susceptible nodes or infected nodes at time t,
respectively, namely the degree distribution. pS(k, t) or pI(k, t) can be regarded as
the probability that a node randomly selected with degree k and is susceptible or
infected. They satisfy the following relations:

N̂(k, t) = N̂S(k, t) + N̂I(k, t), (35)

N̂S(k, t) = N(t)FS(k, t), (36)

N̂I(k, t) = N(t)FI(k, t), (37)

FS(k, t) =

∫ k

0

pS(x, t) dx, (38)

FI(k, t) =

∫ k

0

pI(x, t) dx. (39)
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Then we consider the spread mechanism. At each time step, one susceptible
node becomes infected node due to the contact with the infected neighbors, and the
probability of each contact and infection with infected nodes is λ. At the same time,
each infected node is cured and becomes susceptible state again with probability γ.

The epidemic spreading also satisfies the Markov property. So from time t to
time t+ ∆t, the state transition of pS(k, t) and pI(k, t) can be expressed as follows:{

pS(k, t+ ∆t) = γ∆tpI(k, t) + (1− λkΘk∆t)pS(k, t),

pI(k, t+ ∆t) = (1− γ∆t)pI(k, t) + λkΘk∆tpS(k, t),
(40)

where, γ∆t is the recovery rate of infected nodes in time ∆t, and (1−λkΘk∆t) is the

rate of not being infected of susceptible nodes in time ∆t. Θk =
∫∞

0
p(x|k, t)pI(x,t)

p(x,t) dx

is the probability that an edge emitted by degree k node points to an infected
node. In a degree uncorrelated network, say, the BA network, the Θk will be
Θ = 1

〈k〉
∫∞

0
xpI(x, t) dx. Transforming (40) and dividing by ∆t both sides, then let

∆t→ 0, we get {
∂pS(k,t)

∂t = −λkΘpS(k, t) + γpI(k, t),
∂pI(k,t)

∂t = λkΘpS(k, t)− γpI(k, t).
(41)

This is the continuous degree SIS model on degree uncorrelated static networks.
This model is corresponding to the discrete degree SIS model established by R.
Pastor-Satorras and A. Vespignani in [22]. The essential difference is that the
variable k in this model is a continuous variable, but in other model variable k is
a discrete variable. So the range of variable k in this model is the positive real
numbers, not only positive integers.

Similar to the discrete degree SIS model, the spread threshold of epidemic is

also equal to c = λ〈k2〉
γ〈k〉 . This means that if c < 1, the disease dies out, otherwise

the disease spreads. On the BA static network this threshold is infinite, i.e., small
amount of infected nodes can cause the outbreak of epidemics.

It is very difficult to obtain the analytical solution of (41). Take the BA static
network as an example, we perform the simulations. As depicted in Figure 5, the
stochastic simulations are in good accord with the numerical simulations. In Figure
5, We can also see that the smaller the ratio λ

γ , the smaller the infected proportion

at steady state. This is obvious because both the small infected rate λ and the big
recovery rate γ can prevent the spread of epidemic.

It is shown in Figure 6 that for a node the greater the degree, the greater the
probability of being infected. This is easy to understand that the big degree nodes
have more neighbors, so the infected neighbors are more, thus the ratio of infected
will increase.

4.2. The SIS model on BA growing network. It is well known that many
networks in reality are evolving constantly, not in the static state, such as the
WWW and friends networks, which exist the addition or extinction of nodes and
the disconnection or rewiring of edges. At the same time, the spread of epidemic
is entangled with the network evolution. And the spread is also influenced by the
network evolution. In this subsection we use the CDM to study the special BA
growing network whose growth along simultaneously with the spread of epidemic,
and establish the continuous degree SIS model on a BA growing network.
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Figure 5. The ratio of infected nodes over time t for the SIS
model on static BA network with size N = 5000. The marked
lines are the average of 500 runs of stochastic simulations, and the
corresponding solid lines are the results of numerical simulation.
The initial ratio of infected nodes is set to 5%.
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Figure 6. The relative ratio of infected nodes with degree k at
time t for the SIS model on static BA network. The time t = 1000
and the initial ratio of infected nodes is 5%.

The evolution mechanism of growing network consists of three parts: the H1 H2
in Section 2.1 and the following H3. Note that the nodes before the time step t0 are
the susceptible, and the new nodes added at every time step are also the susceptible.

H3: Epidemic Spread : at time step t0, there appears infected nodes. From this
time on, the epidemic is propagated. namely there not only have the addition
of new node to the network, but also have the epidemic spread. And the
spread mechanism of epidemic is the same as the Section 4.1.

From the above evolution mechanism, we can know that before the time step t0
this network is the same as the BA network. But after time step t0, there appears
the spread of epidemic. Therefore, we only study the network after time step t0.

The notation N̂S(k, t) and N̂I(k, t) are the same as the Section 4.1. Let L̂Sk (t)

represent the number of directed edges which from susceptible N̂S(k, t) nodes point

to infected nodes at time t, L̂Sk (t) = N(t)
∫ k
m
pS(x, t)xΘ dx where Θ is as described

in Section 4.1. Based on (2), we consider the node state and the spread of epidemic,
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and exist{
N̂S(k, t)−∆tλL̂Sk (t) + ∆tγN̂I(k, t) + ∆t = N̂S(k + θkt , t+ ∆t),

N̂I(k, t) + ∆tλL̂Sk (t)−∆tγN̂I(k, t) = N̂I(k + θkt , t+ ∆t).
(42)

Substituting (36), (37), and L̂Sk (t) = N(t)
∫ k
m
pS(x, t)xΘ dx into (42), we get

N(t)FS(k, t)−∆tλN(t)

∫ k

m

pS(x, t)xΘ dx

+ ∆tγN(t)FI(k, t) + ∆t = N(t+ ∆t)FS(k + θkt , t+ ∆t),

N(t)FI(k, t) + ∆tλN(t)

∫ k

m

pS(x, t)xΘ dx

−∆tγN(t)FI(k, t) = N(t+ ∆t)FI(k + θkt , t+ ∆t).

(43)

Taking the Taylor expansion for the right-hand side of this equations, both sides
of equations divided by ∆tN(t), then let ∆t→ 0, we obtain

mk

2(l0 +mt)

∂FS(k, t)

∂k
+
∂FS(k, t)

∂t
+
FS(k, t)− 1

m0 + t

+ λ

∫ k

m

xps(x, t)Θ dx− γFI(k, t) = 0,

mk

2(l0 +mt)

∂FI(k, t)

∂k
+
∂FI(k, t)

∂t
+
FI(k, t)

m0 + t

− λ
∫ k

m

xps(x, t)Θ dx+ γFI(k, t) = 0.

(44)

The sum of two equations in (44) is

mk

2(l0 +mt)

∂(FS + FI)

∂k
+
∂(FS + FI)

∂t
+

(FS + FI)− 1

m0 + t
= 0. (45)

Where FS is short for FS(k, t), and FI is the same. This equation is the same as
(6) of BA growth without considering the nodes states. So we can know that p(k, t)
is the sum of pS(k, t) and pI(k, t) according to Section 2.

(44) contains the variables pS(k, t), pI(k, t), FS(k, t), FI(k, t). In order to close
the equations, we differentiate the equations both sides with respect to k, and get

mk

2(l0 +mt)

∂pS(k, t)

∂k
+
∂pS(k, t)

∂t
=− λΘkpS(k, t) + γpI(k, t)

−
(

m

2(l0 +mt)
+

1

m0 + t

)
pS(k, t),

mk

2(l0 +mt)

∂pI(k, t)

∂k
+
∂pI(k, t)

∂t
=λΘkpS(k, t)− γpI(k, t)

−
(

m

2(l0 +mt)
+

1

m0 + t

)
pI(k, t),

(46)

where Θ = 1
〈k〉
∫∞
m
xpI(x, t) dx. These differential-integral equations are the con-

tinuous degree SIS model on the BA growing network, they describe the evolution
of degree distribution of susceptible and infected, respectively. According to the
evolution mechanism of the network, we can know that the newly added node is
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Figure 7. The relative ratio of infected nodes with degree k at
time t for the SIS model on BA growing network. The time t =
6000, the initial time t0 = 5000 and the initial ratio of infected
nodes is 5%.

susceptible, not the infected. Therefore, we have the following initial-boundary
value conditions: 

pI(k, t0) = p∗I(k),

pS(k, t0) = p(k, t)− p∗I(k),

pI(m, t) = 0, ∀t > t0,

pS(m, t) = p(m, t), ∀t > t0.

(47)

As described in Section 4.1, the spread threshold of epidemic on static BA net-
work is infinite, so the spread threshold of epidemic on BA growing network is also
infinite if the growth is not very fast, namely, small amount of infected nodes can
also cause the outbreak of epidemic.

Solving analytically these equations is difficult, so we perform the following sim-
ulation. In Figure 7, we find that the big degree nodes have a relatively high

probability of being infected, pI(k,t)
p(k,t) , this is the same as the epidemic spread on

static BA network.
As depicted in Figure 8, the newly added health nodes can slightly reduce the

ratio of infected nodes, but the final ratio of infected nodes will gradually tend to
the final ratio of infected nodes of SIS model on static network. This result can also
be obtained from (46), because that when time t tends to infinity the autonomous
system (46) will become non-autonomous system (41). In Figure 8(a) and 8(b), we
can see after about 100 time steps that infected ratio will slowly rise, but in Figure
8 (c) the rise is not obvious. Hence, the larger the epidemic occurrence time t0, the
smaller the influence of network growth to the epidemic spread.

5. Conclusion. When a network reaches certain size, the node degree can be con-
sidered as a continuous variable, so we put forward the CDM to calculate the degree
distribution. Using the CDM we calculate the degree distribution of the three grow-
ing models, which are the BA growing model, the preferential attachment acceler-
ating growing model with m-varying and the random attachment growing model.
Moreover, we also use CDM to calculate the joint degree distribution p(k1, k2) of the
BA growing model, the result reveals that the BA model has no degree correlations.
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Figure 8. The ratio of infected nodes over time t for the SIS model
on BA growing network with different epidemic occurrence time
t0. The time step t is recorded from t0. The marked lines are the
average of 200 runs of stochastic simulations, and the corresponding
solid lines are the results of numerical simulation. (a): t0 = 150;
(b): t0 = 200; (c): t0 = 1000.

In addition, the continuous degree SIS models on the static and growing networks
are established via CDM.

Although the analytical solution of PDEs is usually difficult to obtain, there is
some advantages of CDM, i.e., we can transform the evolution of network into a
partial differential equation(s) on cumulative distribution function or probability
density function, thus we can study analytically the structure of networks and the
spread of epidemic on them.

In this paper, we use the CDM to calculate the topology structure of networks and
establish the epidemic models on these networks. However, the evolution mechanism
of networks in reality is very complicated. For example, a network may exist the
addition or extinction of nodes, the disconnection or rewiring of edges, or even
the both. When considering the state of nodes, the evolution of the nodes and
edges may depend on the state of nodes, which are likely to occur in a real social
network. E. g., the susceptible individuals may break the connection with infected,
or rewire with other susceptible. Thus, with the CDM we will consider the following
problems: (1) which topological structure can also be studied; (2) When we consider
the state of nodes and the evolution mechanism of networks, how should we build
the model in this case.
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