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Abstract. In this paper, an SIR patch model with vaccination is formulat-
ed to investigate the effect of vaccination coverage and the impact of human

mobility on the spread of diseases among patches. The control reproduction

number Rv is derived. It shows that the disease-free equilibrium is unique and
is globally asymptotically stable if Rv < 1, and unstable if Rv > 1. The suffi-

cient condition for the local stability of boundary equilibria and the existence

of equilibria are obtained for the case n = 2. Numerical simulations indicate
that vaccines can control and prevent the outbreak of infectious in all patches

while migration may magnify the outbreak size in one patch and shrink the

outbreak size in other patch.

1. Introduction. With the development of transportation and urbanisation, pop-
ulation migration across regions becomes more frequent, and more and more rural
population crowded into cities. The increasing mobility among regions might lead
to the spread of the infectious diseases regionally and globally much faster than ever
before [19]. For example, SARS was first reported in Guangdong Province of China
in November of 2002, and in late June of 2003, the emerging infectious disease had
spread to 32 countries and regions due to the human mobility [21, 25]. In Febru-
ary 2014 Ebola virus appeared in Guinea and then due to the human mobility the
disease spread very quickly to other countries including the United States, Spain
and the United Kingdom et al [12], and has caused about 6070 reported deaths
and 17145 reported cases of Ebola virus disease up to December 3, 2014 accord-
ing to the report from the World Health Organization (WHO) [6] . All the above
facts show that the population dispersal can affect transmission dynamics of the
infectious diseases.

In the recent years, the impact of population dispersal has received increasing
attention, and many mathematical patch models are formulated to investigate this
hot issue (see [24, 3, 14] and the references cited therein). Here, the patches can
be cities, towns, states, countries or other appropriate community divisions. Wang
and Zhao [24] proposed an epidemic model with population dispersal to describe
the dynamics of disease spread between two patches and n patches. Arino and
van den Driessche [3] developed a multi-city epidemic model to analyze the spatial
spread of infectious diseases. In 2011, Gao and Ruan [15] formulated an SIS patch
model with non-constant transmission coefficients to investigate the effect of media
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coverage and human movement on the spread of infectious diseases among patches,
and soon after, Gao and Ruan [13] proposed a multi-patch model to study the
impacts of population dispersal on the spatial spread of malaria between patches.
All the above mathematical models have provided useful information about the
effect of host mobility on transmission dynamics of infectious diseases, but almost
these models do not include the control measures, such as vaccination in it.

There is no doubt that the top priority of global public security is to prevent
and contain the spread of infectious diseases. Thus it is important to study how
to control the spread of infectious diseases in patchy environment and how the in-
creasing mobility of hosts affects the current public health security. In this paper,
we will use a mathematical model to explore this important issue. As we all know,
vaccination is one of the most effective biological means of containing the outbreak
of infectious diseases, which inoculates antigenic material into the individuals to
stimulate immune system to develop adaptive immunity to a pathogen. Since Ed-
ward Jenner, the founder of vaccinology, inoculated a 13 year-old-boy with vaccinia
virus (cowpox) and demonstrated immunity to smallpox [18] in 1796, vaccination
has played an important role in controlling and preventing the outbreak of infectious
diseases. The widespread immunity due to vaccination is largely responsible for the
worldwide eradication of smallpox and the restriction of infectious diseases, such as
polio, measles, and tetanus from much of the world [17]. Over the past two decades,
many modeling studies have been conducted the effect of vaccination on transmis-
sion dynamics of infectious diseases (see [1, 2] and reference therein). However,
most of the epidemic models with vaccination are formulated in an isolated patch,
ignoring spatial heterogeneity both for populations and disease transmissions.

The main purpose of the paper is to formulate an SIR epidemic model to study
the impact of vaccination on transmission dynamics of infectious disease in patchy
environment and the impact of the increasing mobility of hosts on the current
immunization strategy. The paper is organized as follows. In Section 2, based on
the SIR model with birth targeted vaccination we propose an SIR epidemic model
with vaccination in patchy environment. In Section 3, we mainly present some
preliminary results and derive the reproduction number. A classification of the
equilibria of system on two patches and its the local dynamical behavior is provided
in Section 4. We conclude with some numerical simulations in Section 5 and give a
brief conclusion in the final section.

2. Model formulation. In this section, we employ an n-patch SIR epidemic mod-
el capable of informing vaccination policy to illustrate the impact of population
migration between patches on the transmission dynamics of an infectious disease.

First, let us formulate a model for the spread of the disease in the i-th patch.
Suppose there is no host migration among patches, i.e., the patches are isolated.
We assume that the total host population Ni(t) in the i−th patch is partitioned
into three distinct epidemiological subclasses which are susceptible, infectious and
removed either by recovery from infection or by vaccination, with sizes denoted by
Si(t), Ii(t) and Ri(t), respectively. Our assumptions on the dynamical transfer of
the host population in the i−th patch are demonstrated in Figure 1.

We assume that the hosts are recruited at a rate µiNi into the susceptible class
and die of natural causes at a rate µi. All individuals are born susceptible, and
a fraction pi of newborns will receive vaccination. The newborns that successfully
take the vaccine will then develop immunity to infection. The force of infection for
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susceptible is βiSi
Ii
Ni

, where βi denotes the transmission coefficient. An infected
host recovers at the rate γi.

Figure 1. Diagram of transitions between epidemiological classes
in the i-th patch.

Based on the transfer diagram 1, the spread of an infectious disease in the i-th
patch can be described by the following equations:

dSi
dt

= (1− pi)µiNi − βi
Ii
Ni
Si − µiSi,

dIi
dt

= βi
Ii
Ni
Si − (µi + γi)Ii,

dRi
dt

= piµiNi + γiIi − µiRi.

(1)

When n patches are connected, we assume that only susceptible and recovered
hosts can migrate among the patches and the infected hosts cannot migrate among
patches due to health problems or strict border inspection. Let mij ≥ 0 denotes
the per capita rate that susceptible or recovered hosts of patch i leave for patch j,
where i 6= j; d represents the migration period, and lij denotes the fraction of the
hosts in patch i that move to patch j and satisfies

∑n
j=1 lij = 1, then the migration

rate mij can be calculated or estimated from available data. If we given the fraction
lij of the hosts migrate from patch i to patch j within d days, the migration rate
mij can be determined from using the relationship 1− e−mijd = lij , that is

mij = − ln(1− lij)
1
d , i, j = 1, 2, · · · , n, i 6= j. (2)

Then the dynamics of the hosts with migration is governed by the following model:

dSi
dt

= (1− pi)µiNi − βi
Ii
Ni
Si − µiSi +

n∑
j 6=i

(mjiSj −mijSi),

dIi
dt

= βi
Ii
Ni
Si − (µi + γi)Ii,

dRi
dt

= piµiNi + γIi − µiRi +

n∑
j 6=i

(mjiRj −mijRi),

Ni = Si + Ii +Ri, i = 1, 2, · · · , n.

(3)

In this paper, we will use the system (3) to investigate the effect of vaccination on
transmission dynamics of infectious disease in patchy environment and the impact
of the increasing mobility of hosts on the current immunization strategy.

3. Preliminary results and the reproduction number. We first introduce
some notations which will be used throughout this paper. Let x, y ∈ Rn+, where
Rn+ = {x ∈ Rn : xi ≥ 0 for 1 ≤ i ≤ n} be the positive orthant in Rn. We write
x ∗ y = (x1y1, x2y2, · · · , xnyn), y ≥ x whenever y − x ∈ Rn+, y > x whenever
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y − x ∈ Rn+ and x 6= y, and Diag(x) the n × n matrix whose diagonal is given by
the components of x and the other terms are zero.

Let Ni(t) = Si(t) + Ii(t) +Ri(t) be the total population in patch i at time t and
let the new infection term in patch i equal zero if Ni = 0, see Adding all equations
in (3) together leads to (N1(t) + N2(t) + · · · + Nn(t))′ = 0, giving that the total
population N(t) =

∑n
i=1Ni(t) is always a constant. If the total initial population

given by N(0), then the fesible region

Γ = {(S1, I1, R1, · · · , Sn, In, Rn) ∈ R3n
+ :

n∑
i=1

(Si + Ii +Ri) ≤ N(0), i = 1, 2, · · · , n},

is positively invariant with respect to system (3).
Define movement matrix

M =



∑n
j 6=1m1j −m21 · · · −mn1

−m12

∑n
j 6=2m2j · · · −mn2

...
...

. . .
...

−m1n −m2n · · ·
∑n
j 6=nmnj


. (4)

In this paper, we always assume that the movement matrix is irreducible, that is,
the graph of the patches are strongly connected through the movement of hosts
with respect to disease. If the movement matrix is reducible, the system may be
decoupled into several samll systems (see [11] and reference therein).

To find the disease-free equilibrium with all Ii = 0 of system (3), consider the
following linear systems

(1− pi)µiNi − µiSi +

n∑
j 6=i

(mjiSj −mijSi) = 0,

piµiNi − µiRi +

n∑
j 6=i

(mjiRj −mijRi) = 0,

Ni = Si +Ri, i = 1, 2, · · · , n,

(5)

or in the form of matrix systems
Diag((1− p) ∗ µ)N− (M + Diag(µ))S = 0,

Diag(p ∗ µ)N− (M + Diag(µ))R = 0,

MN = 0,

(6)

where µ = (µ1, µ2, · · · , µn), 1 = (1, 1, · · · , 1) and X = (X1, X2, · · · , Xn)T (subscript
T denotes transpose), X represents S, I,R,N and p.

We first solve the third equation of (5) or (6) which independent of the first two
equations. Applying the results presented in Lemma 2.1 [16], the general solution
to the third equation of (6) can be given as N = k(c11, c22, · · · , cnn)T , where ckk >
0, (k = 1, 2, · · · , n) is the co-factor of the k-th diagonal entry of M and k is a

constant to be specified later. It follows from
∑n
i=1Ni = N(0) that k = N(0)∑n

i=1 cii
> 0,

then the third equation of (6) has a unique positive solution

N0 , (N0
1 , N

0
2 , · · · , N0

n)T =
N(0)∑n
i=1 cii

(c11, c22, · · · , cnn)T .
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Substituting N0 back into the first two equations of (6) yields that

S0 , (S0
1 , S

0
2 , · · · , S0

n) = (M + Diag(µ))−1Diag((1− p) ∗ µ)N0,

R0 , (R0
1, R

0
2, · · · , R0

n) = (M + Diag(µ))−1Diag(p ∗ µ)N0.
(7)

Since all off-diagonal entries of matrix M + Diag(µ) are negative (i.e., the Z-sign
pattern) and the sum of the entries in each column is positive, it follows from
Chapter 6 in [5] that M + Diag(µ) is a nonsingular irreducible M-matrix and (M +
Diag(µ))−1 > 0 . Therefore, the linear system (6) has a unique positive solution
S0,R0,N0, that is, system (3) always has unique disease-free equilibrium E0 =
(S0, 0,R0).

In absence of infectious disease, adding the three equations of system (3) together
leads to

dNi
dt

=

n∑
j 6=i

(mjiNj −mijNi), i = 1, 2, · · · , n, (8)

or in the form of matrix system

dN(t)

dt
= −MN(t). (9)

It follows from Theorem 2.1 in [4] that the positive equilibrium N0 = N(0)∑n
i=1 cii

(c11, c22,

· · · , cnn)T of system (8) is globally asymptotically stable on the affine hyperplane∑n
i=1N

0
i = N(0). Using the expressions of S0, I0,N0 and the condition Ii = 0 for

all i, we can transfer the stability of system (3) into the following limit system (S− S0)′ = −(M + Diag(µ))(S− S0),

(R−R0)′ = −(M + Diag(µ))(R−R0).
(10)

Since the Gerschgorin circular disc theorem implies that matrix M+Diag(µ) is sta-
ble, i.e., all the eigenvalues of M+Diag(µ) have negative real parts, then equilibrium
S = S0,R = R0 is global stability of system (10). Following the Theorem 2.1 in
[8], we can directly obtain that the unique positive equilibrium E0 of linear system
(3) is globally asymptotically stable on the affine hyperplane

∑n
i=1N

0
i = N(0).

Summarizing the above discussions, we can obtain the following result.

Theorem 3.1. System (3) always has a disease-free equilibrium E0(S0,0,R0),
where

S0 = (M + Diag(µ))−1Diag((1− p) ∗ µ)N0,

R0 = (M + Diag(µ))−1Diag(p ∗ µ)N0,

N0 = N(0)∑n
i=1 cii

(c11, c22, · · · , cnn)T ,

and N(0) is the initial total population and ckk > 0, (k = 1, 2, · · · , n) is the co-factor
of the k-th diagonal entry of the movement matrix M . Moreover, the disease-free
equilibrium E0(S0,0,R0) is globally asymptotically stable in

Γ0 ={(S1,· · · ,Sn,I1,· · · ,In,R1,· · · ,Rn) :

n∑
i=1

(Si +Ri)=N(0),Ii = 0, i = 1, 2, · · · , n}.

Note that the system (3) has n infected variables, namely, I1, I2, · · · , In, it then
follows that, using the notation of Driessche and Watmough [10], the matrices F
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and V (corresponding to the new infection terms and the remaining transfer terms,
respectively) for entire population are given by

F = Diag(β1
S0
1

N0
1

, β2
S0
2

N0
2

, · · · , βn
S0
n

N0
n

) and V = Diag(µ+ γ).

From literature [10], the reproduction number Rv is defined as the spectral radius
of the next generation matrix FV −1, that is,

Rv = ρ(FV−1) = max{Rv1,Rv2, · · · ,Rvn}, (11)

where ρ(M) represents the spectral radius of the nonnegative matrix M and

Rvi =
βi

µi + γi

S0
i

N0
i

, (12)

which represents the reproduction number in the i-th patch. It is clearly that
the domain Rv implicitly depend on the movement of susceptible individuals and
vaccination coverage through S0

i . For disease-free equilibrium, we then have the
following result based on the Theorem 2 in [10].

Theorem 3.2. The disease-free equilibrium E0 of system (3) is locally asymptoti-
cally stable if Rv < 1, whereas it is unstable if Rv > 1.

In the special case n = 1, the control reproduction number has the explicit
expression

Rv = (1− p1)
β1

µ1 + γ1
. (13)

which represents the numbers of secondary cases directly produced by infectious
diease during the period of infection in a susceptible population.

In the special case of no movement between patches (i.e., M = 0), the control
reproduction number Rv defined in (11) is given by the maximum value of control
reproduction numbers Rvi in all patches. Namely,

Rv = max{Rv1,Rv2, · · · ,Rvn}, (14)

with Rvi = (1− pi) βi

µi+γi
.

Theorem 3.3. If Rv < 1, then system (3) exists only one equilibrium whose coor-
dinates includes zero, that is, the disease-free equilibrium E0.

Proof. For any equilibrium E(S, I,R) of system (3), it must satisfy the matrix
system: 

Diag((1− p) ∗ µ)N−Diag(µ+ γ)I− (M + Diag(µ))S = 0,

Diag(I)(S−BN) = 0,

Diag(p ∗ µ)N + Diag(γ)I− (M + Diag(µ)R = 0,

N = S + I + R.

(15)

where B = Diag(µ1+γ1
β1

, µ2+γ2
β2

, · · · , µn+γn
βn

).

Adding the first three equations of (15) together yields M(N − I) = 0, whose
general solution can be given as (see Lemma 2.1 [16])

N− I = k(c11, c22, · · · , cnn)T ,
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where ckk > 0, (k = 1, 2, · · · , n) is the co-factor of the k-th diagonal entry of M and
k is constant to be specified later. Since N(0) =

∑n
i=1Ni, then direct calculation

implies that k = 1∑n
i=1 cii

N(0)− 1∑n
i=1 cii

1 · I. Therefore, we can rewrite N as

N = N0 + (E− C)I, (16)

where N0 = N(0)∑n
i=1 cii

(c11, c22, · · · , cnn)T , C =
(

c11∑n
i=1 cii

, c22∑n
i=1 cii

, · · · , cnn∑n
i=1 cii

)T · 1
and E is the identity matrix. Substituting (16) into the first equation of (15) leads
to

S = S0 + (M + Diag(µ))−1
(

Diag((1− p) ∗ µ)(E− C)−Diag(µ+ γ)
)
I, (17)

where S0 = (M + Diag(µ))−1Diag((1− p)µ)N0.
Substituting (16),(17) into the second equation of (15), the system of equation

(15) can be reduced to the following equation with one single equation of I

Diag(I)
(
S0 −BN0 − ((M + Diag(µ))−1Diag((1− p)µ)C −BC)I

−(B + (M + Diag(µ))−1(Diag(µ+ γ)−Diag((1− p)µ))I
)

= 0.
(18)

In the following, we only need to solve (18) for I and then back-substitute into (15),
the solutions for other variables will be found.

Since CN(0) = N(0)C = N0 · 1, it follows from the relationship between S0 and
N0 that

(M + Diag(µ))−1Diag((1− p) ∗ µ)C −BC

= (M + Diag(µ))−1
(
Diag((1− p) ∗ µ)N0 − (M + Diag(µ))BN0

) 1

N(0)
1

=
(
S0 −BN0

) 1

N(0)
1,

(19)
and the expression for Rvi given in (12) that

S0 −BN0 =



µ1 + γ1
β1

N0
1 (Rv1 − 1)

µ2 + γ2
β2

N0
2 (Rv2 − 1)

...

µn + γn
βn

N0
n(Rvn − 1)


. (20)

Therefore, the equation (18) can be expressed as

Diag(I)(M + Diag(µ))−1(b−AI) = 0, (21)

where
b , (b1, b2, · · · , bn)T = (M + Diag(µ))(S0 −BN0),

and
A , (aij)n×n = Diag(γ + pµ) + (M + Diag(µ))B

+(M + Diag(µ))
(
S0 −BN0

) 1

N(0)
1.

Note that M + Diag(µ) is a nonsingular M-matrix, it follows from Chapter 6
in [5] and equation (20) that b < 0 if Rv < 1. Since all off-diagonal entries are
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negative and every column sum of matrix A is positive if Rv < 1, then matrix
A is a nonsingular M-matrix. Denote sub-matrix A(i1, i2, · · · , ik) which composed
by the i1-th, i2-th,· · · , ik-th rows and columns of A, similarly, one can verify that
sub-matrix A(i1, i2, · · · , ik) is also a non-singular M-matrix.

It is easily to see that I = 0 is one solution of (21). Except I = 0, the other
solution of equation (21) should be I 6= 0. For ease of presentation, we discuss the
cases Ii 6= 0 for all i and Ii 6= 0 for some i separately. If Ii 6= 0 for all i, then the
solution of I must satisfy b−AI = 0, it follows from b < 0 and A is a nonsingular M-
matrix that I = A−1b < 0. If Ii 6= 0 for some i, without loss of generality, we assume
that Ii1 6= 0, Ii2 6= 0, · · · , Iik 6= 0 and Ii,k+1 = Ii,k+2 = · · · = Iin = 0, then solution
of Ii1, Ii2, · · · , Iik satisfy b(i1, i2, · · · , ik) − A(i1, i2, · · · , ik)(Ii1, Ii2, · · · , Iik)T = 0,
where b(i1, i2, · · · , ik) composed with the i1-th, i2-th,· · · , ik-th rows of b. It follows
from b(i1, i2, · · · , ik) < 0 and A(i1, i2, · · · , ik) is a nonsingular M-matrix that Iij <
0 for j = 1, 2, · · · , k. That is, the solutions of (21) when Rv < 1 either equal to
zero or less than zero. Considering the biological significance, we omit the solution
including the element Ii < 0 (i = 1, 2, · · · , n). Then back-substituting I = 0
into (21), we obtain the expression of E(S, I,R) which in fact is the disease-free
equilibrium E0. Therefore, the disease-free equilibrium E0 is the unique equilibrium
under the condition Rv < 1 for system (3). This completes the proof.

4. The SIR model on two patches. In this section, we mainly consider the
dynamic behaviors for system (3) with n = 2 due to it is hard to find the explicit
solutions of (21) when n is very large as Rv > 1. In this case, following the
results presented in the previous section, we know that disease-free equilibrium
E0 = (S0

1 , S
0
2 , 0, 0, R

0
1, R

0
2) always exists and the explicit expression can be computed

as

S0
1 =

((1− p1)(µ1µ2 + µ1m21) + (1− p2)µ2m12)m21N(0)

(µ1µ2 + µ1m21 + µ2m12)(m12 +m21)
,

S0
2 =

((1− p1)µ1m21 + (1− p2)(µ1µ2 + µ2m12)m12N(0)

(µ1µ2 + µ1m21 + µ2m12)(m12 +m21)
,

R0
1 =

(p1(µ1µ2 + µ1m21) + p2µ2m12)m21N(0)

(µ1µ2 + µ1m21 + µ2m12)(m12 +m21)
,

R0
2 =

(p1µ1m21 + p2(µ1µ2 + µ2m12)m12N(0)

(µ1µ2 + µ1m21 + µ2m12)(m12 +m21)
.

From (11) and (12), the control reproduction number for this case can be given by

Rv = max{Rv1,Rv2}, (22)

where

Rv1 =
β1

µ1 + γ1

(1− p1)(µ1µ2 + µ1m21) + (1− p2)µ2m12

µ1µ2 + µ1m21 + µ2m12
,

Rv2 =
β2

µ2 + γ2

(1− p1)µ1m21 + (1− p2)(µ1µ2 + µ2m12)

µ1µ2 + µ1m21 + µ2m12
,

(23)

represent the control reproduction number correspond to the sub-patch 1 and 2,
respectively.

Like in the single patch model (1) or many other epidemic models, we have the
global stability of the disease-free equilibrium for system (3) with n = 2 as Rv < 1.

Theorem 4.1. If Rv < 1, then E0 is globally asymptotically stable for system (3)
without vaccination, whereas if Rv > 1, E0 is unstable
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The proof of Theorem (4.1) is analogous to those of Theorem 2.4 in Gao and
Ruan [15] and Theorem 3.2 in Sun et al. [23]. We omit the details here.

Following Theorem 3.3 and the proof of Theorem 4.1, when Rv < 1, there does
not exist any endemic equilibrium. We now turn to the case where Rv > 1. We
first study the existence of other equilibria for system (3) with n = 2 when Rv > 1,
and then establish its the stability.

For convenience of presentation, set

ξ1 = µ1µ2 + µ1m21 + µ2m12, ξ2 = (γ2 + p2µ2)β2, ξ3 = (γ1 + p1µ1)β1,

ξ4 = (µ1 + γ1)(µ2 + γ2)(µ2 +m21) + (µ1 + γ1)ξ2 + (µ2 + γ2)2m12,

ξ5 = (µ1 + γ1)(µ2 + γ2)(µ1 +m12) + (µ2 + γ2)ξ3 + (µ1 + γ1)2m21,

and define

R̄v1 =
((µ2 + γ2)(µ2 +m21) + ξ2)(1− p1)µ1β1 + (µ2 + γ2)2m12β1

(µ1 + γ1)((µ2 + γ2)ξ1 + (µ1 +m12)ξ2)
,

R̄v2 =
((µ1 + γ1)(µ1 +m12) + ξ3)(1− p2)µ2β2 + (µ1 + γ1)2m21β2

(µ2 + γ2)((µ1 + γ1)ξ1 + (µ2 +m21)ξ3)
,

(24)

which can be considered as a second threshold for epidemic invasion of sub-
populations 1 and 2, respectively.

Theorem 4.2. The system (3) can have other three equilibria, and we have the
following results:

1. Boundary equilibria Ê = (Ŝ1, Ŝ2, Î1, 0, R̂1, R̂2) exists if and only if Rv1 > 1,
and Ē = (S̄1, S̄2, 0, Ī2, R̄1, R̄2) exists if and only if Rv2 > 1. Here,

Ŝ1 =
((µ1 + γ1)(µ2 +m21)+m12(1− p2)µ2)(µ1 + γ1)m21N(0)

(µ1+γ1)(m12ξ1+(µ2+m21)m21β1)+m12(µ2+m21)ξ3+m12m21(1− p2)µ2β1
,

Ŝ2 =
((µ1+γ1)2m21+((µ1+γ1)(µ1+m12)+(γ1+p1µ1)β1)(1−p2)µ2)m12N(0)

(µ1+γ1)(m12ξ1+(µ2+m21)m21β1)+m12(µ2+m21)ξ3+m12m21(1− p2)µ2β1
,

Î1 =
(µ1+γ1)ξ1m21(Rv1 − 1)N(0)

(µ1+γ1)(m12ξ1+(µ2+m21)m21β1)+m12(µ2+m21)ξ3+m12m21(1− p2)µ2β1
,

R̂1 =
((µ2+m21)(ξ3 − (µ1+γ1)γ1)+m12(µ1+γ1)p2µ2)m21N(0)

(µ1+γ1)(m12ξ1+(µ2+m21)m21β1)+m12(µ2+m21)ξ3+m12m21(1− p2)µ2β1
,

R̂2 =
(m21(ξ3 − (µ1+γ1)γ1)+((µ1+γ1)(µ1+m12)+(γ1+p1µ1)β1)p2µ2)m12N(0)

(µ1+γ1)(m12ξ1+(µ2+m21)m21β1)+m12(µ2+m21)ξ3+m12m21(1− p2)µ2β1
,

and

S̄1 =
((µ2+γ2)2m12+((µ2+γ2)(µ2+m21)+(γ2+p2µ2)β2)(1− p1)µ1)m21N(0)

(µ2+γ2)(m21ξ1+(µ1+m12)m12β2)+m21(µ1+m12)ξ2+m12m21(1− p1)µ1β2
,

S̄2 =
((µ2+γ2)(µ1+m12)+m21(1− p1)µ1)(µ2+γ2)m12N(0)

(µ2+γ2)(m21ξ1+(µ1+m12)m12β2)+m21(µ1+m12)ξ2+m12m21(1− p1)µ1β2
,

Ī2 =
(µ2+γ2)ξ1m12(Rv2 − 1)N(0)

(µ2+γ2)(m21ξ1+(µ1+m12)m12β2)+m21(µ1+m12)ξ2+m12m21(1− p1)µ1β2
,
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R̄1 =
(m12(ξ2 − (µ2+γ2)γ2)+((µ2+γ2)(µ2+m21)+(γ2+p2µ2)β2)p1µ1)m21N(0)

(µ2+γ2)(m21ξ1+(µ1+m12)m12β2)+m21(µ1+m12)ξ2+m12m21(1− p1)µ1β2
,

R̄2 =
((µ1+m12)(ξ2 − (µ2+γ2)γ2)+m21(µ2+γ2)p1µ1)m12N(0)

(µ2+γ2)(m21ξ1+(µ1+m12)m12β2)+m21(µ1+m12)ξ2+m12m21(1− p1)µ1β2
.

2. System (3) has a unique endemic equilibrium E∗ = (S∗1 , S
∗
2 , I
∗
1 , I
∗
2 , R

∗
1, R

∗
2) if

and only if R̄v1 > 1 and R̄v2 > 1. Here

S∗1 =
((µ1 + γ1)((µ2 + γ2)(µ2 +m21) + ξ2) + (µ2 + γ2)2m12)(µ1 + γ1)m21N(0)

m21β1ξ4 +m12β2ξ5
,

S∗2 =
((µ2 + γ2)((µ1 + γ1)(µ1 +m12) + ξ3) + (µ1 + γ1)2m21)(µ2 + γ2)m12N(0)

m21β1ξ4 +m12β2ξ5
,

I∗1 =
(µ1 + γ1)((µ1 +m12)ξ2 + (µ2 + γ2)ξ1)(R̄v1 − 1)m21N(0)

m21β1ξ4 +m12β2ξ5
,

I∗2 =
(µ2 + γ2)((µ2 +m21)ξ3 + (µ1 + γ1)ξ1)(R̄v2 − 1)m12N(0)

m21β1ξ4 +m12β2ξ5
,

R∗1 =
(ξ2 + (µ2 + γ2)(µ2 +m21))(ξ3 − γ1(µ1 + γ1))m21N(0)

m21β1ξ4 +m12β2ξ5

+
m12(µ1 + γ1)(ξ2 − γ2(µ2 + γ2))m21N(0)

m21β1ξ4 +m12β2ξ5
,

R∗2 =
(ξ3 + (µ1 + γ1)(µ1 +m12))(ξ2 − γ2(µ2 + γ2))m12N(0)

m21β1ξ4 +m12β2ξ5

+
m21(µ2 + γ2)(ξ3 − γ1(µ1 + γ1))m12N(0)

m21β1ξ4 +m12β2ξ5
.

It follows from the expressions of R̄vi and Rvi (i = 1, 2) that

R̄v1 −Rv1 =
(µ2 + γ2)(γ2 + p2µ2)m12β1

(µ1 + γ1)((µ2 + γ2)ξ1 + (µ1 +m12)ξ2)
(1−Rv2),

R̄v2 −Rv2 =
(µ1 + γ1)(γ1 + p1µ1)m21β2

(µ2 + γ2)((µ1 + γ1)ξ1 + (µ2 +m21)ξ3)
(1−Rv1).

Thus, if Rv > 1, the inequalities Rv1 > R̄v1 > 1 and Rv2 > R̄v2 > 1 hold.
Therefore, system (3) coexists at most four equilibriums if R̄v1 > 1 and R̄v2 > 1.

Using N(0) = N1 +N2, we can reduce system (3) with n = 2 as follows

dS1

dt
= (1− p1)µ1N1 − β1

I1
N1

S1 − µ1S1 +m21S2 −m12S1,

dS2

dt
= (1− p2)µ2(N(0)−N1)− β2

I2
N(0)−N1

S2 − µ2S1 +m12S1 −m21S2,

dI1
dt

= β1
I1
N1

S1 − (µ1 + γ1)I1,

dI2
dt

= β2
I2

N(0)−N1
S2 − (µ2 + γ2)I2,

dN1

dt
= m21(N(0)−N1 − I2)−m12(N1 − I1),

(25)
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which can be used to study the local behavior of system (3) near the boundary
equilibria. By considering the linear system for (25), we have the following theorems.

Theorem 4.3. If Rv1 > 1 and R̄v2 < 1, then Ê is locally asymptotically stable,
whereas if R̄v2 > 1, then Ê is unstable.

Proof. Evaluating system (25) at boundary equilibrium Ê, we have the following
Jacobian matrix

J(Ê)=



−2µ1−γ1−m12 m21 −β1 Ŝ1

N̂1
0 (1−p1)µ1+(µ1+γ1) Î1

N̂1

m12 −µ2−m21 0 −β2 Ŝ2

N̂2
−(1 − p2)µ2

β1
Î1
N̂1

0 0 0 −(µ1 + γ1) Î1
N̂1

0 0 0 β2
Ŝ2

N̂2
−µ2−γ2 0

0 0 m12 −m21 −(m12 +m21)


.

It is clearly that one of the eigenvalue of J(Ê) is

λ1 = β2
Ŝ2

N̂2

− (µ2 + γ2) = (µ2 + γ2)(R̄v2 − 1),

where R̄v2 given in (24). After complexity calculation, the other eigenvalues of

J(Ê) are the solutions of quartic equation

λ4 + α3λ3 + α2λ2 + α1λ1 + α0 = 0, (26)

where

α0 = m12(µ1µ2 + µ1m21 + µ2m12(µ1 + γ1)N̂3
1 Î1 +m12m21(1− p2)µ2N̂

4
1

+(µ1γ1)2(µ2 +m21)m21N̂
4
1 + (γ1 + p1µ1)(µ2 +m21)m12N̂

4
1 > 0,

α1 = (µ1 + γ1)(µ1 + µ2 +m12 +m21)m12N̂
2
1 Î1 + ((2µ1 + γ1)m2

21 + µ2m
2
12)N̂2

1

+(µ2(µ1 + γ1)2 + (m12 + 2m21)γ21 + 2µ1(µ1 + µ2) + (4µ1 + µ2)γ1)N̂2
1

+(m21(2µ1 + µ2 + γ1) + µ1(γ1 + p1µ1 + p1γ1) + µ2(γ1 + 2µ1))N̂2
1 > 0,

α2 = m12(µ1 + γ1)N̂1Î1 + (m2
12 +m2

21 + (µ1 + γ1)2 + µ2γ1 + 2µ1µ2)N̂2
1

+(m21(2γ1 + 4µ1 + µ2) +m12(2m21 + γ1 + 2µ1 + 2µ2))N̂2
1 > 0,

α3 = (2µ1 + µ2 + γ1 + 2m12 + 2m21)N̂1 > 0.

By Routh-Hurwitz theorem, (26) has roots with negative real parts only requires
that α1 > 0, α3 > 0 and α1α2 − α0α3 > 0. Then we only need to prove the last
inequality. Direct computation gives that

α1α2−α0α3 = m2
12(µ1 + γ2)2(µ1 + µ2 +m12 +m21)Î21 N̂

3
1 + (µ1 + γ1)(m3

12 +m3
21

+ µ1γ
2
1 + 2µ2

1 + γ1 + µ3
1 + 2µ2γ

2
1 + 4µ1µ2γ1 + 2µ2

1µ2 + µ2
2γ1 + µ1µ

2
2

+(3µ1+2µ2+γ1+2m21)m2
12+(5µ1 + 2µ2 + 3γ1)m2

21 + (5µ2
1+7µ1γ1

+2γ21 + 4µ2γ1 + 6µ1µ2 + µ2
2)m2

21 + (3µ2
1 + 2γ21 + µ2

2 + 3m2
21 + p1µ

2
1

+4µ1µ2+4(2µ1+µ2+γ1)m21 + (p1 + 4)µ1γ1 + 2µ2γ1)m12)m12N̂
4
1 Î1

+(m4
21(2µ1+γ1)+µ2m

4
12+2m3

21(2µ1+γ1)(2µ1+γ1+µ2)m2
21(2µ1+γ1)
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×(4(µ1+γ1)2+3µ2γ1+6µ1µ2+µ2
2)+(µ1 + γ1)2µ2(γ21 + (2µ1 + µ2)γ1

+(µ1+2µ2)µ1)+m3
12(γ21 +p1µ

2
1+4µ1µ2 + 2µ2

2 + (µ1 + p1µ1 + 2µ2)γ1

+(2µ1+γ1+3µ2)m21)+m21(2γ41 +4γ31(2µ1+µ2)+4µ1γ1(2µ2
1+5µ1µ2

+ µ2
2) + γ21(12µ1 + 16µ1µ2 + µ2

2) + 2µ2
1(µ2

1 + 4µ1µ2 + 2µ2
2))m2

12(γ31

+ 3m2
21(2µ1 + µ2 + γ1) + γ21(3µ2 + (p1 + 3)µ1) + γ1(8µ1µ2 + 2µ2

2

+(2+3p1)µ2
1)+2µ1(p1µ

2+3µ2(µ1+µ2))+m21(3γ21 +6µ2
1+2(p2+7)µ1µ2

+3µ2
2+2γ1(4µ1+(p2+3)µ2)))(γ41 +m21(3γ1+6µ1+µ2)+γ31((p1+3)µ1

+2µ2)+γ21(3(p1+1)µ2
1 + 8µ1µ2 + 2µ2

2) + µ1γ1((1 + 3p1)µ2
1 + 10µ1µ2

+(7−p1)µ2
2)+µ2

1(p1µ
2
1+4µ1µ2+(6− p2)µ2

2) +m2
21(4γ21 + (14− p1)µ2

1

+2(p2+7)µ1µ2+µ2
2+γ1((15−p1)µ1+2(p2+3)µ2))+m21(γ21((15+p1)µ1

+4γ31 +(6+p2)µ2)+γ1((17+3p1)µ2
1+(21− 2p1+3p2)µ1µ2+(p2+2)µ2

2)

+µ1(2(p1 + 3)µ2
1 + (19− 2p1 + 2p2)µ1µ2 + (p2 + 7)µ2

2))))N̂5
1 > 0.

Then all solution of (26) have negative real parts. Therefore, based on the above

discussion, we know that if Rv1 > 1, there exists a boundary equilibrium Ê and it
is locally asymptotically stable if R̄v2 < 1. This completes the proof.

Similar results hold for boundary equilibrium Ē if Rv2 > 1.

Theorem 4.4. If Rv2 > 1 and R̄v1 < 1, then Ē is locally asymptotically stable,
whereas if R̄v1 > 1, then Ē is unstable.

5. Numerical simulations. To complement the mathematical analysis carried
out in the previous sections, we now investigate some of the numerical proper-
ties of system (3). We take the default parameter values as: N(0) = 10, 000,
β1 = 0.5, β2 = 0.3, γ = 1/7, µ = 0.0006, d = 360 and the initial condition for system
(3) considered as (S1(0), S2(0), I1(0), I2(0), R1(0), R2(0)) = (6489, 3489, 10, 10, 1, 1).
In this section, we mainly change migration rate and the vaccination coverage to
simulate how migration and vaccination affect the outbreak of an infectious dis-
eases. Since the annual (or quarter) floating population number for a region or a
country (e.g. 2015 China Statistical Yearbook) determined the migration propor-
tion lij , it follows from (2) that we can choose d = 360 (or d = 90) to calculate the
migration rate mij . In this paper, we focus on the migration duration d = 360, the
corresponding results for other migration durations can be similarly obtained.

Time evolution of system (3) in the special case of n = 2 with multi-initial con-
ditions are presented in Fig.2. One can observe from the first figure that the tra-
jectories of the two-patch system converge to the disease-free equilibrium E0 when
Rv1 = 0.792 < 1 and Rv2 = 0.421 < 1. This means that the disease disappears in
the whole population as proved in Theorem 4.1. If Rv1 = 2.39 > 1, Rv2 = 0.85 < 1
and R̄v1 = 2.46 > 1, R̄v2 = 0.395 < 1, the trajectories of this two-patch sys-
tem converge to the boundary equilibrium Ê = (2046, 542, 14, 0, 7131, 2869) as
depicted in Fig.2(b), while if Rv1 = 0.938 < 1, Rv2 = 1.24 > 1 and R̄v1 =
0.805 < 1, R̄v2 = 1.265 > 1, the trajectories converge to the boundary equilib-
rium Ē = (1645, 1375, 0, 3, 7125, 2875) as shown in Fig.2(c). This suggests that
the disease persist in one patch and disappear in another patch when just one
patch control reproduction number larger than one as proved in Theorem 4.3 and
4.4. If the both the control reproduction number and the invasion threshold are
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(a) p1 = 0.76, p2 = 0.83 (b) p1 = 0.18, p2 = 0.93

(c) p1 = 0.89, p2 = 0.01 (d) p1 = 0.15, p2 = 0.1

Figure 2. Time evolution of system (3) with multi-initial con-
ditions in the case of n = 2 and the initial values of
(S1(0), S2(0), I1(0), I2(0), R1(0), R2(0)) are chose as (6000, 1000, 320,
20, 1980, 780), (2000, 3000, 10, 230, 1980, 2780), (5000, 3000, 5, 35, 980,
980), (3600, 2400, 700, 300, 1500, 1500), (3000, 4000, 32, 8, 980, 1980).
Here l1 = 0.1, l2 = 0.23 and the rest parameters are default values.

all larger than one, as shown in Fig.2(d) Rv1 = 2.99 > R̄v1 = 2.54 > 1 and
Rv2 = 1.84 > R̄v2 = 1.81 > 1, then the trajectories converge to the endemic equi-
librium E∗ = (2046, 1372, 20, 2, 7131, 2869). Similarly to the model considered in
[15, 23], the disease persist in both sub-populations if the control reproduction num-
bers in each patch are all larger than one, to which complement the mathematical
analysis carried out in the previous section.

The theoretical and numerical results all show that Rv = 1 acting as a sharp
threshold between disease extinction and persist state, to study the influence of
vaccination and migration, we can first study how the control reproduction number
Rv depends on the vaccination rate p1, p2 and the migration rate m12,m21 (which
determined by l12, l21). Following Fig.3, we can observe that if there is no migration
between patches, then vaccines always helpful to control the spread of an infectious
disease and the optimal vaccination strategy should be vaccine more individuals in
patch 1 and relatively lower in patch 2. This is very reasonable, when more people in
higher transmission patch (i.e., patch 1) get vaccinated, then the number of people to
be infected is smaller, hence the threshold Rv will be reduced more. For the specific
vaccination rate (p1, p2) = (0.8, 0.6), if there is no migration between patches then
Rv = 0.83. If there exist migration between patches, then more people migrate



1154 QIANQIAN CUI, ZHIPENG QIU AND LING DING

(a) m12 = m21 = 0 (b) p1 = 0.8, p2 = 0.6 (c) p1 = 0.6, p2 = 0.8

Figure 3. Contour plot of the control reproduction number Rv in the
p1−p2 plane and in l12− l21 plane. Here, (a) represents the relationship
between vaccination rate (i.e., p1, p2) and Rv if there is no migration
between patches, (b) and (c) depict the relationship between migration
rate (i.e., l12, l21) and Rv under the two specific vaccination rate marked
in red point in figure (a). The red curves Rv = 0.83 in (b) and Rv = 1.39
in (c) respectively correspond to the red points p1 = 0.8, p2 = 0.6 and
p1 = 0.6, p2 = 0.8 in (a). In these three figures, the blue curves represent
the case of Rv = 1. Other parameters are default values.

from patch 2 to patch 1 could make the threshold Rv = 0.83 marked in red curve
in Fig.3(b). Since migration rate m12 (m21) is an increasing function of variable
l12 (l21), therefore, this figure also implies that the threshold Rv increases with the
variable l12 and decreases with variable l21. However, if we fix (p1, p2) = (0.6, 0.8), it
follows from Fig.3(c) that threshold Rv decreases with the variable l12 and increases
with variable l21. This suggests that if we want to control the threshold Rv less than
one, we should consider not only the effectiveness of vaccines but also the impact
of migration.

Figure 4. Comparison of the second peak size and second peak time
when there is no migration between patches. Figures (a), (b) and (c) re-
spectively represent the trajectory of infectious vary with time for patch
1, patch 2 and the entire population with different vaccination coverage.
Direct calculation implies that Rv1 equal to 3.48, 2.179, 1.22 and Rv2

equal to 2.09, 1.88, 0.627 are respectively corresponding to the vaccina-
tion coverage p1 = p2 = 0, p1 = 0.2, p2 = 0.1 and p1 = 0.65, p2 = 0.7.
The results show that lower vaccination coverage delay the second peak
time and slightly reduce the second peak size for patch 1, patch 2 even
the entire population. Whereas the higher coverage will not generate a
second outbreak during the first 2000 days.
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Figure 5. Comparison of the second peak size and peak time with
different migration rate in absence of vaccination. The trajectory of in-
fectious varying with time for patch 1, patch 2 and the whole population
are depicted in (a), (b) and (c), respectively. Figs. (a) and (c) show
that human movement advanced the second peak time and increased
the second peak size for patch 1 and the whole population when more
individuals move to patch 1 (higher transmission rate). Fig. (b) illus-
trates that individuals migration can reduce the second outbreak size
even no second outbreak during the first 2000 days.

To explore the effect of vaccination and migration, we also compare the second
peak size and second peak time with various vaccination coverage and migration
rate. For the case of p1 = 0.2, p2 = 0.1, although the endemic equilibrium E∗

is stable due to Rv1 = 2.79 > 1 and Rv1 = 1.88 > 1, we can obtain that the
second peak size decrease form 330 at 1112 day to 294 at 1450 day for patch 1,
decrease from 119 at 1645 day decrease to 92 at 1906 day for patch 2, and decrease
from 342 at 1110 day to 291 at 1490 day compared to the case of p1 = p2 = 0
as shown in Fig.4. This figure also depicts that the disease will disappear at the
first 2000 days if the vaccination rate add up to p1 = 0.65, p2 = 0.7, at this time,
the threshold Rv1 = 1.22 > 1 and Rv1 = 0.627 < 1 and the boundary equilibrium
is stable. This tells us that vaccine plays a critical role in reducing the second
peak size and delay the second peak time, since the control reproduction number
is decreasing with vaccination rate p1, p2. If there exist migration between patches
in absence vaccination, then the control reproduction number Rv1 = 2.09 > 1 and
Rv2 = 3.48 > 1, that is, the disease persist in both patches. In this case, we can
observe from Fig.5 that higher migration rate in patch 1 is beneficial to individuals
in both patches and higher migration rate in patch 2 will magnify the second peak
size of patch 1 and the entire population. This implies that, if we want to control
the outbreak size during the first 2000 days, the scale of migration between patches
should be considered. These figures all show that the second peaks happened after
three or four years later, this may be because the decay of the effectiveness of the
vaccination or individuals migration change the spatial structure of sub-populations.

We also compared the residual values of the first peak size to investigate the
impact of vaccination and migration, which shown in the histogram 6. The results
show that migration can reduce the first peak size for each patches and the entire
population as long as the migration rate m12 is less than or equal to migration
rate m21. Such as, for the entire population, the residual of first peak sizes almost
equal to -8 in the case of l12 = l21 = 0.2 and equal to -29 in the case of l12 =
0.3, l21 = 0.1, while the residual of first peak sizes almost equal to 24 in the case of
l12 = 0.04, l21 = 0.36 as shown in histogram 6(c).
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Figure 6. Comparison of the residual value of first peak size (i.e., peak
size with migration minus the case without migration) under different
vaccination coverage. Figure (a) is for patch 1, (b) is for patch 2 and (c)
is for the entire population. Here, case 1, case 2 and case 3 respectively
represent l12 = l21 = 0.2, l12 = 0.3, l21 = 0.1 and l12 = 0.04, l21 = 0.36,
and other parameters are default values.

6. Conclusion. In this paper, we proposed a multi-patch SIR model with vaccina-
tion to study the influence of vaccination coverage and human mobility on disease
transmission. Our theoretical results show that the control reproduction number
Rv is a threshold parameter of the disease dynamics. It founds that system only
exists a disease-free equilibrium E0 if Rv < 1 and is locally asymptotically stable.
Particularly, in the case of n = 2, boundary equilibrium Ê (Ē) exists if Rv1 > 1
(Rv2 > 1) and it is globally stability if R̄v2 < 1 (R̄v1 < 1), and endemic equilibrium
E∗ exists only when R̄v1 > 1 and R̄v2 > 1. The simulation results show that, for pa-
rameter values considered, vaccines always can shrink the outbreak of an infectious
while mobility restriction (change the migration rate) dose not necessarily always
have a positive impact on the overall spread of disease. An increase of migration
rate from one patch to the other sometimes may prevent the outbreak of infectious
in one patch while intensify the disease spread in other patch (see Figs. 5 and 6).

In our model, we assume that the infective do not move between patches, cor-
responding to either a very severe disease so that infective are not able to move or
move is forbidden in order to control outbreak of disease. In the further, we can
generalize the current model with infective move between patches.
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