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Abstract. Zoonosis is the kind of infectious disease transmitting among dif-

ferent species by zoonotic pathogens. Different species play different roles in

zoonoses. In this paper, we established a basic model to describe the zoonotic
pathogen transmission from wildlife, to domestic animals, to humans. Then

we put three strategies into the basic model to control the emerging zoonoses.

Three strategies are corresponding to control measures of isolation, slaughter or
similar in wildlife, domestic animals and humans respectively. We analyzed the

effects of these three strategies on control reproductive numbers and equilibri-

ums and we took avian influenza epidemic in China as an example to show the
impacts of the strategies on emerging zoonoses in different areas at beginning.

1. Introduction. In human history, over 70% of the emerging infectious diseases
are zoonoses, which mainly originate from animal reservoirs. Zoonotic pathogens
can transmit from animals to humans. And about 75% of these zoonotic pathogens
originate from wildlife [28, 3, 24]. Wildlife, domestic animals and humans construct
the network of pathogen transmission crossing the species barrier. Wildlife and
domestic animals play important roles in the transmission of zoonotic pathogens,
in spite of the fact that we always neglected them before a zoonosis emerging or
reemerging [12, 4].

No matter how well the science and technology developed in human society, hu-
man is just one kind of animals, even though other animals are not equal to humans
in living status. The existence of the humans has changed the relationship between
humans and animals due to some anthropogenic factors. Humans domesticated
wolf, which was the ancestor of dog, for hunting about tens of thousands of years
ago. Later, the intimacy between humans and dogs was increased more and more
by natural selection or human selection, to be precise. In the meantime rabies virus
existed permanently in human life by dog-human interface maintaining, as dogs
were the mainly natural reservoirs of them, especially in Asia[24, 32].

Animals are divided into wildlife and domestic animals by human selection [24].
Humans can manage domestic animals in their entire life, but they cannot control
wildlife at liberty. At the same time, humans can contact with domestic animals
sufficiently, but they have few opportunities to get in touch with wildlife except for
some special professions, such as forest conservationists and poachers. As wildlife
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and domestic animals play different roles in human life, the zoonotic pathogen trans-
missions in wildlife infection, domestic animal infection and human infection would
be in different styles [17, 27]. Various mathematical models have been established
in the study of zoonoses [26, 1, 16, 31, 11, 29]. For example, Doctor Saenz and
his partners discussed the impact of domestic animal-human interface in pathogen
transmission [26] and Doctor Allen constructed several types of mathematical mod-
els to reflect the pathogen transmission in wildlife [1].

For pathogen transmission in multiple species, the multi-SIR model can be es-
tablished as the form [1, 17]:

Ṡi = Ai −
n∑
j=1

βjiIjSi − µiSi,

İi =
n∑
j=1

βjiIjSi − µiIi − γiIi − αiIi,

Ṙi = γiIi − µiRi.

(1)

Si , Ii and Ri represent the number of susceptibles, infectives, and recovered
individuals for species i, i=1,2,· · · ,n. Ai is the birth or immigration rate for species
i. µi is the natural mortality rate. αi is the disease-induced mortality rate. γi is
the recovery rate. And βji is the per capita incidence rate from species j to species
i, which denotes the probability of Ij infecting Si.

The basic reproduction number R0 for model (1) is the spectral radius of

[R0(ji)]n×n, where R0(ji) =
Aiβji

µi(µi+γi+αi)
[10]. For βji 6= 0, ∀ j, i, it is difficult

to get R0 clearly. So we can take some biological characteristics of wildlife, domes-
tic animals and humans into account to limit the value of βji in order to simplify
[R0(ji)]n×n.

For wildlife, they are always the origin of animal-borne zoonoses [24, 12]. The
pathogen transmission from wildlife to humans is often neglected due to geographic
distance between them, but the globalization and urbanization has shortened this
distance. The linkage between wildlife and humans is established with anthro-
pogenic land expanding[24]. And pathogens parasitized in different species could
be transmitted to others crossing species barrier by this linkage. But for emerg-
ing zoonoses, wildlife play as the only role of natural reservoirs. The pathogen
transmission from domestic animals to wildlife or from humans to wildlife could not
cause emerging zoonoses. Because the pathogens parasitized in humans or domestic
animals have already existed for a period of time, which could be not defined as an
emerging event even if the pathogens might transmit back to humans. For example,
Severe Acute Respiratory Syndromes (SARS) is defined as an emerging zoonosis,
which originate from Rhinolophus, then transmit via palm civets as intermediate
host to humans [8]. But for mycobacterium tuberculosis, taking humans as their
reservoirs, it could not give rise to an emerging zoonosis even if it had opportunities
to infect other animals [20].

That is to say, for wildlife, the zoonotic pathogens could transmit in them,βWW 6=
0, but βHW = 0 and βDW = 0. Here we classify the hosts into three groups: wildlife,
domestic animals and humans. And notation W presents wildlife, D presents do-
mestic animals and H presents humans. In order to simplify the model further,
we assume that the zoonotic pathogen transmission could not occur from humans
to domestic animals in emerging event. The need of infected people is to have a
rest, but not to take care of other animals [24, 26]. We assume that if an emerging
zoonosis was prevalent in human life, people could be infected from other people
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without the need of passing by domestic animals, then to humans. So βHD = 0,
but βDD 6= 0 and βWD 6= 0.

For the relationship between animals and humans, we assume that not all of
people could have opportunities to be infected from animals. Live animals are the
mainly origin of zoonotic pathogens and only part of people could contact with
them including CAFO (Confined Animal Feeding Operation) workers and hunters
[26]. We also take the human population heterogeneity into consideration in this
paper. The human population is classified into two groups: high risk group and low
risk group. High risk group has the opportunities to contact with infected animals
sufficiently. But low risk group are the others. That is, high risk group can get
pathogens from animals and humans, but low risk group from humans only. The
emerging zoonotic pathogen transmission can be described in FIGURE 1.

Figure 1. Emerging zoonotic pathogen transmission from
wildlife, to domestic animals, to humans

Emerging zoonotic pathogen transmission from wildlife, to domestic animals, to
humans can be described as the model (2).
Si, Ii and Ri represent the number of susceptibles, infectives, and recovered

individuals for wildlife with i = W , domestic animals with i = D, high risk group
with i = HH and low risk group with i = LH. Ai is the birth or immigration
rate for species i = W , D, HH or LH. µi, γi, and βji are defined as the same as
model (1) with i = W,D, or H. Here we assume that recovered individuals could



1122 JING-AN CUI AND FANGYUAN CHEN

be immune in a period time when a novel zoonosis is emerging.

ṠW = AW − βWW IWSW − µWSW ,
İW = βWW IWSW − (µW + γW + αW )IW ,

ṘW = γW IW − µWRW ,
ṠD = AD − (βWDIW + βDDID)SD − µDSD,
İD = (βWDIW + βDDID)SD − (γD + αD + µD)ID,

ṘD = γDID − µDRD,
ṠHH = AHH − [βWHIW + βDHID + βHH(IHH + ILH)]SHH − µHSHH ,
İHH = [βWHIW + βDHID + βHH(IHH + ILH)]SHH

−(γH + αH + µH)IHH ,

ṘHH = γHIHH − µHRHH ,
ṠLH = ALH − βHH(IHH + ILH)SLH − µHSLH ,
İLH = βHH(IHH + ILH)SLH − (γH + αH + µH)ILH ,

ṘLH = γHILH − µHRLH .

(2)

The basic model has been established to reflect the pathogen transmission from
wildlife, to domestic animals, to humans as model (2). Next step, we take the
isolation and slaughter strategies into consideration [22, 23, 8, 31, 2, 25, 18]. For
wildlife, it is difficult to control them when a zoonosis is emerging. Lethal control,
vaccination and fencing (physical barriers) are the primary approaches to limit the
number of susceptibles in wildlife. In this paper, we take lethal control and fencing
(physical barriers) as the strategies to compare the similar isolation and slaughter
strategies in emerging zoonotic pathogen transmission.

ṠW = AW − βWW IWSW − (µW + δS)SW ,

İW = βWW IWSW − (µW + γW + αW + δI)IW ,

ṘW = γW IW − (µW + δR)RW ,

ṠD = AD − ((1− θD)βWDIW + βDDID)SD − µDSD,
İD = ((1− θD)βWDIW + βDDID)SD − (γD + αD + µD)ID,

ṘD = γDID − µDRD,
ṠHH = AHH − [(1− θH)βWHIW + βDHID + βHH(IHH + ILH)]SHH

−µHSHH ,
İHH = [(1− θH)βWHIW + βDHID + βHH(IHH + ILH)]SHH

−(γH + αH + µH)IHH ,

ṘHH = γHIHH − µHRHH ,
ṠLH = ALH − βHH(IHH + ILH)SLH − µHSLH ,
İLH = βHH(IHH + ILH)SLH − (γH + αH + µH)ILH ,

ṘLH = γHILH − µHRLH .

(3)

δs, δI and δR represent lethal control or slaughter rate of susceptibles, infec-
tives, and recovered individuals in wildlife. θD, θH represent effectiveness of fencing
(physical barriers),θD, θH ∈ [0, 1]. If θD = 1, θH = 1, fencing plays the best role
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in the control of emerging zoonoses. If θD = 0, θH = 0, fencing is useless in the
control of emerging zoonoses.

For domestic animals, we can manage them in their entire lives. It is no need to
slaughter all of the susceptibles in domestic animals. We can quarantine all of the
domestic animals, then isolate susceptibles and slaughter infectives.

ṠD = AD − (βWDIW + βDDID)SD − µDSD,
İD = (βWDIW + βDDID)SD − (γD + αD + µD + ∆I)ID,

ṘD = γDID − µDRD,
ṠHH = AHH − [βWHIW + (1−ΘH)βDHID + βHH(IHH + ILH)]SHH

−µHSHH ,
İHH = [βWHIW + (1−ΘH)βDHID + βHH(IHH + ILH)]SHH

−(γH + αH + µH)IHH ,

ṘHH = γHIHH − µHRHH ,
ṠLH = ALH − βHH(IHH + ILH)SLH − µHSLH ,
İLH = βHH(IHH + ILH)SLH − (γH + αH + µH)ILH ,

ṘLH = γHILH − µHRLH .

(4)

∆I represents slaughter rate of infectives in domestic animals. ΘH represents
effectiveness of isolation, ΘH ∈ [0, 1]. If ΘH = 1, isolation from susceptible domestic
animals play the best role in the control of emerging zoonoses. If ΘH = 0, isolation
in domestic animals is useless in the control of emerging zoonoses.

For humans, we could not ‘slaughter’ anyone no matter how serious they were
infected with some kind of zoonoses. The quarantine and isolation may be the best
method to limit the pathogen transmission except for vaccination. But the effect
of quarantine and isolation strategies in humans are different from animals. For
taking isolation strategies in animals, it is the susceptible humans, who are afraid
of getting infected, to take the initiative and get away from susceptible animals. So
the per capita incidence rate from animals to humans, βWH and βDH , is decreased
by θH and ΘH . But in humans, we quarantine and isolate the infected people to
cut off pathogen transmission way. βHH would not change at this time, but there
is a new compartment O produced, which denotes the isolation compartment [25].

ṠHH = AHH − [βWHIW + βDHID + βHH(IHH + ILH)]SHH

−µHSHH − ϕ(I)SHH + γH1OHH1,

ȮHH1 = ϕ(I)SHH − γH1OHH1 − µHOHH1,

İHH = [βWHIW + βDHID + βHH(IHH + ILH)]SHH

−(γH + αH + µH + σ)IHH ,

ȮHH2 = σIHH − γH2OHH2 − µHOHH2,

ṘHH = γHIHH + γH2OHH2 − µHRHH ,
ṠLH = ALH − βHH(IHH + ILH)SLH − µHSLH

−ϕ(I)SLH + γH1OLH1,

ȮLH1 = ϕ(I)SLH − γH1OLH1 − µHOLH1,

İLH = βHH(IHH + ILH)SLH − (γH + αH + µH + σ)ILH ,

ȮLH2 = σILH − γH2OLH2 − µHOLH2,

ṘLH = γHILH + γH2OLH2 − µHRLH .

(5)
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OHH1 and OHH2 represent isolation compartments from susceptibles and in-
fectives in high risk group respectively. OLH1 and OLH2 represent isolation com-
partments from susceptibles and infectives in low risk group. Susceptibles enter
the OHH1 and OLH1 classes at the rate of ϕ(I)SHH and ϕ(I)SLH , with ϕ(I) =
ρ(IHH + ILH) [23]. The infectives are isolated at the constant per-capita rate of σ.
γH1 is the remove rate from isolation compartment to susceptible compartment.γH2

is the remove rate from isolation compartment to recovery individual compartment.
In conclusion, we can get the isolation and slaughter strategies controlling model

by (3), (4) and (5) in wildlife, domestic animals and humans as the form:

ṠW = AW − βWW IWSW − (µW + εW δS)SW ,

İW = βWW IWSW − (µW + γW + αW + εW δI)IW ,

ṘW = γW IW − (µW + εW δR)RW ,

ṠD = AD − ((1− εW θD)βWDIW + βDDID)SD − µDSD,
İD = ((1− εW θD)βWDIW + βDDID)SD

−(γD + αD + µD + εD∆I)ID,

ṘD = γDID − µDRD,
ṠHH = AHH − [(1− εW θH)βWHIW + (1− εDΘH)βDHID + βHH(IHH

+ILH)]SHH − µHSHH − εHϕ(I)SHH + γH1OHH1,

ȮHH1 = εHϕ(I)SHH − γH1OHH1 − µHOHH1,

İHH = [(1− εW θH)βWHIW + (1− εDΘH)βDHID

+βHH(IHH + ILH)]SHH − (γH + αH + µH + εHσ)IHH ,

ȮHH2 = εHσIHH − γH2OHH2 − µHOHH2,

ṘHH = γHIHH + γH2OHH2 − µHRHH ,
ṠLH = ALH − βHH(IHH + ILH)SLH − µHSLH

−εHϕ(I)SLH + γH1OLH1,

ȮLH1 = εHϕ(I)SLH − γH1OLH1 − µHOLH1,

İLH = βHH(IHH + ILH)SLH − (γH + αH + µH + εHσ)ILH ,

ȮLH2 = εHσILH − γH2OLH2 − µHOLH2,

ṘLH = γHILH + γH2OLH2 − µHRLH .

(6)

with Strategy 1, {
εW = 0, ILH + IHH < IWC ,

εW = 1, ILH + IHH ≥ IWC

(7)

Strategy 2, {
εD = 0, ILH + IHH < IDC ,

εD = 1, ILH + IHH ≥ IDC
(8)

Strategy 3, {
εH = 0, ILH + IHH < IHC ,

εH = 1, ILH + IHH ≥ IHC
(9)

The feasible setΩ = {(SW (t) , IW (t) , RW (t) , SD (t) , ID (t) , RD (t) , SHH (t) ,
OHH1 (t) , IHH (t) , OHH2 (t) , RHH (t) , SLH (t) , OLH1 (t) , ILH (t) , OLH2 (t) ,
RLH (t)) | Si(t), Ii(t), Ri(t), Oj(t) ≥ 0, 0 < N ≤ AW

µW
+ AD

µD
+ AHH

µH
+ ALH

µH
, i =
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W,D,HH,LH, j = HH1, HH2, LH1, LH2} is the positively invariant with respect
to (6).

Total number of wildlife is NW = SW + IW + RW . Total number of domestic
animals is ND = SD + ID +RD. Total number of humans is NH = SHH +OHH1 +
IHH + OHH2 + RHH + SLH + OLH1 + ILH + OLH2 + RLH . Total number of
susceptible humans is SH = SHH + SLH . Total number of infective humans is
IH = IHH + ILH . Total number of recovery humans is RH = RHH + RLH . Total
number of all is N = NW +ND +NH .

It is difficult for us to take any strategies to control emerging zoonoses in first
time. Only the infected of numbers of people would cause our attention to take some
strategies to control the infectious disease. So it is assumed that if the number of
infectives in human including high risk group and low risk group reached a threshold
at IWC , IDC or IHC , we would take measures as Strategy 1 in wildlife, Strategy 2
in domestic animals or Strategy 3 in humans.

2. Stability analysis. With εW = 0, εD = 0, εH = 0, we can get (2) before taking
any measures in emerging zoonoses. At first, we analyze the equilibrium stability
of model (2) [5, 14, 19, 16].

In (2) , the wildlife class can be separated asṠW = AW − βWW IWSW − µWSW ,

İW = βWW IWSW − µW IW − γW IW − αW IW .
(10)

We can get the basic reproductive number in wildlife R0(WW ) = AW βWW

µW (µW +γW +αW ) .

The disease-free equilibrium is E0(W ) = (SW , IW ) = (AW

µW
, 0),the epidemic equi-

librium is E∗
(w) = (ŜW , ÎW ) = (µW +γW +αW

βWW
, µW

βWW
( AW βWW

µW (µW +γW +αW ) − 1)). The

number of recovery individuals would not change the stability of the system, so we
neglect it in the study of equilibriums.

Theorem 2.1. If R0(WW ) < 1, the disease-free equilibrium E0(W ) in wildlife is
stable. If R0(WW ) > 1, the epidemic equilibrium E∗

(W ) in wildlife is stable.

Proof. The next generation matrix of the vector field corresponding to system (10)
at E0(W ) is

JW (E0(W )) =

(
−µW −βWW

AW

µW

0 βWW
AW

µW
− µW − γW − αW

)
If R0(WW ) = AW βWW

µW (µW +γW +αW ) < 1, the eigenvalues of JW (E0(W )) are negative

and E0(W ) is stable.
Similarly, the next generation matrix at E∗

(W ) is

JW (E∗
(W )) =

(
−βWW ÎW − µW −βWW ŜW

βWW ÎW βWW ŜW − µW − γW − αW

)
The characteristic equation of JW (E∗

(W )) is

fW (λ) = λ2 +
AWβWW

µW + γW + αW
λ+ µW (µW + γW + αW )(

AWβWW

µW (µW + γW + αW )
− 1)

= 0
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If R0(WW ) = AW βWW

µW (µW +γW +αW ) > 1,the real parts of eigenvalues of JW (E∗
(W )) are

negative and E∗
(W ) is stable.

In (2), the wildlife and domestic animals classes can be separated as
ṠW = AW − βWW IWSW − µWSW ,
İW = βWW IWSW − µW IW − γW IW − αW IW ,
ṠD = AD − βWDIWSD − βDDIDSD − µDSD,
İD = βWDIWSD + βDDIDSD − γDID − αDID − µDID.

(11)

We can get the basic reproductive number in domestic animals is R0(DD) =
ADβDD

µD(µD+γD+αD) .

The disease-free equilibrium is E0(WD) = (SW , IW , SD, ID) = (AW

µW
, 0, AD

µD
, 0) ,

the epidemic equilibrium is
E∗

(WD) = (ŜW , ÎW , ŜD, ÎD) = (µW +γW +αW

βWW
, µW

βWW
( AW βWW

µW (µW +γW +αW ) − 1), ŜD, ÎD).

Theorem 2.2. If R0(WW ) < 1 and R0(DD) < 1, the disease-free equilibrium E0(WD)

in system (11) is stable. If R0(WW ) > 1, there exists one unique positive epidemic
equilibrium E∗

(WD), and E
∗
(WD) is stable.

Proof. There always exists E0(WD) and the next generation matrix at E0(WD) is

JWD(E0(WD)) =

(
JW (E0(W )) 0

∗ JD(E0(D))

)
with

JD(E0(D)) =

(
−µD −βDD AD

µD

0 βDD
AD

µD
− µD − γD − αD

)
If R0(WW ) = AW βWW

µW (µW +γW +αW ) < 1 and R0(DD) = ADβDD

µD(µD+γD+αD) < 1, the eigen-

values of JWD(E0(WD)) are negative and E0(WD) is stable.

In (11), the epidemic equilibrium E∗
(WD) = (ŜW , ÎW , ŜD, ÎD) satisfies

AW − βWW ÎW ŜW − µW ŜW = 0 (12)

βWW ÎW ŜW − µW ÎW − γW ÎW − αW ÎW = 0 (13)

AD − βWD ÎW ŜD − βDD ÎDŜD − µDŜD = 0 (14)

βWD ÎW ŜD + βDD ÎDŜD − µD ÎD − γD ÎD − αD ÎD = 0 (15)

From (12), (13), (14), (15), we can get

ŜW =
µW + γW + αW

βWW

ÎW =
µW
βWW

(
AWβWW

µW (µW + γW + αW )
− 1)

ÎD =
βWD ÎW ŜD

µD + γD + αD − βDDŜD

=
βWDŜD

µD + γD + αD − βDDŜD
× µW
βWW

(
AWβWW

µW (µW + γW + αW )
− 1)
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and

ŜD =
1

2µDβDD
[ADβDD + (µD + γD + αD)(µD + βWD ÎW )]

− 1

2µDβDD
[A2
Dβ

2
DD + 2ADβDD(µD + γD + αD)(βWD ÎW

− µD) + (µD + γD + αD)
2
(µD + βWD ÎW )

2
]
1
2

So if R0(WW ) > 1, there exists one unique positive epidemic equilibrium E∗
(WD).

In fact, for ŜD , ŜD satisfies

g1(ŜD) = µDβDDŜ
2
D −

[
ADβDD + (µD + γD + αD)(µD + βWD ÎW )

]
ŜD

+AD(µD + γD + αD) = 0

If g1(ŜD) = 0 , ŜD always has two positive roots because of −ADβDD + (µD +

γD + αD)(µD + βWD ÎW ) < 0 , AD(µD + γD + αD) > 0 , and the smaller ŜD
and the bigger ŜD stand on both sides of µD+γD+αD

βDD
for g1(µD+γD+αD

βDD
) < 0 and

µDβDD > 0.
So we choose

ŜD =
1

2µDβDD
[ADβDD + (µD + γD + αD)(µD + βWD ÎW )]

− 1

2µDβDD
[A2
Dβ

2
DD + 2ADβDD(µD + γD + αD)(βWD ÎW

− µD) + (µD + γD + αD)
2
(µD + βWD ÎW )

2
]
1
2

to guarantee ÎD > 0.
The next generation matrix at E∗

(WD) is

JWD(E∗
(WD)) =

(
JW (E∗

(W )) 0

∗ JD(E∗
(D))

)

with

JD(E∗
(D)) =

(
−βWD ÎW − βDD ÎD − µD −βDDŜD

βWD ÎW + βDD ÎD βDDŜD − µD − γD − αD

)

The characteristic equation of JD(E∗
(D)) is fD(λ) = λ2 + (AD

ŜD
+ βWD ÎW ŜD

ÎD
)λ+

βWD ÎWAD

ÎD
+ βWDβDDŜD ÎW + βDD

2ŜD ÎD = 0 .

If E∗
(D) exists, all of the real parts of eigenvalues of JD(E∗

(D)) are negative for

AD

ŜD
+ βWD ÎW ŜD

ÎD
> 0 and βWD ÎWAD

ÎD
+ βWDβDDŜD ÎW + βDD

2ŜD ÎD > 0.

In conclusion, if R0(WW ) = AW βWW

µW (µW +γW +αW ) > 1 , the real parts of eigenvalues

of JD(E∗
(D)) are negative and E∗

(WD) is stable.

The human class in (2) can be separated as the form:
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ṠHH = AHH − βWHIWSHH − βDHIDSHH − βHH(IHH + ILH)SHH

−µHSHH ,
İHH = βWHIWSHH + βDHIDSHH + βHH(IHH + ILH)SHH − γHIHH

−αHIHH − µHIHH ,
ṠLH = ALH − βHH(IHH + ILH)SLH − µHSLH ,
İLH = βHH(IHH + ILH)SLH − γHILH − αHILH − µHILH .

(16)

There always exists disease-free equilibrium E0(WDH) = (SW , IW , SD, ID, SHH ,

IHH , SLH , ILH) = (AW

µW
, 0, AD

µD
, 0, AHH

µHH
, 0, ALH

µLH
) in (2).

The next generation matrix at E0(WDH) is

JWDH(E0(WDH)) =

 JW (E0(W )) 0 0
∗ JD(E0(D)) 0
∗ ∗ JH(E0(H))


with

JH(E0(H)) =
−µH −βHH AHH

µH
0 −βHH AHH

µH

0 βHH
AHH

µH
− µH − γH − αH 0 βHH

AHH

µH

0 −βHH ALH

µH
−µH −βHH ALH

µH

0 βHH
ALH

µH
0 βHH

ALH

µH
− µH − γH − αH


The characteristic equation of JH(E0(H) is

fH1(λ) = (λ+ µH)2(λ2 − (βHH
AHH+ALH

µH
− 2µH − 2γH − 2αH)λ− (µH + γH

+ αH)(βHH
AHH+ALH

µH
− µH − γH − αH)) = 0

If there is R0(H) = (AHH+ALH)βHH

µH(µH+γH+αH) < 1 , we have βHH
AHH+ALH

µH
− 2µH − 2γH −

2αH < 0 and (µH + γH + αH)(βHH
AHH+ALH

µH
− µH − γH − αH) < 0 . Then we get

all of the real parts of eigenvalues of JH(E0(H)) are negative, E0(H) is stable.

At the same time, the spectral radius of

[
R0(HHHH) R0(LHHH)

R0(HHLH) R0(LHLH)

]
is R0(H) =

(AHH+ALH)βHH

µH(µH+γH+αH) , with R0(HHHH) = R0(LHHH) = AHHβHH

µH(µH+γH+αH) and R0(LHLH) =

R0(HHLH) = ALHβHH

µH(µH+γH+αH) .

Theorem 2.3. If R0(WW ) < 1, R0(DD) < 1 and R0(H) < 1, the disease-free
equilibrium E0(WDH) in system (2) is stable. If R0(WW ) > 1, there exists epidemic
equilibrium E∗

(WDH), and E
∗
(WDH) is stable.

Proof. The next generation matrix at E0(WDH) is

JWDH(E0(WDH)) =

 JW (E0(W )) 0 0
∗ JD(E0(D)) 0
∗ ∗ JH(E0(H))

 .

If R0(WW ) < 1, R0(DD) < 1 and R0(H) < 1, all of the real parts of eigenvalues of
JWDH(E0(WDH)) are negative, then we get the disease-free equilibrium E0(WDH)

in system (2) is stable (Theorem 2.1 ,Theorem 2.2).
Next we prove the existence of epidemic equilibrium E∗

(WDH) and the stability

of E∗
(WDH).
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In (16), the epidemic equilibrium E∗
(WDH) = (ŜW , ÎW , ŜD, ÎD, ŜHH , ÎHH , ŜLH ,

ÎLH). satisfies

AHH − βWH ÎW ŜHH − βDH ÎDŜHH − βHH(ÎHH + ÎLH)ŜHH − µH ŜHH = 0 (17)

βWH ÎW ŜHH + βDH ÎDŜHH + βHH(ÎHH + ÎLH)ŜHH − γH ÎHH
− αH ÎHH − µH ÎHH = 0

(18)

ALH − βHH(ÎHH + ÎLH)ŜLH − µH ŜLH = 0 (19)

βHH(ÎHH + ÎLH)ŜLH − γH ÎLH − αH ÎLH − µH ÎLH = 0 (20)

From (17)+ (19), (18)+ (20), we get

AHH + ALH − βWH ÎW ŜHH − βDH ÎDŜHH − βHH(ÎHH + ÎLH)(ŜHH

+ ŜLH)− µH(ŜHH + ŜLH) = 0
(21)

βWH ÎW ŜHH+βDH ÎDŜHH + βHH(ÎHH + ÎLH)(ŜHH + ŜLH)

− (γH + αH + µH)(ÎHH + ÎLH) = 0
(22)

It is assumed that ηS = ŜHH

ŜHH+ŜLH
ŜH = ŜHH + ŜLH and ÎH = ÎHH + ÎLH with

ηS ∈ (0, 1).
Then we have

AHH + ALH − ηSβWH ÎW ŜH − ηSβDH ÎDŜH − βHH ÎH ŜH − µH ŜH = 0 (23)

ηSβWH ÎW ŜH + ηSβDH ÎDŜH + βHH ÎH ŜH − (γH + αH + µH)ÎH = 0 (24)

From (23), (24), we can get

ÎH =
ηSβWH ÎW ŜH + ηSβDH ÎDŜH

γH + αH + µH − βHH ŜH
and

ŜH =
1

2µHβHH
[(AHH +ALH)βHH + (γH + αH + µH)(µH + ηSβWH ÎW

+ ηSβDH ÎD)]− 1

2µHβHH
[(AHH +ALH)2β2

HH + 2(AHH +ALH)βHH

(γH + αH + µH)(ηSβWH ÎW + ηSβDH ÎD − µH) + (γH + αH + µH)2

(µH + ηSβWH ÎW + ηSβDH ÎD)2]
1
2

Similarly to the calculation of Theorem 2.2, we have

g2(ŜH) = µHβHH Ŝ
2
H + (AHH + ALH)(µH + γH + αH)− [(AHH +ALH)βHH

+(µH + γH + αH)(µH + ηSβWH ÎW + ηSβDH ÎD)]ŜH

= 0

So if R0(WW ) > 1, there exists epidemic equilibrium E∗
(WDH) in (2). The next

generation matrix at E∗
(WDH) is

JWDH(E∗
(WDH)) =

 JW (E∗
(W )) 0 0

∗ JD(E∗
(D)) 0

∗ ∗ JH(E∗
(H))
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with

JH(E∗
(H)) =


J11 −βHH ŜHH 0 −βHH ŜHH
J21 J22 0 βHH ŜHH

0 −βHH ŜLH J33 −βHH ŜLH
0 βHH ŜLH βHH(ÎHH + ÎLH) J44


J11 = −βWH ÎW − βDH ÎD − βHH(ÎLH + ÎLH)− µH

J21 = βWH ÎW + βDH ÎD + βHH(ÎLH + ÎLH)

J22 = βHH ŜHH − γH − αH − µH
J33 = −βHH(ÎHH + ÎLH)− µH
J44 = βHH ŜLH − γH − αH − µH

The characteristic equation of JH(E∗
(H)) is

fH2(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0

with

a1 =
AHH

ŜHH
+
ALH

ŜLH
− βHH(ŜHH + ŜLH) + 2(γH + αH + µH),

a2 = (
AHH

ŜHH
+
ALH

ŜLH
)(γH + αH + µH)− µHβHH(ŜHH + ŜLH)

− β2
HH ŜHH ŜLH + (

AHH

ŜHH
+ βWH

ÎW

ÎHH
ŜHH + βDH

ÎD

ÎHH
ŜHH

+ βHH
ÎLH

ÎHH
ŜHH)(

ALH

ŜLH
+ βHH

ÎHH

ÎLH
ŜLH),

a3 =
ALH

ŜLH
(
AHH

ŜHH
+ γH + αH + µH)(γH + αH + µH)

− µHβHH ŜLH(
AHH

ŜHH
+ γH + αH + µH)− βHH ŜHH

ALH

ŜLH
(γH

+ αH + µH) +
AHH

ŜHH
(
ALH

ŜLH
+ γH + αH + µH)(γH + αH + µH)

− µHβHH ŜHH(
ALH

ŜLH
+ γH + αH + µH)− βHH ŜLH

AHH

ŜHH
(γH

+ αH + µH),

a4 =
AHH

ŜHH

ALH

ŜLH
(γH + αH + µH)2 − µHβHH(ŜHH

ALH

ŜLH
+ ŜLH

AHH

ŜHH
)(γH

+ αH + µH)

It is assumed that µH ≈ 0 for µH is much smaller than other parameters. Then
we get a1 > 0 a2 > 0 a3 > 0 a4 > 0 b1 = a1a2−a3

a1
> 0 and c1 = b1a3−a1a4

b1
> 0.

So if E∗
(WDH) exists, all of the real parts of eigenvalues of JH(E∗

(H)) are negative

according to Routh−Hurwitz stability criterion.
In conclusion, if R0(WW ) = AW βWW

µW (µW +γW +αW ) > 1 , the real parts of eigenvalues

of JWDH(E∗
(WDH)) are negative and E∗

(WDH) is stable.
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From Theorem 2.1,Theorem 2.2 and Theorem 2.3, it is more difficult to satisfy the
conditions to control emerging zoonoses with the number of susceptible species in-
creasing. But if there was an epidemic in wildlife withR0(WW ) = AW βWW

µW (µW +γW +αW ) >

1, emerging zoonoses might be prevalent in humans.
Next we take Strategy 1, Strategy 2 and Strategy 3 into consideration in order

to compare the effects of different isolation and slaughter strategies in wildlife,
domestic animals and humans on emerging zoonoses.

Strategy 1.
It is assumed that δ = δS = δI = δR with same slaughter rate in susceptibles,

infectives, and recovered individuals in wildlife in order to simply the model (3).

ṠW = AW − βWW IWSW − µWSW − δSW ,
İW = βWW IWSW − µW IW − γW IW − αW IW − δIW ,
ṘW = γW IW − µWRW − δRW ,
ṠD = AD − (1− θD)βWDIWSD − βDDIDSD − µDSD,
İD = (1− θD)βWDIWSD + βDDIDSD − γDID − αDID − µDID,
ṘD = γDID − µDRD,
ṠHH = AHH − (1− θH)βWHIWSHH − βDHIDSHH − βHH(IHH

+ILH)SHH − µHSHH ,
İHH = (1− θH)βWHIWSHH + βDHIDSHH + βHH(IHH + ILH)SHH

−γHIHH − αHIHH − µHIHH ,
ṘHH = γHIHH − µHRHH ,
ṠLH = ALH − βHH(IHH + ILH)SLH − µHSLH ,
İLH = βHH(IHH + ILH)SLH − γHILH − αHILH − µHILH ,
ṘLH = γHILH − µHRLH .

(25)

In (25), we get the control reproductive number in wildlife is R1(WW ) = AW βWW

(µW +δ)
1

(µW +γW +αW +δ) , the control reproductive number in domestic animals is R1(DD) =
ADβDD

µD(µD+γD+αD) , the control reproductive number in humans isR1(H) = (AHH+ALH)
(µH+γH+αH)

βHH

µH
. The epidemic equilibrium of IW , ID and IH are Î1

W = 1
βWW

( AW βWW

µW +δ+γW +αW
−

µW−δ) , Î1
D =

(1−θD)βWD Î
1

W
Ŝ1

D

µD+γD+αD−βDDŜ1
D

and Î1
H =

(1−θH)ηSβWH Î
1
W Ŝ1

H+ηSβDH Î
1
DŜ

1
H

γH+αH+µH−βHH Ŝ1
H

in strat-

egy 1.
For the epidemic equilibrium of SW , SD and SH , we get Ŝ1

W = µW +γW +αW +δ
βW

>

ŜW , Ŝ1
D > ŜD and Ŝ1

H > ŜH for g1(Ŝ1
D) < 0 and g2(Ŝ1

H) < 0 .

Theorem 2.4. If R1(WW ) < 1, R1(DD) < 1 and R1(H) < 1, the disease-free

equilibrium E1
0(WDH) in system (25) is stable. If R1(WW ) > 1, there exists epidemic

equilibrium E∗∗
(WDH), and E

∗∗
(WDH) is stable.

Strategy 2.
In (4), we get the control reproductive number in wildlife is R2(WW ) = AW

µW
βWW

(µW +γW +αW ) , the control reproductive number in domestic animals is R2(DD) =
βDD

(µD+γD+αD+∆I)
AD

µD
, the control reproductive number in humans is R2(H) = βHH

µH
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(AHH+ALH)
(µH+γH+αH) . The epidemic equilibrium of IW , ID and IH are Î2

W = 1
βWW

(−µW

+ AW βWW

µW +γW +αW
) = ÎW , Î2

D =
βWD Î

2

W
Ŝ2

D

µD+γD+αD+∆I−βDDŜ2
D

and Î2
H = 1

γH+αH+µH−βHH Ŝ2
H

(ηSβWH Î
2
W Ŝ

2
H + (1−ΘH)ηSβDH Î

2
DŜ

2
H) in strategy 2.

For the epidemic equilibrium of SW , SD and SH , we get Ŝ2
W = µW +γW +αW

βW
=

ŜW , Ŝ2
D > ŜD and Ŝ2

H > ŜH for g2(Ŝ2
H) < 0 .

In fact, Ŝ2
D is the smaller root of

g3(Ŝ2
D) =µDβDD(Ŝ2

D)2 −
[
ADβDD + (µD + γD + αD + ∆I)(µD + βWD ÎW )

]
Ŝ2
D

+AD(µD + γD + αD + ∆I)

=0

So we have

g3(ŜD) =µDβDDŜ
2
D −

[
ADβDD + (µD + γD + αD + ∆I)(µD + βWD ÎW )

]
ŜD

+AD(µD + γD + αD + ∆I)

If

g1(ŜD) =µDβDDŜ
2
D −

[
ADβDD + (µD + γD + αD)(µD + βWD ÎW )

]
ŜD

+AD(µD + γD + αD)

=0

and

AD − βWD ÎW ŜD − βDD ÎDŜD − µDŜD = 0,

we get

g3(ŜD) =
[
ADβDD + (µD + γD + αD)(µD + βWD ÎW )

]
ŜD −AD(µD + γD

+ αD)−
[
ADβDD + (µD + γD + αD + ∆I)(µD + βWD ÎW )

]
ŜD +AD(µD

+ γD + αD + ∆I)

=−∆I(µD + βWD ÎW )ŜD + ∆IAD

=∆IβDD ÎDŜD

>0.

Then we get Ŝ2
D > ŜD with µDβDD > 0.

Theorem 2.5. If R2(WW ) < 1, R2(DD) < 1 and R2(H) < 1, the disease-free

equilibrium E2
0(WDH) in system (4) is stable. If R2(WW ) > 1, there exists epidemic

equilibrium E∗∗∗
(WDH), and E

∗∗∗
(WDH) is stable.

Strategy 3.
If we took quarantine and isolation strategies in humans only, the impact of

wildlife and domestic animals in human epidemic would be never changed comparing
to no strategy. So we select the human epidemic model (26) from (5) for further
analysis. At the same time, we choose ϕ(I) = ρ (IHH + ILH) to simplify the model.
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ṠHH = AHH − βWHIWSHH − βDHIDSHH − βHH(IHH + ILH)SHH

µHSHH − ρ (IHH + ILH)SHH + γH1OHH1,

ȮHH1 = ρ (IHH + ILH)SHH − γH1OHH1 − µHOHH1,

İHH = βWHIWSHH + βDHIDSHH + βHH(IHH + ILH)SHH

−γHIHH − αHIHH − µHIHH − σIHH ,
ȮHH2 = σIHH − γH2OHH2 − µHOHH2,

ṠLH = ALH − βHH(IHH + ILH)SLH − µHSLH − ρ (IHH + ILH)SLH

+γH1OLH1,

ȮLH1 = ρ (IHH + ILH)SLH − γH1OLH1 − µHOLH1,

İLH = βHH(IHH + ILH)SLH − γHILH − αHILH − µHILH − σILH ,
ȮLH2 = σILH − γH2OLH2 − µHOLH2.

(26)

We get the control reproductive number in humans is:

R3(H) =
(AHH +ALH)βHH

µH(µH + γH + αH + σ)

Theorem 2.6. If R0(WW ) < 1, R0(DD) < 1 and R3(H) < 1, the disease-free

equilibrium E3
0(WDH) in system (5) is stable. If R0(WW ) > 1, there exists epidemic

equilibrium E∗∗∗∗
(WDH), and E

∗∗∗∗
(WDH) is stable.

Table 1. Impact of different strategies on reproductive numbers

Strategies no strategy Strategy 1 Strategy 2 Strategy 3
Reproductive

number in
wildlife

R0(WW ) = RA

RB
R1(WW ) = RA

RC

R2(WW ) =
R0(WW )

R3(WW ) =
R0(WW )

Reproductive
number in
domestic
animals

R0(DD) = RD

RE

R1(DD) =
R0(DD)

R2(DD) = RD

RF

R3(DD) =
R0(DD)

Reproductive
number in
humans

R0(H) = RG

RH
R1(H) = R0(H) R2(H) = R0(H) R3(H) = RG

RI

RA = AWβWW , RB = µW (µW + γW + αW ),
RC = (µW + δ)(µW + γW + αW + δ),

RD = ADβDD, RE = µD(µD + γD + αD),
RF = µD(µD + γD + αD + ∆I), RG = (AHH +ALH)βHH ,
RH = µH(µH + γH + αH), RI = µH(µH + γH + αH + σ).

3. Numerical simulation. In this section we take avian influenza epidemic in
China as an example to analyze the effects of different strategies on emerging
zoonoses. Avian influenza is a kind of zoonoses, which have been prevalent in
humans since 150 years ago. Avian influenza virus originated from aquatic birds,
and it infected domestic birds by sharing watersheds. Humans can be infected by
avian influenza virus via infected domestic birds[11, 30, 6, 9] . But for birds, we
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cannot get the exact parameters to reflect the virus transmission clearly. So we
take some similar data to estimate the process of avian influenza virus transmission
approximately (TABLE 2).

The number of domestic birds is 4.2 times more than the number of humans in
China [7], so we assume that the number of domestic birds is 8400 and the number
of humans is 2000 to simplify the calculation. And it is assumed that there are
about 1000 wild aquatic birds for no exact data found. And it is assumed that
R0(WD) = 0.1∗R0(DD), R0(WH) = 0.1 ∗R0(H) and R0(DH) = 0.1 ∗R0(H).

The avian influenza virus transmission has been shown in model (2), which in-
cluded wildlife, domestic animals, high risk group and low risk group [10, 21, 13].
For high risk group and low risk group in humans, there may be shown in different
proportion in different areas. Less people are needed to take care of live animals in
modern farming than tradition. Few people have opportunities to contact with live
animals in some areas, which are the potential hosts of some pathogens in emerging
zoonoses. But in some other areas, stock raising is the main economy origin of the
residents. More people have to look after live animals to help support the family.
The proportion of high risk group and low risk group is higher in these areas than
others. Here we choose different proportions of high risk group and low risk group,
such as 1:9, 1:3, 1:1, 3:1 and 9:1, to reflect emerging avian influenza prevalence in
different areas (FIGURE 2).

From a to e in FIGURE 2, we get that more and more high proportion of humans
are infected in the first 90 days. More people would be infected with higher pro-
portion of them having the opportunity to contact with susceptible animals. From
FIGURE 3, we get that the incidence rate on epidemic equilibrium is increasing
with higher proportion of high risk group in humans. Although the proportion of
high risk group in humans would never change the basic reproductive number, it
could impact the final prevalence in humans.

The effects of parameters δ,∆I , σ in Strategy 1, Strategy 2 and Strategy 3 on
control reproductive numbers have been shown in FIGURE 4. The existence of
parameters δ,∆I , and σ would decrease the value of R1(WW ), R2(DD) and R3(H).

If δ < 0.142 ∗ 10−3,∆I < 0.258 and σ < 0.066, R1(WW ), R2(DD) and R3(H) would
get the value below threshold to control the zoonoses in wildlife, domestic animals
and humans respectively. The effects of Strategy 1, Strategy 2 and Strategy 3 in
different areas are shown in FIGURE 5, when IDC = IWC = IHC = 15. The effects
of δ, θD, θH ,∆I ,ΘH , σ and ρ on the number of infected humans in the first 90 days
are shown in FIGURE 6.

4. Discussion. From Ebola, Hendra, Marburg, SARS to H1N1, H7N9, more and
more zoonotic pathogens come into humans. Tens of thousands of people have
dead of these zoonoses in the last hundreds of years. Some public health policies
have to be established to answer emerging or remerging zoonoses. For different
species participating in an emerging zoonosis, different strategies should been taken
for controlling. In this paper, we established model (3), model (4) and model (5)
to reflect the effects of Strategy 1, Strategy 2 and Strategy3 about isolation and
slaughter in emerging zoonoses respectively. Strategy 1 is the controlling measure for
wildlife. Strategy 2 is the controlling measure for domestic animals. And Strategy
3 is the controlling measure for humans.

All of the three strategies would change the basic reproductive number to their
own control reproductive number. The involvement of Strategy 1, Strategy 2 and
Strategy 3 would change the conditions, which determine the zoonoses prevalence or
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Figure 2. Avian influenza prevalence in wildlife, domestic ani-
mals and humans with high risk group: low risk group=1:9 in a,
1:3 in b, 1:1 in c, 3:1 in d 9:1 in e.

not. At the same time, we conclude that the extinction of zoonoses must satisfy the
conditions ensuring all of basic (control) reproductive numbers in different species
are less than 1, whether it is taken controlling strategy or not. But if and only if
basic (control) reproductive numbers in wildlife is more than 1, the zoonoses might
be prevalent in all of the susceptible species.
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Figure 3. Incidence rate on epidemic equilibrium change in dif-
ferent proportion of high risk group in humans

Figure 4. The effect of δ on R1(WW ) in a. R1(WW ) = 1, when

δ = 0.142 ∗ 103. The effect of ∆I on R2(DD) in b. R2(DD) = 1,
when ∆I=0.258. The effect of δ on R3(H) in c. R3(H)=1, when
δ=0.066.
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Figure 5. Phase portrait of SH and IH in system (6) with no
strategy:εW = 0, εD = 0, εH = 0 . Strategy 1: when ILH +
IHH < IWC , εW = 0 ; when ILH + IHH ≥ IWC , εW = 1 . εD =
0, εH = 0 . Strategy 2: when ILH + IHH < IDC , εD = 0 ; when
ILH + IHH ≥ IDC , εD = 1 . εW = 0, εH = 0 . Strategy 3: when
ILH + IHH < IHC , εH = 0 ; when ILH + IHH ≥ IHC , εH = 1
. εW = 0, εD = 0 . (δ=0.1, θD=0.1, θH = 0.1,∆I = 1,ΘH =
0.1, σ = 0.01 and ρ=0.001; high risk group: low risk group=1:9 in
a, 9:1 in b; IDC = IWC = IHC = 15, at 26th day in a, 17th day in
b)

The stability analysis on models in section 2 reflects the effects of three strategies
on control reproductive numbers and equilibriums. In section 3, some numerical
simulations show the effects of the three strategies on avian influenza epidemic in
different areas in China at beginning. In this paper, we take isolation and slaughter
strategies into consideration to study their effects on emerging zoonoses. But the
other effective strategies like vaccination are neglected, which could be proposed in
a forthcoming paper.
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Figure 6. The effects of δ, θD, θH ,∆I ,ΘH , σ and ρ on the number
of infected humans (IH) in the first 90 days (δ in a, θD in b, θH in
c, ∆I in d, ΘH in e, σ in f and ρ in g) (high risk group: low risk
group=1:9)
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Table 2. Parameter definitions and their values for avian in-
fluenza in China.

Parameter Definitions Values Sources

AW
birth or immigration rate

of wild aquatic birds
0.137 birds/day Est.

µW
natural mortality rate of

wild aquatic birds
0.000137/day [33]

γW
recovery rate of wild

aquatic birds
0.25/day Est.

αW
disease-induced mortality rate

of wild aquatic birds
0.0025/day Est.

AD
birth or immigration rate of

domestic birds
48.72 birds/day [33]

µD
natural mortality rate of

domestic birds
0.0058/day [33]

γD
recovery rate of domestic

birds
0.25/day [26]

αD
disease-induced mortality

rate of domestic birds
0.0025/day Est.

AHH +ALH
birth or immigration

rate of humans
0.07people/day [23]

µH
natural mortality
rate of humans

0.000035/day [23]

γH recovery rate of humans 0.33/day [26,31]

γH1

remove rate from isolation
compartment to susceptible

compartment.
0.5/day Est.

γH2

remove rate from isolation
compartment to recovery individual

compartment.
0.5/day Est.

αH
disease-induced mortality rate

of humans
0.0033/day Est.

R0(WW )
basic reproductive number of wild

aquatic birds
2 Est.

R0(DD)
basic reproductive number

of domestic birds
2 Est.

R0(H)
basic reproductive number

of humans
1.2 [26]

βWD
per capita incidence rate from

wild aquatic birds to domestic birds
6.15 ∗ 10−6 Est.

βWH
per capita incidence rate from
wild aquatic birds to humans

2 ∗ 10−5 Est.

βDH
per capita incidence rate from

domestic birds to humans
2 ∗ 10−5 Est.
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