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Abstract. In this paper, we investigate the global stability of the steady states
of a general reaction-diffusion epidemiological model with infection force under

intervention strategies in a spatially heterogeneous environment. We prove that

the reproduction number R0 can be played an essential role in determining
whether the disease will extinct or persist: if R0 < 1, there is a unique disease-

free equilibrium which is globally asymptotically stable; and if R0 > 1, there

exists a unique endemic equilibrium which is globally asymptotically stable.
Furthermore, we study the relation between R0 with the diffusion and spatial

heterogeneity and find that, it seems very necessary to create a low-risk habitat

for the population to effectively control the spread of the epidemic disease. This
may provide some potential applications in disease control.

1. Introduction. Classical epidemic models provide essential frames in studying
the dynamics of disease transmission in the filed of theoretical epidemiology. An
interesting topic in the research of infectious diseases is to understand how interven-
tion strategies affect the relationships between individual-level processes and eco-
logical dynamics via the ordinary differential equations(ODEs) [19, 3, 41, 44, 4, 32].

When an infectious disease appears and starts to spread in a region, the depart-
ments for disease control and prevention will do everything possible to prevent the
disease spreading. The effects of intervention strategies, such as border screening,
mask wearing, quarantine, isolation, or communications through the mass media (to

2010 Mathematics Subject Classification. Primary: 35B36, 45M10; Secondary: 92C15.
Key words and phrases. Basic reproduction number, disease-free equilibrium, endemic, spatial

heterogeneity.
The authors would like to thank the anonymous referees for very helpful suggestions and

comments which led to improvement of our original manuscript. This research was supported
by the National Science Foundation of China (11601179, 61373005 & 61672013), the Natural
Science Foundation of the Jiangsu Higher Education Institutions of China (16KJB110003). The
research of YK is partially supported by NSF-DMS (Award Number 1313312) and The James
S. McDonnell Foundation 21st Century Science Initiative in Studying Complex Systems Scholar

Award (UHC Scholar Award 220020472).
∗ Corresponding author: Weiming Wang.

1071

http://dx.doi.org/10.3934/mbe.2017056


1072 YONGLI CAI, YUN KANG AND WEIMING WANG

communicate to the public the existence of an outbreak and possibly risk-reducing
behavior), play an important role in administering efficient interventions to control
disease spread and hopefully eliminate epidemic diseases [39, 10, 11, 34]. Under
intervention policies, for a very large number of infective individuals the infection
force may decrease as the number of infective individuals increases, because in the p-
resence of large number of infectious the population may tend to reduce the number
of contacts per unit time. Individual’s response to the threat of disease is dependent
on their perception of risk, which is influenced by public and private information dis-
seminated widely by the media [35, 21]. Human behavior change consequently leads
to reduction in number of real susceptible individuals or effective contact rates [43].
This has been interpreted as the “psychological” effect [41]. For instances, during
the outbreak of SARS in 2003 [16] and the outbreak of H1N1 influenza pandemic in
2009 [43, 33, 42], intervention strategies such as closing schools/ restaurants, post-
poning conferences, isolating infectives, etc., were taken by the Chinese government.
These strategies greatly reduced the contact number per unit time, and therefore,
decreased the incidence rate. This demonstrated the importance of considering the
infection forces that include the adaptation of individuals to infection risks under
intervention strategies [5]. Hence, to curb the spread of infectious diseases, it is
then crucial to examine the role of intervention strategies on disease outbreaks.

The studies by Cui et al. [10, 11] suggested that the population have done better
to prevent the spreading of the disease with more preventive knowledge, which sug-
gests that media coverage was critical in disease eradication. Khanam [19] showed
that acquired immunodeficiency syndrome (AIDS) awareness among married cou-
ples, media and education play a tremendous role in mounting AIDS awareness a-
mong the residents. Tang and Xiao [43, 33] indicated that strict interventions (e.g.,
campus quarantine) were taken in mainland China to slow down the initial spread
of the disease, and awareness through media and education plays a tremendous role
in changing behaviors or contact patterns, and hence in limiting the spread of in-
fectious disease. In particular, Wang [39] formulated and analyzed an SIRS model
to study the impact of intervention strategies on the spread of an infectious disease
and found that intervention strategies decrease endemic levels and tend to make the
dynamical behavior of a disease evolution simpler. Cai et al. [5] extended a classical
SIRS epidemic model with the infectious forces under intervention strategies from a
deterministic framework to a stochastic differential equation one through introduc-
ing random fluctuations and found that random fluctuations can suppress disease
outbreak.

It’s worthy to note that the environment factors considered in ODEs is homoge-
neous, while spatial variation is usually neglected. Therefore, the spatial spread of
infectious and what drives it is less well understood [29]. And the spatial component
of ecological interactions has been identified as an important factor [22, 30]. Spatial
diffusion and environmental heterogeneity have been recognized as important factors
to affect the persistence and eradication of infectious diseases such as measles, tuber-
culosis, flu, etc., especially for vector-borne diseases, such as malaria, dengue fever,
West Nile virus, etc. More importantly, it is shown that the spatial transmission
and environ-mental heterogeneity can decide the speed and pattern of the spatial
spread of infectious diseases [15, 13, 14, 1, 2, 18, 24, 25, 26, 27, 40, 36, 6, 8, 7, 38, 20].
Therefore, it is essential to investigate the role of diffusion in the transmission and
control of diseases in a heterogeneous environment [15].
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In particularly, Fitzgibbon et al. [13, 14] were the first to propose a family of
SIR (Susceptible-Infected-Recovered) models that can include spatially-dependent
terms for diffusion, convection, disease transmission, and population demography.
After assuming that rates of both transmission β(x) and recovery γ(x) of the disease
depend on spatial variables, and characterizing the habitat as high (low) risk if the
average of the transmission rates is greater (less) than the average of the recovery
rates, Allen et al. [2] proposed a basic SIS model

∂S

∂t
= dS∆S − β(x)SI

S + I
+ γ(x)I, x ∈ Ω, t > 0,

∂I

∂t
= dI∆I +

β(x)SI

S + I
− γ(x)I, x ∈ Ω, t > 0,

(1)

with a no-flux boundary condition (or Neumann boundary condition)

∂S

∂n
=
∂I

∂n
= 0, x ∈ ∂Ω, t > 0. (2)

For the sake of establishing the theoretical results, the authors in [2] introduced the
basic reproduction number as

R̃0 = sup
ϕ∈H1(Ω), ϕ 6=0


∫

Ω

βϕ2∫
Ω

dI |∇ϕ|2 + γϕ2

 , (3)

and showed that, if R̃0 < 1, the disease-free equilibrium is globally asymptotically

stable, while R̃0 > 1, the disease-free equilibrium (DFE) is unstable, and there exists
a unique endemic equilibrium (EE). Unfortunately, due to the difficulties caused by
the mathematical analysis, they did not derive any stability result (even the local
linear stability) for the EE. However, they conjectured that if such a unique EE
exists, it should be globally asymptotically stable. Peng and Liu [25] confirmed
that the conjecture is true in two special cases: (1) the diffusion rate dS of the
susceptible individuals is equal to the diffusion rate dI of the infected individuals:
if Ω is a high-risk domain, the EE is globally asymptotically stable, and if Ω is a
low-risk domain, the DFE is globally asymptotically stable; (2) β(x) = rγ(x) for
any fixed constant r ∈ (0,∞): if r ≤ 1, the DFE is globally asymptotically stable,
and if r > 1, the EE is globally attractive.

And recently, Cai and Wang [6] investigated the dynamics of a parasite-host epi-
demiological model in a spatially heterogeneous environment and gave the existence
of the endemic equilibrium and the global stability of the endemic equilibrium in
the case of the death rate a constant. Kuniya and Wang [20] constructed Lyapunov
functions for the global stability analysis of equilibria of a spatially diffusive SIR
epidemic model for two special cases, that is, the case of no diffusive susceptible
individuals and that of no diffusive infective individuals. Furthermore, Huang et
al. [18] studied two modified SIS diffusion models with the Dirichlet boundary con-
dition S(x, t) = I(x, t) = 0, (x ∈ Ω, t > 0) and defined the reproductive number
for both models to govern the stability of disease free equilibrium steady state and
the existence of an endemic equilibrium, and showed partial result on the global
stability of the EE in the case of the diffusion coefficients are equal.

Based on the discussions above, in this paper, we will focus on the global stability
analysis of the steady states for a general SIS epidemiological model with infection
force under intervention strategies in a spatially heterogeneous environment. The
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rest of this article is organized as follows: In Section 2, we establish an SIS epidemic
model in a spatially heterogeneous environment. In Section 3, we give some prelim-
inaries. In Section 4, we accomplish our main results. In Section 5, we give some
numerical results to show the relation between basic reproduction number with the
diffusion and spatial heterogeneity. And in the last section, Section 6, we provide a
brief discussion and the summary of our main results.

2. Model derivations. Suppose that the total population (N) is divided into two
groups, susceptible (S) and infectious (I), i.e., N = S + I. For modelling the
adaption of individual’s behavior under intervention policies, the infection force
may decrease as the number of infective individuals increases due to the fact that
the population may tend to reduce the number of contacts per unit time under
intervention policies. This has been interpreted as the “psychological effect” [41, 43].
Mathematically, this phenomenon can be modeled as the infection force is increasing
when I is small while it is decreasing when I is large. For simplicity in notations, we
suppose that the incidence rate (the contact number per unit time) can be factorized
into βI/f(x, I), where 1/f(x, I) represents the effect of intervention strategies on
the reduction of valid contact coefficient β [39]. It’s worthy to note that, in the
absence of intervention strategies, i.e., f(x, I) = 1, the incidence rate becomes the
well–known bilinear transmission rate βSI. To ensure a nonmonotonic infection
force, we make the following assumptions:

(H1)f(x, 0) > 0 and f ′I(x, I) > 0 for I > 0.
(H2) There is a ξ > 0 such that (I/f(x, I))′I > 0 for 0 < I ≤ ξ and (I/f(x, I))′I <

0 for I > ξ.
In epidemiology, these assumptions describe the effect of intervention strategies

determining by a critical level of invectives ξ: if 0 < I ≤ ξ, the incidence rate is
increasing; while I > ξ, the incidence rate decreasing. And our general results can
be used in some specific forms for the incidence rate that have been commonly used,
for example:

Example 1. Saturated incidence rate: f(x, I) = 1 + pI + qI2 [39]. Especially, if
p = 0, then f(x, I) = 1 + αI2 [41].

Example 2. Incidence rates with “media coverage”[11]: f(x, I) = exp(αI), where
α is a positive constant.

Let Ω be a bounded domain in Rm (m ≥ 1) with smooth boundary ∂Ω. Spatial
heterogeneity is taken into account via the assumption that recruitment rate Λ(x),

mortality rate µ(x), recovery rate γ(x) and incidence term
β(x)I

f(x, I)
are spatially

dependent. Such a two-component SIS reaction-diffusion epidemiological model is
as follows:

∂S

∂t
= d∆S + Λ(x)− β(x)I

f(x, I)
S − µ(x)S + γ(x)I, x ∈ Ω, t > 0,

∂I

∂t
= d∆I +

β(x)I

f(x, I)
S − µ(x)I − γ(x)I, x ∈ Ω, t > 0,

∂S

∂n
=
∂I

∂n
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, x ∈ Ω.

(4)

where S(x, t) and I(x, t) are the density of susceptible and infected individuals at
location x ∈ Ω and time t, respectively. d is a positive diffusion coefficient for the
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population. n is the outward unit normal vector on ∂Ω. The symbol ∆ is the
Laplacian operator. The homogeneous Neumann boundary condition implies that
the above system is self-contained and there is no infection across the boundary.
Specifically, we require that:

(i) S0(·), I0(·) ∈ C1(Ω̄) and there are initially a positive number of infected
individuals, i.e.,∫

Ω̄

I0(x)dx > 0 with S0(x) ≥ 0 and I0(x) ≥ 0 for x ∈ Ω.

(ii) Λ(·), µ(·), β(·), γ(·) ∈ C1(Ω̄). And there exist a positive constant ν > 0 such
that ν < min{ζ(x), x ∈ Ω} for ζ = Λ, β, µ, γ.

(iii) f(x, 0) = 0, f(·, ·) ∈ C1(Ω̄× R+) and f(·, ·) > 0 on Ω̄× R+.
We are interested in the steady state solutions of model (4). Thus we will con-

centrate on the following strongly coupled elliptic system

d∆S + Λ(x)− β(x)I

f(x, I)
S − µ(x)S + γ(x)I = 0, x ∈ Ω,

d∆I +
β(x)I

f(x, I)
S − µ(x)I − γ(x)I = 0, x ∈ Ω,

∂S

∂n
=
∂I

∂n
= 0, x ∈ ∂Ω.

(5)

Next, we introduce some related definitions:
A disease-free equilibrium (DFE) of model (4) is a solution of (5) in which I(x)

vanish at every x ∈ Ω, i.e., I(x) = 0. We denote the DFE as E0 = (S∗(x), 0).
An endemic equilibrium (EE) of model (4) is a solution in which I(x) exist, i.e.,

I(x) > 0 for some x ∈ Ω. We denote the EE as E∗ = (S∗(x), I∗(x)).
The habitat Ω is characterized as low-risk domain ( or high-risk domain) if

the spatial average of transmission rate
1

|Ω|

∫
Ω

β(x)S∗(x)

f(x, 0)
dx less than (or greater

than) the spatial average of mortality and recovery rate
1

|Ω|

∫
Ω

(µ(x) + γ(x))dx.

See [15, 2, 24] for more details.

3. Preliminaries. In this section, we collect some basic results concerning elliptic
eigenvalue problems and linear parabolic equations, which will be used in the proofs
of our main results.

For a closed linear operator A : D(A) ⊂ L2 → L2, where D(A) denotes the
domain of A, and the spectral bound of A is defined by

s(A) = sup{Re(λ)|λ ∈ σ(A)},
where σ(A) denotes the spectrum of A. For a given positive constant d and a given
real function q ∈ C(Ω), let d∆ + q be the following unbounded linear operator in
L2(Ω):

D(d∆ + q) = H2
n(Ω) :=

{
φ ∈ H2(Ω)

∣∣ ∂φ
∂n

= 0 on ∂Ω

}
,

(d∆ + q)φ(x) = d∆φ(x) + q(x)φ(x) (x ∈ Ω) for φ ∈ H2
n(Ω),

where H2(Ω) denotes the usual L2-type Sobolev space on Ω of order 2. This is
a densely defined closed sectorial operator in L2(Ω), so it generates an analytic
semigroup T (t) = et(d∆+q) (t ≥ 0) in L2(Ω).
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Concerning the spectral bound of the operator d∆ + q, we have the following
result:

Lemma 3.1. [9, 31] Let

λ∗ = − inf

{∫
Ω

d|∇φ|2 − qφ2| φ ∈ H1(Ω),

∫
Ω

φ2 = 1

}
, (6)

then s(d∆ + q) = λ∗. Moreover, λ∗ is a dominant eigenvalue of the operator d∆ + q
and the corresponding eigenfunction is strictly positive. In particular, if q = 0 then
s(d∆) = 0.

As an immediate consequence of Lemma 3.1, we have the following result (see
[23]):

Corollary 1. Let T (t) = et(d∆+q) (t ≥ 0) be a semigroup in L2(Ω) generated by
the operator d∆ + q and let λ∗ = s(d∆ + q), then for any λ > λ∗, there exists a
corresponding constant C > 0 such that

‖T (t)‖L(L2(Ω)) ≤ Ceλt, t ≥ 0.

In what follows, we only prove the convergence in L2(Ω). By regularity the-
ory and the Sobolev embedding theorem, actually, we are able to show that the
convergence is uniform. For the convenience of notation, we write

‖m‖ = ‖m‖L2(Ω), ‖m‖∞ = max
x∈Ω̄

m(x), m = min
x∈Ω̄

m(x).

4. Global disease dynamics analysis.

4.1. Global existence of the solutions. In this subsection, we prove the global
existence of solutions to model (4). We first give the following Lemma.

Lemma 4.1. Consider the following system
∂N

∂t
= d∆N + Λ(x)− µ(x)N, x ∈ Ω, t > 0,

∂N

∂n
= 0, x ∈ ∂Ω, t > 0,

N(x, 0) = N0(x) ≥ 0, x ∈ Ω,

(7)

then model (7) admits a unique positive steady state S∗(x), which is globally asymp-
totically stable in C(Ω̄,R), where S∗ satisfies{

d∆S∗ + Λ(x)− µ(x)S∗ = 0, x ∈ Ω,
∂S∗
∂n

= 0, x ∈ ∂Ω.
(8)

Proof. The proof of the existence and uniqueness of positive steady state is based
upon the super–solution [9]. Now let us prove global stability. Set N̂ = N − S∗.
Notice that d∆S∗ + Λ(x)− µ(x)S∗ = 0. Thus we can rewrite (7) as

∂N̂

∂t
− d∆N̂ = −µ(x)N̂ , x ∈ Ω, t > 0,

∂N̂

∂n
= 0, x ∈ ∂Ω, t > 0,

N̂(x, 0) = N0(x)− S∗, x ∈ Ω.
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Let U(t) be the semigroup generated by the operator d∆−µ. Since −λ1 = s(d∆−
µ) < 0. Choose 0 < λ < λ1 and fix it. It follows from [23] that there is a constant
C > 0 such that

‖N̂(·, t)‖ = ‖U(t)N̂(·, 0)‖ ≤ Ce−λt‖N̂(·, 0)‖ → 0, as t→∞.

It follows that N(·, t)→ S∗ as t→∞.

Next, we give the results about the existence and uniqueness of the global solu-
tions of model (4).

Theorem 4.2. For every initial value function, model (4) has a unique positive
solution (S(·, t), I(·, t)) on [0,∞).

Proof. By the maximum principle [28], the populations S(x, t) and I(x, t) are pos-
itive for x ∈ Ω̄ and t ∈ (0, Tmax), where Tmax is the maximal existence time for
solutions of model (4). It follows from Lemma 4.1 that N(x, t) = S(x, t) + I(x, t)
is bounded on t ∈ (0, Tmax). Hence, both S(x, t) and I(x, t) are bounded on
Ω̄ × (0, Tmax). Hence, it follows from the standard theory for semilinear para-
bolic systems (see,[17]) that Tmax =∞ and so model (4) admits a unique classical
solution (S(x, t), I(x, t)) for all time.

4.2. Disease-free dynamics. In this subsection, we first identify the basic repro-
duction number and then study the stability of DFE of model (4).

It follows from Lemma 4.1 that E0 = (S∗, 0) is the DFE of model (4), where S∗
satisfies (8). We linearize model (4) around DFE and obtain the following system
of perturbation equations

∂S

∂t
= d∆S − µ(x)S +

(
γ(x)− β(x)S∗

f(x, 0)

)
I, x ∈ Ω, t > 0,

∂I

∂t
= d∆I +

(
β(x)S∗
f(x, 0)

− µ(x)− γ(x)

)
I, x ∈ Ω, t > 0,

∂S

∂n
=
∂I

∂n
= 0, x ∈ ∂Ω, t > 0.

(9)

Then we get the following linear eigenvalue problem

λϕ = d∆ϕ− µ(x)ϕ+

(
γ(x)− β(x)S∗

f(0)

)
ψ, x ∈ Ω,

λψ = d∆ψ +

(
β(x)S∗
f(x, 0)

− µ(x)− γ(x)

)
ψ, x ∈ Ω,

∂ϕ

∂n
=
∂ψ

∂n
= 0, x ∈ ∂Ω.

(10)

Let λ∗ denote the principal eigenvalue of the second equation of model (10), which
is given by the following variational characterization

λ∗ = − inf
ω∈H1(Ω)

{∫
Ω

d|∇ω|2 −
(
β(x)S∗
f(x, 0)

− µ(x)− γ(x)

)
ω2,

∫
Ω

ω2 = 1

}
. (11)

By using the next generation approach for heterogenous populations [12, 37]
and spatial heterogenous populations [2, 26, 40], we define the basic reproduction
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number R0 for model (4) as follows:

R0 = sup
ω∈H1(Ω), ω 6=0


∫

Ω

β(x)S∗
f(x, 0)

ω2∫
Ω

d|∇ω|2 + (µ(x) + γ(x))ω2

 . (12)

In the spatially homogeneous case, i.e., Λ, µ, β, δ, γ are all positive constants and
f(x, I) = f(I), we can obtain the basic reproduction number

R0 =
Λβ

µf(0)(µ+ γ)
.

By Lemma 2.2, 2.3 in [2] and Lemma 3.1, we have:

Theorem 4.3. The following statements are true:

(i) sign(R0 − 1) = sign(λ∗) = sign

(
s

(
d∆ +

βS∗
f(x, 0)

− µ− γ
))

;

(ii) R0 is a strictly monotone decreasing function of d > 0 with

R0 → max
x∈Ω̄

{
β(x)S∗

f(x, 0)(µ(x) + γ(x))

}
as d→ 0,

and

R0 →

∫
Ω

(
β(x)S∗
f(x, 0)

)
dx∫

Ω

(µ(x) + γ(x))dx

as d→∞;

(iii) In a high-risk domain, R0 > 1 for all d > 0;
(iv) In a low–risk domain, then the equation R0 = 1 has a unique positive root

denoted by d∗. Furthermore, if 0 < d < d∗ then R0 > 1, and if d > d∗ then R0 < 1.

The proof is similar to that in [15, 2, 24] and hence we omit it here. Follow-
ing, we show properties of the disease-free equilibrium (DFE), including existence,
uniqueness, and stability.

Theorem 4.4. For model (4), there exists a unique DFE (S∗, 0), where S∗ is a
positive solution of { −d∆S = Λ(x)− µ(x)S = 0, x ∈ Ω,

∂S

∂n
= 0, x ∈ ∂Ω,

(13)

if R0 < 1, DFE (S∗, 0) is globally asymptotically stable; while R0 > 1, it is unstable.

Proof. Suppose that R0 < 1. We will use the comparison principle to show that
I(·, t) → 0 as t → ∞. By virtue of Lemma 4.1, for any small ε > 0, we can find a
large T > 0 such that

S(x, t) ≤ N(x, t) < S∗(x) + ε, for all x ∈ Ω̄ and t ≥ T.

Obviously, I satisfies
∂I

∂t
− d∆I ≤

(
β(x)(S∗ + ε)

f(x, 0)
− µ(x)− γ(x)

)
I, x ∈ Ω, t > T,

∂I

∂n
= 0, x ∈ ∂Ω, t > T,

I(x, T ) ≥ 0, x ∈ ∂Ω.

(14)
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Let Z(x, t) with Z(x, T ) = I(x, T ) be the solution of the following linear system
∂Z

∂t
= d∆Z +

(
β(x)(S∗ + ε)

f(x, 0)
− µ(x)− γ(x)

)
Z, x ∈ Ω, t ≥ T,

∂Z

∂n
= 0, x ∈ ∂Ω, t ≥ T.

(15)

By the comparison principle, 0 ≤ I(x, t) ≤ Z(x, t) for all t > T and x ∈ Ω. Let

U1(t) be the semigroup in L2(Ω) generated by the operator d∆+
β(S∗ + ε)

f(0)
−µ−γ.

By Theorem 4.3, we have that R0 < 1 implies that s

(
d∆ +

βS∗
f(0)

− µ− γ
)
< 0. By

the continuity, there is a ε > 0 such that −λ2 := s

(
d∆ +

β(S∗ + ε)

f(0)
− µ− γ

)
< 0.

Choose 0 < λ < λ2 and fix it. It follows from Corollary 1 that there is a constant
C > 0 such that

‖I(·, t)‖ ≤ ‖Z(·, t)‖ = ‖U2(t)Z(·, 0)‖ ≤ Ce−λt‖I(·, 0)‖ → 0, as t→∞, (16)

which implies that I(x, t)→ 0 as t→∞ in ‖ · ‖ and∥∥∥∥(γ(x)− β(x)S

f(I)

)
I

∥∥∥∥ ≤ Ce−λt, t > 0,

for some positive constants C. We now show that S(·, t) tends to S∗(x) as t→∞.

Set Ŝ = S − S∗, then Ŝ satisfies

∂Ŝ

∂t
− d∆Ŝ = −µŜ +

(
γ(x)− β(x)(Ŝ + S∗)

f(I)

)
I, x ∈ Ω,

∂Ŝ

∂n
= 0, x ∈ ∂Ω,

Ŝ(x, 0) = S0(x)− S∗, x ∈ Ω.

(17)

Applying the formula of variation of constants [23] to the first equation of (17) and
the above results, we obtain

‖Ŝ(·, t)‖ ≤ ‖U(t)Ŝ(·, 0)‖+

∫ t

0

∥∥∥∥∥U(t− s)

(
γ − βŜ(·, t)

f(I(·, t))

)
I(·, t)

∥∥∥∥∥ ds
≤ Ce−λt‖Ŝ(·, 0)‖+ Cte−λt

→ 0, as t→∞.

Hence S(·, t)→ S∗ as t→∞. With the use of the regularity theorem, we are able
to show that (S(x, t), I(x, t)) tend to uniformly (S∗, 0) on Ω as t→∞.

Next, suppose that R0 > 1. It follows from Theorem 4.3 that there is a λ0 > 0
and ψ0 6= 0 such that

d∆ψ0 +

(
β(x)S∗
f(0)

− µ(x)− γ(x)

)
ψ0 = λ0ψ0.

Rewrite the first equation in (10) with λ = λ0 as

d∆ϕ− (µ(x) + λ0)ϕ =

(
β(x)S∗
f(0)

− µ(x)− γ(x)

)
ψ0. (18)
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It follows that (18) has a unique solution ϕ0 satisfying
∂ϕ0

∂n
= 0 for x ∈ ∂Ω. That

is, λ0 > 0 is an eigenvalue. Therefore the DFE is linearly unstable. Instability of
the DFE follows from its linear instability (see [17]).

4.3. Endemic dynamics. In this subsection, we study the existence and global
stability of EE for model (4), namely to prove Theorem 4.10.

Let N(x, t) = S(x, t) + I(x, t). Then N(x, t) and I(x, t) satisfy the following
system

∂N

∂t
= d∆N + Λ(x)− µ(x)N, x ∈ Ω, t > 0,

∂I

∂t
= d∆I +

(
β(x)N

f(x, I)
− µ(x)− γ(x)− β(x)

f(x, I)
I

)
I, x ∈ Ω, t > 0,

∂N

∂n
=
∂I

∂n
= 0 x ∈ ∂Ω, t > 0,

N(x, 0) = N0(x) = S0(x) + I0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, x ∈ Ω.
(19)

If (N(x, t), I(x, t)) is a solution of the model (19) with 0 ≤ I0(·) ≤ N(·, 0), then
0 < I(x, t) ≤ I(x, t) + S(x, t) = N(x, t) for all t > 0 and x ∈ Ω. Now, proving
that the existence and global stability of EE for model (19) will immediately give
the existence and global stability of EE for model (4). And we first consider the
following lemmas.

Lemma 4.5. Assume that R0 > 1. Then there is a small ε∗ > 0 such that for each
ε with |ε| < ε∗, the equation

G(I) := d∆I + g(x, I)I = 0, x ∈ Ω,

∂I

∂n
= 0, x ∈ ∂Ω.

(20)

has a unique positive solution Iε∗ , where

g(x, I) =
β(x)(S∗ + ε)

f(x, I)
− µ(x)− γ(x)− β(x)

f(x, I)
I.

Proof. By Theorem 4.3 (i), R0 > 1 implies that λ∗ = s

(
d∆ +

βS∗
f(x, 0)

− µ− γ
)
>

0. By the continuity, there is an ε with |ε| < ε∗ such that λ̃ = s

(
d∆ +

β(S∗ + ε)

f(x, 0)
−

µ− γ) > 0. We first claim that I = ρψ∗ and Ī = S∗ are sub– and super–solutions
of model (20), respectively, if ρ is chosen to be positive and sufficiently small, where

ψ∗ > 0 be an eigenfunction to λ̃, that is ψ∗ satisfies d∆ψ∗+

(
β(x)(S∗ + ε)

f(x, 0)
− µ(x)

−γ(x))ψ∗ = λ̃ψ∗ and
∂ψ∗

∂n
= 0 on ∂Ω. Upon a direct substitution we obtain

G(I) = d∆(ρψ∗) + ρψ∗g(x, ρψ∗)

= ρ

(
d∆ψ∗ + ψ∗

(
g(x, 0) +

∂g

∂I
(x, 0)ρψ∗ +O((ρψ∗)2)

))
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= ρ

(
d∆ψ∗ +

(
β(x)(S∗ + ε)

f(0)
− µ− γ

)
ψ∗ +

∂g

∂I
(x, 0)ρψ∗2 +O(ρ2ψ∗3)

)
= ρ

(
λ̃− ρψ∗2β(x)(f(x, 0) + (S∗ + ε)f ′(x, 0))

f2(0)
+O(ρ2ψ∗3)

)
.

λ̃ > 0 immediately implies that G(I) > 0 if ρ is small enough. Also,
∂I

∂n
= 0 on ∂Ω.

Therefore, I = ρψ∗ is a sub-solution of (20). Now, for ε > 0 with |ε| < ε∗, since

G(Ī) = d∆S∗ + S∗g(x, S∗) = d∆S∗ − µ(x)S∗ + S∗

(
εβ(x)

f(I)
− γ(x)

)
= −Λ(x) + S∗

(
εβ(x)

f(I)
− γ(x)

)
< 0,

and
∂Ī

∂n
= 0 on ∂Ω, it follows that Ī is a super–solution of model (20). It is

obvious that I ≤ Ī on Ω if ρ is sufficiently small. We hence infer that there must
be a Iε(x) ∈ [I, Ī] satisfying model (20). That is, there exist some Iε(x) ∈ C2(Ω̄)
satisfying model (20) with 0 < Iε ≤ S∗ for x ∈ Ω. We argue by contraction to show
that Iε 6= S∗ on Ω. Suppose that Iε = S∗ on Ω. As I achieves its maximum on Ω
at x, it must be that ∆I(x) ≤ 0. But for fixed ε then G(I(x)) < 0, a contradiction.
We conclude that 0 < Iε < S∗ for x ∈ Ω. This prove the existence of positive
solution (S∗(x), I∗(x)) of model (4).

In order to prove the uniqueness, we argue by contradiction. Suppose that model
(20) has two positive solutions I1(x) and I2(x) with I1(x) 6≡ I2(x) on Ω. It follows
from above that we may choose ρ small enough so that I < I1(x), I2(x) < S∗
on Ω̄. Let Im and Im denote the minimal and maximal solutions of model (20),
respectively, within the set [I, Ī]. Since I1(x) 6≡ I2(x), we have Im ≤ Im and
Im(x) 6≡ Im(x). The maximum principle now implies that Im < Im on Ω̄. We
substitute Im and Im individually into model (20) to get

d∆Im + Img(x, Im) = 0, x ∈ Ω,

d∆Im + Img(x, Im) = 0 x ∈ Ω,

∂Im
∂n

=
∂Im

∂n
= 0, x ∈ ∂Ω.

(21)

Multiplying the first equation of (21) by Im and the second equation of (21) by Im,
subtracting the resulting equations, and then integrating by parts over Ω gives∫

Ω

ImI
mF (Im, I

m)dx = 0, (22)

where

F (Im, I
m) =

β(x)(S∗ + ε− Im)

f(Im)
− β(x)(S∗ + ε− Im)

f(Im)

=
β(x)

f(Im)f(Im)

(
(S∗ + ε− Im)(f(Im)− f(Im)) + f(Im)(Im − Im)

)
=
β(x)

(
f(Im)− f(Im)

)
f(Im)f(Im)

(
S∗ + ε− Im +

f(Im)(Im − Im)

f(Im)− f(Im)

)
.
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Hence, we can choose sufficiently small |ε| such that F (Im, I
m) > 0 on Ω. But this

result contradicts (22) because 0 < Im < Im ≤ S∗. We conclude that model (20)
has a unique positive solution I∗ε (x) on Ω.

From the comparison principle we infer that the following Lemma.

Lemma 4.6. Let (N(x, t), I(x, t)) be a positive solution of model (19) such that
S∗ − ε ≤ N(x, t) ≤ S∗ + ε for all t ≥ 0. Let (Nε(·, t), Iε(·, t)) be a nonnegative
solution of the following system

∂N

∂t
= d∆N + Λ(x)− µ(x)N, x ∈ Ω, t > 0,

∂I

∂t
= d∆I +

(
1

f(I)
β(x)((S∗ + ε)− I)− µ(x)− γ(x)

)
I, x ∈ Ω, t > 0,

∂N

∂n
=
∂I

∂n
= 0 x ∈ ∂Ω, t > 0,

(23)
If ε < 0 and (Nε(·, 0), Iε(·, 0)) ≤ (N(·, 0), I(·, 0)), then (Nε(·, t), Iε(·, t)) ≤ (N(·, t),
I(·, t)); and if ε > 0 and (Nε(·, 0), Iε(·, 0)) ≥ (N(·, 0), I(·, 0)), then (Nε(·, t), Iε(·, t))
≥ (N(·, t), I(·, t)).

Lemma 4.7. ([18]) Consider the equation
∂u

∂t
− d∆u = c(x)u+ h1(x, t), x ∈ Ω, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0.

(24)

where c(x) ∈ C(Ω̄), h(x, t) ∈ C([0, t0], C(Ω̄)) for some t0 > 0. Suppose that s(d∆ +
c) = 0 and let φ∗ be the strictly positive eigenfunction corresponding to the zero
eigenvalue of the operator d∆ + c. If h(x, t) ≥ 0 for t ∈ [0, t0] and x ∈ Ω and u(x, t)
is a solution of (24) with u(·, t) = φ∗, then

u(·, t) ≥ u(·, 0), t ∈ [0, t0].

Recall that R0 > 1 implies that s

(
d∆ +

βS∗
f(0)

− µ− γ
)
> 0. Moreover, we have

s(d∆− µ) < 0. Hence, there are two positive constant α1 and α2 such that

s(d∆ + α1 − µ) = 0, s

(
d∆ +

βS∗
f(0)

− µ− γ − α2

)
= 0. (25)

We let φ∗1 and φ∗2 be strictly positive eigenfunctions corresponding to the zero ei-

genvalue of the operator d∆ + α1 − µ and d∆ +
βS∗
f(0)

− µ − γ − α2, respectively.

That is,

d∆φ∗1 + (α1 − µ)φ∗1 = 0, d∆φ∗2 +

(
βS∗
f(0)

− µ− γ − α2

)
φ∗2 = 0,

and
∂φ∗1
∂n

=
∂φ∗2
∂n

= 0 on ∂Ω.

Lemma 4.8. For each fixed ε < 0 with |ε| < ε∗, there is a δ∗ > 0 such that for
sufficient small δ ∈ (0, δ∗), the solution (Nδ

ε (t, x), Iδε (t, x)) of model (23) with the
initial condition

Nδ
ε (·, 0) = δφ∗1, I

δ
ε (·, 0) = δφ∗2

is monotone increasing with respect to t.
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Proof. Let αi, i = 1, 2, be the positive numbers defined in (25). Then s

(
d∆ +

βS∗
f(0)

−µ− γ) > 0 and s

(
d∆ +

βS∗
f(0)

− µ− γ − α2

)
= 0 imply that α2 +

β(x)ε

f(0)
> 0.

Hence there are positive constants δ∗ and η such that

Λ(x)− α1δ
∗φ∗1(x) > η,

α2 +
β(x)ε

f(0)
− (β(x)(S∗ + ε))(δ∗φ∗2(x)f ′(0) +O((δ∗φ∗2)2)

f(0)f(δ∗φ∗2(x))
− β(x)δ∗φ∗2(x)

f(δ∗φ∗2(x))
> η

(26)
for x ∈ Ω. Now let δ ∈ [0, δ∗] and (Nδ

ε (x, t), Iδε (x, t)) be defined as above. Since
φ∗i ∈ C2

0 (Ω̄) (i = 1, 2), then,

(Nδ
ε (x, t), Iδε (x, t))→ (δφ∗1, δφ

∗
2), as t→ 0

uniformly for x ∈ Ω. Hence from the continuity and the inequality (26), it follows
that there is a t1 > 0 such that

Λ(x)− α1N
δ
ε (x, t) > η1, (x, t) ∈ [0, t1]× Ω,

α2 +
β(x)ε

f(0)
− (β(x)(S∗ + ε))(f(Iδε (x, t))− f(0))

f(0)f(Iδε (x, t))
− β(x)Iδε (x, t)

f(Iδε (x, t))
> η1,

(x, t) ∈ [0, t1]× Ω

(27)

for some positive constants η1. Considering (23) again, we can check that (Nδ
ε (x, t),

Iδε (x, t)) satisfies the system

∂N

∂t
− d∆N = (α1 − µ(x))N + h1(x, t), x ∈ Ω, t > 0,

∂I

∂t
− d∆I =

(
β(x)S∗
f(0)

− µ(x)− γ(x)− α2

)
I + h2(x, t), x ∈ Ω, t > 0,

∂N

∂n
=
∂I

∂n
= 0, x ∈ ∂Ω, t > 0.

(28)
where

h1(x, t) = Λ(x)− α1N,

h2(x, t) = I

(
α2 +

β(x)ε

f(0)
− (β(x)(S∗ + ε))(f(I)− f(0))

f(0)f(I)
− I

f(I)

)
.

It follows from (27) that h1(x, t) and h2(x, t) are positive for (x, t) ∈ Ω × [0, t1].
And Lemma 4.7 implies that

(Nδ
ε (x, t), Iδε (x, t)) > (Nδ

ε (0, ·), Iδε (0, ·)), t ∈ [0, t1]. (29)

It is clear that model (23) is a monotone system. Suppose that the semiflow Ψt

generated by model (23) is defined by

Ψt(ϕ) = (Nε(·, t, ϕ1), Iε(·, t, ϕ2))

with (Nε(·, 0, ϕ1), Iε(·, 0, ϕ2)) = ϕ = (N0(·), I0(·)). Set ϕδ = (Nδ
ε (·, 0, ϕδ1), Iδε (·, 0,

ϕδ2)) = (Nδ
ε (·, 0), Iδε (·, 0)), then

(Nδ
ε (·, t, ϕδ1), Iδε (·, t, ϕδ2)) = Ψt(ϕ

δ).

Fix t1 > 0 and rewrite t = kt1 + s with k ∈ N, s ∈ [0, t1). From (29), we can obtain
Ψs(ϕ

δ) > ϕδ. Hence the monotonicity of the semiflow yields that

Ψt1+s(ϕ
δ) = Ψs(Ψt1(ϕδ)) ≥ Ψs(ϕ

δ),
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then
Ψt(ϕ

δ) = Ψs+kt1(ϕδ) > Ψs+(k−1)t1(ϕδ) ≥ · · · ≥ Ψs(ϕ
δ).

So (Nε(·, t), Iε(·, t)) is monotone increasing.

Lemma 4.9. Let ε > 0 be fixed. For ang σ > 1 with ε < σ‖Λ‖∞, let (Nσ
ε (·, t), Iσε (·,

t)) be a solution of model (23) with

(Nσ
ε (·, 0), Iσε (·, 0)) ≡

(
σ‖Λ‖∞
µ

,
σ‖Λ‖∞
µ

)
,

then (Nσ
ε (·, t), Iσε (·, t)) is decreasing with respect to t.

Proof. Then maximum principle enables us to infer that

(Nσ
ε (·, t), Iσε (·, t)) ≤

(
σ‖Λ‖∞
µ

,
σ‖Λ‖∞
µ

)
for t > 0 and x ∈ Ω. The monotone decreasing property of (Nσ

ε (·, t), Iσε (·, t))
therefore follows the same argument used in the proof of Lemma 4.8.

Next, we show the existence, uniqueness and stability of the endemic equilibrium
(EE).

Theorem 4.10. If R0 > 1, then model (4) has a unique EE (S∗(x), I∗(x)). More-
over, all positive solutions (S(x, t), I(x, t)) of model (4) tend to (S∗(x), I∗(x)) uni-
formly as t→∞ for x ∈ Ω̄. That is, the EE is globally asymptotically stable.

Proof. Let (N(x, t), I(x, t)) be a solution of model (19) with the initial conditions
satisfying 0 < I(·, 0) ≤ N(·, 0). Then (N(x, t), I(x, t)) is strictly positive for t > 0.
Since N(·, t) → S∗ as t → ∞, for any ε < 0 with |ε| < ε∗, there is a t∗ > 0 such
that N(·, t) ≥ S∗ + ε for all t ≥ t∗. Hence, for sufficiently small δ ∈ (0, δ∗), there
is a δ∗ > 0 such that (N(t∗, ·), I(t∗, ·)) ≥ (δφ∗1, δφ

∗
2). Let (Nδ

ε (·, t), Iδε (·, t)) be a
monotone increasing solution of model (23). Lemma 4.6 yields that

(Nδ
ε (·, t), Iδε (·, t)) ≤ (Nδ

ε (·, t+ t∗), I
δ
ε (·, t+ t∗)) ≤ (N(·, t+ t∗), I(·, t+ t∗)), t ≥ 0.

Hence the monotonicity of the ((Nδ
ε (·, t), Iδε (·, t)) and the uniqueness of positive

equilibrium (S∗, I
ε
∗) of model (23) imply that

Iε∗ ≤ lim inf I(·, t). (30)

Next we pick σ > 1 and sufficiently large t∗ such that

(N(·, t∗), I(·, t∗)) ≤
(
σ‖Λ‖∞
µ

,
σ‖Λ‖∞
µ

)
,

then

(N(·, t+ t∗), I(·, t+ t∗)) ≤ (Nσ
|ε|(·, t+ t∗), Iσ|ε|(·, t+ t∗)) ≤ (Nσ

|ε|(·, t), I
σ
|ε|(·, t)), t ≥ 0,

where (Nσ
|ε|(·, t), I

σ
|ε|(·, t)) is a monotone decreasing solution of model (23) with ε =

|ε|. It follows that

lim sup I(·, t) ≤ I |ε|∗ . (31)

It is obvious that
Iε∗ → I∗, I

|ε|
∗ → I∗, as ε→ 0. (32)

It follows from (30), (31) and (32) that I(·, t)→ I∗, as t→∞. Hence, we immedi-
ately deduce that

(S(·, t), I(·, t)) = (N(·, t)− I(·, t), I(·, t))→ (S∗ − I∗, I∗) , as t→∞,
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which is completed the proof.

5. Numerical example. For the sake of learning the threshold dynamics of model
(4) further, in this section, as an example, we adopt f(x, I) = 1 + α(x)I2 [41], and
take the parameters as follows:

Λ = 1, µ = 0.2, α = 4, γ = 0.15, β(x) = β0(1 + c cos(πx)), (33)

where 0 ≤ c ≤ 1 is the magnitude of spatially heterogeneous transmission rate.
The spatially homogeneous case occurs at c = 0 and the higher c means the more
heterogeneity of spatial transmission rate. In this case, f(x, 0) = 1 and S∗ = Λ/µ.
Thus, we can obtain the basic reproduction number R0 as

R0 = sup
ω∈H1(Ω), ω 6=0


∫

Ω

Λβ(x)/µω2∫
Ω

d|∇ω|2 + (µ+ γ)ω2

 . (34)

In the low-risk domain, Fig.1(a) indicates that R0 is a decreasing function of d
and undergoes the transition from R0 > 1 to R0 < 1 as d increases, and equals 1 at
d = d∗ ≈ 1.77×10−2. It would be noted that as d→∞, R0 → 0.8571, which equals
that in the case of spatially homogeneous, i.e., c = 0 (the black line). Hence, with
spatial heterogeneity, the larger the diffusion coefficient d of individuals, the smaller
the basic reproduction number R0. Hence, as the infected individuals move very
fast, the disease tends to be extinct when d > d∗ (cf., Theorem 4.3(iv) ). Fig. 1(b)
shows that R0 is an increasing function of c and equals 1 at c = c∗ ≈ 0.7677. Hence,
the larger the magnitude of spatially heterogeneous transmission rate, the larger the
basic reproduction number R0. Hence, the spatial heterogeneity can enhance the
spread of disease and lead to the endemic when c > c∗.
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(a) β0 = 0.06, c = 1
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(b) β0 = 0.06, d = 0.01

Figure 1. In the low-risk domain of model (4), (a) the influence
of the diffusion coefficient d on R0; (b) the influence of the spatial
heterogeneity of environment on R0. The parameters are taken
as (33).

In the high-risk domain, Fig.2(a) indicates that R0 is a decreasing function of
d and greater than 1 identically as d increases. It would be noted that as d →
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Figure 2. In the high-risk domain of model (4), (a) the influence
of the diffusion coefficient d on R0; (b) the influence of the spatial
heterogeneity of environment on R0. The parameters are taken
as (33).

∞, R0 → 1.1429, which equals that in the case of spatially homogeneous, i.e.,
c = 0. Fig.2(b) shows that R0 is an increasing function of c and greater than 1
identically as c increases. In these cases, no matter diffusion or heterogeneity has
no influence on control of the disease. This high-risk domain is an endemic region
(cf., Theorem 4.3(iii) ).

6. Conclusion and discussions. In this paper, we investigate the global stability
of the steady states of an SIS epidemiological model with a general infection force
under intervention strategies in a spatially heterogeneous environment. We intro-
duce the basic reproduction number R0, which exhibit the effects of spatiotemporal
factors on the extinction and persistence of the disease.

In a nutshell, we summarize our main findings as well as their related biological
implications. Theorem 4.4 provides us with a full picture of disease-free dynamics of
model (4). If the basic reproduction numberR0 < 1, model (4) has a unique globally
asymptotically stable DFE, that is, the disease goes extinct. And Theorem 4.10
shows that model (4) can have an outbreak of disease. If R0 > 1, model (4) has at
least one EE, which is globally asymptotically stable EE, that is, the disease will
break out in the domain. Furthermore, we give the asymptotic behavior of R0 with
respect to the diffusion coefficient d (cf., Theorem 4.3).

Our results are different from the results in [39, 10, 11] with homogenous envi-
ronment (i.e., d = 0 in model (4) ), as a consequence, our results suggest that the
combination of the diffusion and the spatial heterogeneity tend to enhance the out-
break of the infectious for the SIS model (4), these may be the useful supplements
of the disease dynamics of epidemic models. Simply say, our results may provide
some potential applications in disease control. In fact, Theorems 4.4 and 4.10 sug-
gest that, to effectively control the spread of the epidemic disease, it seems very
necessary to create a low-risk habitat for the population.

It’s worthy to point out that, in contrast with [25] and [20], in this paper, the
mathematical analysis method of the global stability of the EE is the super–sub
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solution method. While in [25] and [20], they studied the global stability of the EE
in some special cases by using the Lyapunov functional method.

In addition, it should be indicated that, in this paper, due to the difficulties
caused by the mathematical analysis, we only focus on the global stability of mod-
el (4) in a special case, that is, the diffusion coefficients of S and I are equal to d.
If their diffusion coefficients are not identical, then model (4) can be rewritten as:

∂S

∂t
= dS∆S + Λ(x)− β(x)I

f(x, I)
S − µ(x)S + γ(x)I, x ∈ Ω, t > 0,

∂I

∂t
= dI∆I +

β(x)I

f(x, I)
S − µ(x)I − γ(x)I, x ∈ Ω, t > 0,

∂S

∂n
=
∂I

∂n
= 0 x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, x ∈ Ω.

(35)

For model (35), it is interesting to study whether the reproduction number R0 for
model (35) can be used to govern the disease dynamics or not. More precisely, if
R0 < 1, is the DFE of model (35) globally stable? If R0 > 1, does there exist an EE
of model (35), and is the EE globally stable? These are desirable in future studies.
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