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Abstract. Some viruses can infect different classes of cells. The age of infec-
tion can affect the dynamics of infected cells and viral production. Here we

develop a viral dynamic model with the age of infection and multiple target
cell populations. Using the methods of semigroup and Lyapunov function, we

study the global asymptotic property of the steady states of the model. The

results show that when the basic reproductive number falls below 1, the in-
fection is predicted to die out. When the basic reproductive number exceeds

1, there exists a unique infected steady state which is globally asymptotically

stable. The model can be extended to study virus dynamics with multiple
compartments or coinfection by multiple types of viruses. We also show that

under some scenarios the age-structured model can be reduced to an ordinary

differential equation system with or without time delays.

1. Introduction. Mathematical modeling has been proven to be valuable in un-
derstanding virus infection and immune responses. Models and analysis can provide
important insights into the dynamics of viral load in vivo and offer helpful sugges-
tions for clinical treatment. Many of the models are based on a differential equation
system, which describes the coupled changes in target cells, infected cells, and free
virus particles through time in a single compartment (i.e. the blood) of an infected
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individual. An example is the application of models to hepatitis B virus (HBV) in-
fection. Persistent infection with HBV is a major health problem worldwide. HBV
infection can lead to cirrhosis and primary hepatocellular carcinoma [2,42]. Chronic
HBV infection is usually the result of exposure to virus early in life, leading to vi-
ral persistence in the absence of strong antibody or cellular immune responses [8].
Treatment of HBV carriers aims to either inhibit viral replication or enhance im-
munological responses against the virus, or both [26]. Based on the clinical experi-
ment of chronic HBV carriers treated with various doses of lamivudine, Nowak and
Bangham [23] used a basic mathematical model to study HBV dynamics. Nowak
et al. [24] provided a quantitative understanding of HBV replication dynamics in
vivo, estimated the turnover rates of infected cells and virus, and suggested the
optimal timing of drug treatment and immunotherapy in chronic HBV infection.
Some other within-host virus dynamics models have also been developed to study
HBV [33–35], HIV [17,18,46], and hepatitis C virus (HCV) infection [27,29].

The age structure of population has been widely investigated in epidemiological
models [3, 20, 37, 41]. Because of its flexibility in modeling viral production and
mortality of infected cells, age structure of infected cells has also been incorporated
into within-host virus infection models [9, 22, 28, 39,40]. For example, Nelson et al.
[22] developed and analyzed an age-structured HIV model that allowed the variation
in the production rate of virus and the death rate of infected CD4+ T cells. For
some special functions, they performed a local stability analysis of the nontrivial
equilibrium solution. They used numerical methods to show that the time to reach
peak viral levels in the blood depends on both initial conditions and the way in
which viral production ramps up. Because the age structure of infection allows
the incorporation of different classes of antiretroviral drugs that target different
stages of viral lifecycle, Rong et al. [28] used the age-structured model to compare
the treatment effectiveness of administrating different drugs [28]. They conducted
analysis of the model under treatment for general functions of the death rate of
infected cells and viral production rate. Using an age-structured model, Gilchrist
et al. [9] also explored how an infected cell’s viral production rate can affect the
relative fitness of a virus within a host. They performed an invasion analysis to
discuss the strategy for achieving the maximum relative viral fitness. Recently
Wang et al. [39] analyzed an age-structured HIV model with both virus-to-cell
infection and cell-to-cell transmission.

The global stability of age-structured within-host models is the focus of a few
recent studies. Huang et al. [12] studied the global asymptotic behavior of an age-
structured HIV infection model. Browne et al. [5] studied the within-host viral
infection with an explicit age-since-infection structure of infected cells. Browne
[4] also considered the global stability of within-host viral infection with multiple
strains. Shen et al. analyzed a model that links the between-host and within-host
dynamics of HIV infection [30]. More age-structured within-host models can be
found in the references [1, 16,29,36].

Viruses can infect different populations of target cells. For example, HIV mainly
infect CD4+ T cells. However, other cells such as macrophages [13] and dendritic
cells [25] are also known to be susceptible to HIV infection. Similar to HIV infec-
tion, HCV can also infect different classes of cells. HCV replicates mainly in the
hepatocytes of the liver but the virus can also replicate in peripheral blood mononu-
clear cells [7]. Thus, multi-compartment mathematical models are needed to study
virus infection in different populations of cells [38]. In this note, we will study a
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within-host virus dynamics model including the age of infection and multiple popu-
lations of target cells. We will prove that the solution of the system is positive and
bounded. Using the methods semigroup and Lyapunov function, we will investigate
the global asymptotic property of the infected steady state of the model. Under
some special scenarios, we will show that the age of infection model is equivalent to
an ordinary differential equation system with or without time delays.

2. Model description. We consider a general age-structured within-host virus
dynamics model that includes multiple classes of target cells. The population is
divided into 2n+1 classes: uninfected cells, Tj , infected cells, ij , where j = 1, 2, ..., n,
and free virus, V. The model is given by the following system:

dTj(t)

dt
= sj − djTj(t)−

kjTj(t)V (t)

1 + αjV (t)
,

∂ij(a, t)

∂t
+
∂ij(a, t)

∂a
= −δj(a)ij(a, t),

dV (t)

dt
=

n∑
j=1

∫ ∞
0

pj(a)ij(a, t)da− cV (t),

(2.1)

for t > 0, with initial conditions

Tj(0) = T 0
j ≥ 0, ij(a, 0) = i0j (a), j = 1, 2, ..., n;V (0) = V 0 ≥ 0, (2.2)

and boundary conditions

ij(0, t) =
kjTj(t)V (t)

1 + αjV (t)
. (2.3)

For each class (denoted by the subscript j, j=1, 2,...,n) of target cells, T repre-
sents the population of uninfected cells, i(a, t) denotes the population of infected
cells with the infection age a at time t, and V is the population of free virus.
The parameter sj is the production rate of uninfected cells and dj is the death
rate of uninfected cells. Here we use a saturation-dependent functional response
(kV T/(1 + αV ) with α > 0) to describe the infection of cells by virus. A similar
function has been used in other within-host models [31, 36, 43, 44]. The distribu-
tion function i0j (a) ∈ L1

+((0,+∞),R) is the initial condition. The function δj(a)
is the age-dependent per capita death rate of infected cells and pj(a) is the viral
production rate of an infected cell with age a. The parameter c is the viral clearance
rate.

An example of the death rate of infected cells can be chosen to be the same as
that in [22], which is given as follows:

δj(a) =

{
δ0j , a < a1,

δ0j + δmj (1− e−γ(a−a1)), a ≥ a1,
(2.4)

where a1 is the age at which infected cells express sufficient viral genome on the
surface and are susceptible to killing by immune cells. Thus, the death rate of
infected cells increases from δ0j at age a1 to the maximum value δ0j + δmj .

Integrating the second equation in (2.1) along the characteristic line t − a =
constant, we get the following formula

ij(a, t) =


Bj(t− a)σj(a), for a < t,

ij(a− t, 0)
σj(a)

σj(a− t)
, for a ≥ t,

(2.5)
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where

Bj(t) =
kjTj(t)V (t)

1 + αjV (t)

and

σj(a) = exp
(
−
∫ a

0

δj(θ)dθ
)
.

Using the above solution, model (2.1) can be written as the following system.
dTj(t)

dt
= sj − djTj(t)−

kjTj(t)V (t)

1 + αjV (t)
,

dV (t)

dt
=

n∑
j=1

(∫ t

0

pj(a)σj(a)Bj(t− a)da+ F̃j(t)

)
− cV (t),

(2.6)

where

F̃j(t) =

∫ ∞
t

pj(a)i0j (a− t)
σj(a)

σj(a− t)
da.

It is clear that F̃j(t)→ 0 as t→∞, i = 1, 2, ..., n.
For cells with age-dependent viral production and death rates, we define

Nj =

∫ ∞
0

pj(a)σj(a)da.

Nj defines the total number of virions produced by the infected cell of the j-th
class in its life span, which is called the viral burst size of the j-th class. The basic
reproductive number is given by

R0 =

n∑
j=1

Njsjkj
cdj

,

which represents the total number of newly infected cells produced by one infected
cell during its lifetime in a fully susceptible environment (i.e. assuming all cells are
susceptible).

3. Integrated semigroup formulation and equilibria. In order to take into
account the boundary condition, we expand the state space. Denote

M = R× L1
(

(0,+∞),R
)
,M+ = R+ × L1

(
(0,+∞),R

)
,

N = R× {0} ×W 1,1
(

(0,+∞),R
)
,

P = R× {0} × L1
(

(0,+∞),R
)
,P+ = R+ × {0} × L1

(
(0,+∞),R

)
,

where W 1,1 is a Sobolev space. Let

X =
( n∏

1

M
)
×R,X+ =

( n∏
1

M+

)
×R+

and consider the linear operator A : Dom(A ) ⊂X →X defined by
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A



T1(
0
i1

)
...
Tn(
0
in

)
V


=



−d1T1(
i1(0)

−i′1 − δ(a)i1

)
...

−dnTn(
in(0)

−i′n − δ(a)in

)
−cV


,

with

Dom(A ) =
( n∏

1

P
)
×R.

Then Dom(A ) =
( n∏

1
N
)
× R is not dense in X . We consider a nonlinear map

F : Dom(A )→X , which is defined by

F



T1(
0
i1

)
...
Tn(
0
in

)
V


=



s1 − k1T1(t)V (t)
1+α1V (t)(

ψT1(t)
0L1

)
...

sn − knTn(t)V (t)
1+αnV (t)(

ψTn(t)
0L1

)
∫∞
0
pn(a)in(a, x, t)da


,

and let

u(t) =

(
T1,

(
0

i1(·, t)

)
, . . . Tn,

(
0

in(·, t)

)
, V

)T
.

Set

X0 = Dom(A ) =
( n∏

1

P
)
×R

and

X0+ = Dom(A ) ∩X+ =
( n∏

1

P+

)
×R+.

On the basis of the above formulation, system (2.1)∼(2.3) can be rewritten as the
following abstract Cauchy problem:

u(t) = A u(t) + F
(
u(t)

)
, for t ≥ 0, with u(0) = x ∈X0+. (3.1)

By applying the results given in Hale [10], Magal [19], Magal and Thieme [21],
Thieme [32], Yang et al. [45] and Wang et al. [40, 41] we can show the existence
and uniqueness of the semiflow {U(t)}t≥0 on X0+ generated by system (3.1) and
further have the following result.

Theorem 3.1. System (3.1) generates a unique continuous semiflow {U(t)}t≥0
on X0+ that is asymptotically smooth and bounded dissipative. Furthermore, the
semiflow {U(t)}t≥0 has a compact global attractor A ⊂X0+.
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Define

M0 =

{
(T1, i1(a), ..., Tn, in(a), V )T ∈ X0+

∣∣V +

n∑
j=1

∫ ∞
0

ij(a)da > 0

}
and

∂M0 = X0+ \M0.

Following Theorems 4.1 and 4.2 in [45], we can get the following theorems. Here
we omit the proofs.

Theorem 3.2. M0 and ∂M0 are both positively invariant under the semiflow
U(t)t≥0 generated by system (3.1) on X0+. Moreover, the infection-free steady state

E0 of problem (2.1)∼(2.3) is globally asymptotically stable for the semiflow U(t)t≥0
restricted to ∂M0.

Theorem 3.3. Assuming R0 ≤ 1, the semiflow U(t)t≥0 generated by system (3.1)

is uniformly persistent with respect to the pair (∂M0,M0); that is, there exists
ε > 0, such that for each y ∈M0,

lim inf
t→+∞

d(U(t)y, ∂M0) ≥ ε.

Furthermore, there exists a compact subset A0 ⊂M0 which is a global attractor for
U(t)t≥0 in M0.

4. The global results of steady states. In this section, we focus on the global
asymptotic properties of the steady states of system (2.1)∼(2.3). Generally, it can
be challenging to obtain the global properties of a model with saturation response
of the infection rate, especially for the model with age structure.

Theorem 4.1. System (2.1) always has an infection-free steady state E0(T10, 0, ...,
Tn0, 0, 0). When the basic reproductive ratio is greater than 1, system (2.1) has a
unique positive infected steady state E∗(T ∗1 , i

∗
1(a), ..., T ∗n , i

∗
n(a), V ∗).

Proof. It is clear that there always exists an infection-free steady state E0(T10, 0, ...,
Tn0, 0, 0) for system (2.1). To obtain the infected steady state E∗(T ∗1 , i

∗
1(a), ..., T ∗n ,

i∗n(a), V ∗), we solve the following algebraic equations.

sj − djT ∗j −
kjT

∗
j V
∗

1 + αjV ∗
= 0

i∗j (a) =
kjT

∗
j V
∗

1 + αjV ∗
σj(a)

n∑
j=1

NjkjT
∗
j

1 + αjV ∗
= c,

(4.1)

From the first equation of (4.1), we have

T ∗j =
sj

dj +
kjV ∗

1+αjV ∗

.

Substituting into the last equation of (3.2), we get

n∑
j=1

Njkjsj
dj + (kj + djαj)V ∗

= c.
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Let

F (V ) =

n∑
i=1

Njkjsj
dj + (kj + djαj)V

− c.

On one hand, F (V ) is continuous and monotonically decreasing for V ∈ [0,+∞).
We also have

F (0) =

n∑
j=1

Njkjsj
dj

− c =

n∑
j=1

Njkjsj
dj

(1− 1

R0
) > 0

for R0 > 1. On the other hand,

F (∞) = 0− c < 0.

Therefore, equation F (V ) = 0 has one positive solution V ∗. Thus, when R0 > 1,
systems (2.1) has a unique positive infected steady state E∗.

Let Ẽ(T̃1, ĩ1(a), T̃2, ĩ2(a), ..., T̃n, ĩn(a), Ṽ ) be any arbitrary steady state of system
(2.1)∼(2.3). The linearized system of (2.1)∼(2.3) is

(λ+ dj +
kj Ṽ

1+αj Ṽ
)Tj +

kj T̃j
(1+αj Ṽ )2

V = 0,
dij(a)
da = −(λ+ δj(a))ij(a),

ij(0) =
kj Ṽ

1+αj Ṽ
Tj +

kj T̃j
(1+αj Ṽ )2

V,

(λ+ c)V −
∑n
j=1

∫∞
0
pj(a)ij(a)da = 0.

(4.2)

Solving the second equation of (4.2), we have

ij(a) =
( kj Ṽ

1 + αj Ṽ
Tj +

kj T̃j

(1 + αj Ṽ )2
V
)
σj(a)e−λa. (4.3)

Substituting equation (4.3) into (4.2), we have

(λ+ d1 + k1Ṽ
1+α1Ṽ

)T1 + k1T̃1

(1+α1Ṽ )2
V = 0,

(λ+ d2 + k2Ṽ
1+α2Ṽ

)T2 + k2T̃2

(1+α2Ṽ )2
V = 0,

...

(λ+ dn + knṼ
1+αnṼ

)Tn + knT̃n
(1+αnṼ )2

V = 0,(
λ+ c−

∑n
j=1

kj T̃j
(1+αj Ṽ )2

Nj(λ)
)
V −

∑n
j=1

kj Ṽ

1+αj Ṽ
Nj(λ)Tj = 0.

For the infection-free steady state E0, the characteristic equation of the linearized
system of (2.1)∼(2.3) is( n∏

j=1

(λ+ dj)
)(
λ+ c−

n∑
j=1

kjTj0Nj(λ)
)

= 0.

Let

F (λ) = λ+ c−
n∑
j=1

kjTj0Nj(λ).

Then

F ′(λ) > 0

and

F (0) = c(1−R0) > 0

for R0 ≤ 1. Therefore, all the eigenvalues of the infection-free steady state E0 are
negative.
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For R0 > 1, we have

F (0) = c(1−R0) < 0, lim
t→+∞

F (λ) = +∞.

Thus, F (λ) = 0 has a positive root and the infection-free steady state E0 is unstable.
We summarize in the following results.

Lemma 4.1. If R0 ≤ 1, then the infection-free steady state E0 is locally asymptot-
ically stable. While R0 > 1, E0 is unstable.

Theorem 4.2. If R0 ≤ 1, then the infection-free steady state E0 of model (2.1)∼
(2.3) is globally asymptotically stable.

Proof. From the equations of target cells in system (2.1), we obtain

lim
t→+∞

Tj(t) ≤
sj
dj
, j = 1, . . . , n.

One can choose ε > 0 small enough such that there exists t1 such that Tj(t) ≤ sj
dj

+ε

for all t ≥ t1. 
dV (t)

dt
=

n∑
j=1

∫ ∞
0

pj(a)ij(a, t)da− cV (t), t > 0,

V (0) = V 0 ≥ 0.

(4.4)

From (4.4), we obtain the following inequality.

dV (t)

dt
≤

n∑
j=1

Njkj(
sj
dj

+ ε)− cV (t), t > 0, (4.5)

where ε is chosen as before. Considering R0 ≤ 1, from (4.5), we have

lim
t→+∞

supV (t) = 0.

By comparison, it follows that

lim
t→+∞

V (t) = 0.

Therefore, for ε > 0 sufficiently small there exists a t2 > 0 such that 0 < V (t) < ε
for t ≥ t2.

Again from the equations of target cells in system (2.1), we can get

dTj(t)

dt
= sj − djTj(t)−

kjTj(t)V (t)

1 + αjV (t)
≥ sj − djTj(t)− kjεTj(t), t > t2,

which, together with the arbitrariness of ε > 0, yields that

lim
t→+∞

Tj(t) ≥
sj
dj
.

Thus,

lim
t→+∞

Tj(t) =
sj
dj
.

Combining with Lemma 4.1, we can conclude that the infection-free steady state
E0 of model (2.1)∼(2.3) is a globally asymptotically stable.

Theorem 4.3. When R0 > 1, the infected steady state E∗ of model (2.1)∼(2.3) is
globally asymptotically stable.
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Proof. First, we define a positive function as used in ref. [12]

βj(a) =

∫ ∞
a

pj(ε)e
−

∫ ε
a
δj(η)dηdε.

Note that βj(a) > 0 for 0 ≤ a < +∞, and βj(0) = Nj . Similar to the discussion
in [12], we know that βj(a) is bounded and β′j(a) = δj(a)βj(a)− pj(a).

We consider the following Lyapunov function

W (t) = N1

(
T1(t)− T ∗1 − T ∗1 ln

T1(t)

T ∗1

)

+

∫ +∞

0

β1(a)i∗1(a)

(
i1(a, t)

i∗1(a)
− 1− ln

i1(a, t)

i∗1(a)

)
da

+
∑

j=2,··· ,n
Nj

(
Tj(t)− T ∗j − T ∗j ln

Tj(t)

T ∗j

)

+
∑

j=2,··· ,n

∫ ∞
0

βj(a)i∗j (a)

(
ij(a, t)

i∗j (a)
− 1− ln

ij(a, t)

i∗j (a)

)
da

+

(
V (t)− V ∗ − V ∗ ln

V (t)

V ∗

)
.

It is clear to see that W is nonnegative and the point E∗ is the global minimum
point. Calculating the time derivative of W along the solution of system (2.1)∼(2.3),
we obtain

dW (t)

dt
= N1

(
1− T ∗1

T1(t)

)(
s1 − d1T1(t)− k1T1(t)V (t)

1 + α1V (t)

)

+

∫ +∞

0

β1(a)i∗1(a)
∂

∂t

(
i1(a, t)

i∗1(a)
− 1− ln

i1(a, t)

i∗1(a)

)
da

+
∑

j=2,··· ,n
Nj

(
1−

T ∗j
Tj(t)

)(
sj − djTj(t)−

kjTj(t)V (t)

1 + αjV (t)

)

+
∑

j=2,··· ,n

∫ ∞
0

βj(a)i∗j (a)
∂

∂t

(
ij(a, t)

i∗j (a)
− 1− ln

ij(a, t)

i∗j (a)

)
da

+

(
1− V ∗

V (t)

)(
n∑
j=1

∫ ∞
0

pj(a)ij(a, t)da− cV (t)

)
.

It follows from sj = djT
∗
j +

kjT
∗
j V
∗

1 + αjV ∗
and

n∑
j=1

NjkjT
∗
j

1 + αjV ∗
= c that

dW (t)

dt
= term 1©+ term 2©+ term 3©,

where

term 1© = N1

[(
1− T ∗1

T1(t)

)
d1

(
T ∗1 − T1(t)

)
+

k1T
∗
1 V
∗

1 + α1V ∗
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− k1T1(t)V (t)

1 + α1V (t)
+
k1T

∗
1 V (t)

1 + α1V
− T ∗1
T1(t)

k1T
∗
1 V
∗

1 + α1V ∗

]

+

∫ ∞
0

β1(a)
(

1− i∗1(a)

i1(a, t)

)∂i1(a, t)

∂t
da,

term 2© =
∑

j=2,··· ,n
Nj

[(
1−

T ∗j
Tj(t)

)
dj

(
T ∗j − Tj(t)

)
+

kjT
∗
j V
∗

1 + αjV ∗

− kjTj(t)V (t)

1 + αjV (t)
+
kjT

∗
j V (t)

1 + αjV
−

T ∗j
Tj(t)

kjT
∗
j V
∗

1 + αjV ∗

]

+
∑

j=2,··· ,n

∫ ∞
0

βj(a)
(

1−
i∗j (a)

ij(a, t)

)∂ij(a, t)
∂t

da

+

∫ ∞
0

p1(a)i1(a, t)da− V ∗

V (t)

∫ ∞
0

p1(a)i1(a, t)da,

term 3© =
N1k1T

∗
1 V
∗

1 + α1V ∗
− N1k1T

∗
1 V (t)

1 + α1V ∗
+

∑
j=2,··· ,n

∫ ∞
0

pj(a)ij(a, t)da

−
∑

j=2,··· ,n

V ∗

V (t)

∫ ∞
0

pj(a)ij(a, t)da

+
∑

j=2,··· ,n

[
Nj
N1

kjT
∗
j V
∗

1 + αjV ∗
− Nj
N1

kjT
∗
j V (t)

1 + αjV ∗

]
.

We further obtain that

dW (t)

dt
= −d1N1T

∗
1

(
2− T1(t)

T ∗1
− T ∗1
T1(t)

)
− β1(a)i∗1(a)

( i1(a, t)

i∗1(a)
− 1− ln

i1(a, t)

i∗1(a)

)
|a=∞

− N1k1T
∗
1 V
∗

1 + α1V ∗

[
T ∗1
T1(t)

− 1 +
V (t)

V ∗
− V (t)

V ∗
1 + α1V

∗

1 + α1V (t)

+ ln
T1(t)V (t)(1 + α1V

∗)

T ∗1 V
∗(1 + α1V (t))

]

−
∫ ∞
0

p1(a)i∗1(a)
(V ∗i1(a, t)

V i∗1(a)
− 1− ln

i1(a, t)

i∗1(a)

)
da

−
∑

j=2,··· ,n
NjdjT

∗
j

(
2− Tj(t)

T ∗j
−

T ∗j
Tj(t)

)
−

∑
j=2,··· ,n

βj(a)i∗j (a)
( ij(a, t)
i∗j (a)

− 1− ln
ij(a, t)

i∗j (a)

)
|a=∞

−
∑

j=2,··· ,n

NjkjT
∗
j V
∗

1 + α1V ∗

[
T ∗j
Tj(t)

− 1 +
V (t)

V ∗
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− V (t)

V ∗
1 + αjV

∗

1 + αjV (t)
+ ln

Tj(t)V (t)(1 + αjV
∗)

T ∗j V
∗(1 + αjV (t))

]

−
∑

j=2,··· ,n

∫ ∞
0

pj(a)i∗j (a)

(
V ∗ij(a, t)

V i∗j (a)
− 1− ln

ij(a, t)

i∗j (a)

)
da.

Because

1 +
V (t)

V ∗
− 1 + αjV (t)

1 + αjV ∗
− V (t)

V ∗
1 + αjV

∗

1 + αjV (t)
=

(V (t)− V ∗)2

V ∗(1 + αjV ∗)(1 + αjV (t))

and

ln
T ∗j V

∗(1 + αjV (t))

Tj(t)V (t)(1 + αjV ∗)
+ ln

ij(a, t)

i∗j (a)
= ln

T ∗j
Tj(t)

+ ln
1 + αjV (t)

1 + αjV ∗
+ ln

ij(a, t)V
∗

i∗j (a)V (t)
,

we have

dW (t)

dt

=− d1N1T
∗
1

(
2− T1(t)

T ∗1
− T ∗1
T1(t)

)

− β1(a)i∗1(a)

(
i1(a, t)

i∗1(a)
− 1− ln

i1(a, t)

i∗1(a)

)
|a=∞

− N1k1T
∗
1 V
∗

1 + α1V ∗

[(
T ∗1
T1(t)

− 1− ln
T ∗1
T1(t)

)
+

(
1 + α1V (t)

1 + α1V ∗
− 1− ln

1 + α1V (t)

1 + α1V ∗

)

+
(V (t)− V ∗)2

V ∗(1 + α1V ∗)(1 + α1V (t))

]

−
∫ ∞
0

p1(a)i∗1(a)

(
V ∗i1(a, t)

V (t)i∗1(a)
− 1− ln

V ∗i1(a, t)

V (t)i∗1(a)

)
da

−
∑

j=2,··· ,n
NjdjT

∗
j

(
2− Tj(t)

T ∗j
−

T ∗j
Tj(t)

)

−
∑

j=2,··· ,n
βj(a)i∗j (a)

(
ij(a, t)

i∗j (a)
− 1− ln

ij(a, t)

i∗j (a)

)
|a=∞

−
∑

j=2,··· ,n

NjkjT
∗
j V
∗

1 + α1V ∗

[(
T ∗j
Tj(t)

− 1− ln
T ∗j
Tj(t)

)

+

(
1 + αjV (t)

1 + αjV ∗
− 1− ln

1 + αjV (t)

1 + αjV ∗

)

+
NjkjT

∗
j

1 + α1V ∗
(V (t)− V ∗)2

(1 + αjV ∗)(1 + αjV (t)
)]

−
∑

j=2,··· ,n

∫ ∞
0

pj(a)i∗j (a)

(
V ∗ij(a, t)

V (t)i∗j (a)
− 1− ln

V ∗ij(a, t)

V (t)i∗j (a)

)
da.
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Because the arithmetical mean is greater than or equal to the geometrical mean,

we know that 2− Tj(t)
T∗j
− T∗j

Tj(t)
is less than or equal to zero. It follows that

dW

dt
= 0

if and only if Tj(t) = T ∗j , ij(a, t) = i∗j (a), and V (t) = V ∗. Hence, every solution of
system (2.1) converges to E∗, which means that the infected steady state is globally
asymptotically stable from the LaSalle’s invariance principle.

5. Related models. In this section, we show that under some special cases the age
of infection model (2.1)∼(2.3) can be reduced to an ordinary differential equation
(ODE) system with or without time delays.

Case I. Assume that δj(a) = δj , pj(a) = pj , where δj and pj are positive constants.
Model (2.1) can be rewritten as

dTj(t)

dt
= sj − djTj(t)−

kjTj(t)V (t)

1 + αjV (t)
,

∂ij(a,t)
∂t +

∂ij(a,t)
∂a = −δjij(a, t),

ij(0, t) =
kjTj(t)V (t)

1 + αjV (t)

dV (t)
dt =

n∑
j=1

pj

∫ ∞
0

ij(a, t)da− cV (t).

(5.1)

We further assume that in this case t is larger than all possible infection ages, and
consequently ij(a, t) is expressed by the first half of (2.5), that is,

ij(a, t) = ij(0, t− a) exp

(
−
∫ a

0

δj(θ)dθ

)
= ij(0, t− a)e−δja for a < t.

Setting

Ij(t) =

∫ ∞
0

ij(a, t)da, (5.2)

which represents the total number of infected cells in the jth class at time t, we
have

dIj(t)

dt
=

∫ ∞
0

∂ij(a, t)

∂t
da = −

∫ ∞
0

(
∂ij(a, t)

∂a
+ δjij(a, t)

)
da

= −ij(a, t)|a=∞a=0 − δj
∫ ∞
0

ij(a, t)da.

From the boundary condition, one can see that ij(0, t) =
kjV (t)Tj(t)
1+αjV (t) . Since Tj(t)

and V (t) are bounded on [0,+∞), it can be concluded that

lim
a→+∞

ij(a, t) = lim
a→+∞

ij(0, t− a)e−δja = lim
a→+∞

e−δja
kjV (t)Tj(t)

1 + αjV (t)
= 0.

Hence,

dIj(t)

dt
=
kjV (t)Tj(t)

1 + αjV (t)
− δjI(t).

Thus, model (5.1) is equivalent to a standard ODE model with multiple target cell
populations, given by
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dTj(t)

dt
= sj − djTj(t)−

kjTj(t)V (t)

1 + αjV (t)
,

dIj(a, t)

dt
=
kjV (t)Tj(t)

1 + αjV (t)
− δjIj(a, t),

dV (t)

dt
=

n∑
j=1

pjIj(t)− cV (t).

(5.3)

Note that in the above ODE model, the viral burst size is Nj = pj/δj .

Case II. Assume that it takes time τ for virus to enter into the target cell, and
that there is a time delay ω(ω > τ) between cell infection and viral production.
The death rate of infected cells and the viral production rate become

δj(a) =

{
δ′j , a ≥ τ,
0, 0 ≤ a < τ,

(5.4)

and

pj(a) =

{
p′j , a ≥ ω,
0, 0 ≤ a < ω.

(5.5)

Note that ij(τ, t) = e−τδ
′
j i(0, t− τ). We have

dIj(t)

dt
= e−τδ

′
j
kjV (t− τ)Tj(t− τ)

1 + αjV (t− τ)
− δ′jIj(t).

Using function (5.5) we have∫ ∞
0

pj(a)ij(a, t)da = p′j

∫ ∞
ω

ij(a, t)da

= p′j

∫ ∞
0

ij(a+ ω, t)da

= p′j

∫ ∞
0

e−ωδ
′
j ij(a, t− ω)da

= e−ωδ
′
jp′jIj(t− ω).

Hence, model (2.1) with the assumptions (5.4) and (5.5) can be reformulated equiv-
alently as the following delay differential equation (DDE) system:

dTj(t)

dt
= sj − djTj(t)−

kjTj(t)V (t)

1 + αjV (t)
,

dIj(a, t)

dt
= e−τδ

′
j
kjV (t− τ)Tj(t− τ)

1 + αjV (t− τ)
− δ′jI1(a, t),

dV (t)

dt
=

n∑
j=1

e−ωδ
′
jp′jIj(t− ω)− cV (t).

(5.6)

In the above DDE model, τ and ω are two intracellular delays describing the time
required for virus to enter a target cell and for the infected cell to produce virus,
respectively.

A special case of model (5.6) is with the assumption pj(a) = p̄j = constant. In
this case, system (5.6) becomes
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dTj(t)

dt
= sj − djTj(t)−

kjTj(t)V (t)

1 + αjV (t)
,

dIj(a, t)

dt
= e−τδ

′
j
kjV (t− τ)Tj(t− τ)

1 + αjV (t− τ)
− δ′jIj(a, t),

dV (t)

dt
=

n∑
j=1

p̄jIj(t)− cV (t),

(5.7)

which contains only one time delay.

6. Summary and Discussion. Viral infection of different classes of target cells is
important in understanding the virus dynamics within infected individuals. HIV in-
fection in macrophages may contribute to the early-stage viral transmission, persis-
tence, and virus dissemination throughout the body [6]. Macrophages are resistant
to the cytopathic effect of HIV and can produce virus for a longer period of time [14].
Thus, the production of virus by infected macrophages may explain the viral load
explosion in the advanced stage of HIV infection. A recent model included the
infection of macrophages to explain the three stages of HIV infection [11]. Damage
to monocyte/macrophage lineage cells, although less obvious, provides the informa-
tion to predict the onset of opportunistic infections and progression to AIDS [15].
Infection of peripheral blood mononuclear cells by HCV may explain the high levels
of immunological disorders found in chronically infected HCV patients [7].

In this note, we developed and studied a within-host viral dynamic model includ-
ing multiple populations of target cells and the age of viral infection. The global
asymptotic properties for the model are obtained. When the basic reproductive
number is below unity, the infection is predicted to die out. When the basic repro-
ductive number exceeds unity, there exists a unique infected steady state which is
globally asymptotically stable. This means that the virus is able to establish the
infection within the host. With some assumptions the age-structured model can be
reduced to an ODE or DDE system. This model can also be extended to study virus
dynamics with multiple compartments or coinfection by multiple types/strains of
viruses.

The model with multiple populations of target cells can be used to evaluate the
relative contribution of viral production from different compartments. This can
improve the understanding of viral evolution and disease progression. However,
very limited (spatial) data are available for each cell population or compartment.
Thus, it is challenging to estimate parameters and verify models. Another limitation
of the model is that it cannot account for the long-term HIV dynamics observed in
patients on prolonged antiretroviral therapy. Viral infection is predicted to die out if
the basic reproductive number is below 1. However, virus can persist for a prolonged
period of time even in patients under long-term antiretroviral therapy. HIV latency
can be incorporated into the model to study the long-term virus dynamics under
therapy.
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