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Abstract. Prostate cancer is one of the most prevalent types of cancer among
men. It is stimulated by the androgens, or male sexual hormones, which circu-

late in the blood and diffuse into the tissue where they stimulate the prostate

tumor to grow. One of the most important treatments for advanced prostate
cancer has become androgen deprivation therapy (ADT). In this paper we

present three different models of ADT for prostate cancer: continuous andro-

gen suppression (CAS), intermittent androgen suppression (IAS), and periodic
androgen suppression. Currently, many patients in the U.S. receive CAS ther-

apy of ADT, but many undergo a relapse after several years and experience

adverse side effects while receiving treatment. Some clinical studies have in-
troduced various IAS regimens in order to delay the time to relapse, and/or

to reduce the economic costs and adverse side effects. We will compute and
analyze parameter sensitivity analysis for CAS and IAS which may give in-

sight to plan effective data collection in a future clinical trial. Moreover, a

periodic model for IAS is used to develop an analytical formulation for relapse
times which then provides information about the sensitivity of relapse to the
parameters in our models.

1. Introduction. Prostate cancer is the most frequently diagnosed cancer and sec-
ond leading cause of death from cancer in men. Growth of this cancer is stimulated
by androgens, or male sexual hormones. These androgens circulate in the blood and
diffuse into the tissue where they stimulate the prostate tumor to grow. One treat-
ment for advanced or metastatic prostate cancer is androgen deprivation therapy
(ADT). Androgen deprivation may be achieved by hormone therapy, which inhibits
the production of androgens in the testicles [11]. Leuprolide acetate and goserelin
are drugs currently used for this treatment that can be delivered continuously over
extended time periods using depot injections [14]. The influence of the remaining
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androgens produced by other sources, such as the adrenal glands, can be eliminated
by anti-androgens such as flutamide, bicalutamide, enzalutamide, and nilutamide
[11]. A combination of anti-androgens with chemical castration via ADT is known
as the maximal androgen blockade (MAB). Both ADT and MAB facilitate apopto-
sis, the programmed death of androgen-dependent (AD) cancer cells, and quickly
induce temporal regression of tumors.

Currently, many patients receive continuous androgen suppression (CAS) ther-
apy of ADT and MAB. However, many of these patients undergo a relapse with
an increase of the PSA level within three years after the initiation of ADT [9].
Androgen-independent (AI) cells are thought to be responsible for this recurrent
tumor growth. These cells are not sensitive to androgen suppression, but rather
they replicate even in an androgen depleted environment. The AI cells are gener-
ated by mutation from AD tumor cells. Once the tumor acquires these AI cells,
androgen deprivation is unable to inhibit the cancer growth and a relapse becomes
inevitable. In one study, 5 of the 61 patients demonstrated this progression within
4 years [13]. It is important to prevent a relapse or at least delay the time to re-
lapse as long as possible. At the same time, it is also important to reduce economic
costs and alleviate adverse side effects of prolonged androgen suppression such as
osteoporosis, cardiovascular disease, anemia, and metabolic disorders [1].

A possible strategy to delay the progression from the AD state to the AI state
is intermittent androgen suppression (IAS), which is a form of androgen ablative
therapy delivered intermittently with off-treatment periods. On-treatment periods
last for several months until PSA levels fall below a prescribed threshold and then,
to avoid emergence of AI cells, the IAS therapy introduces off-treatment periods
that serve to maintain the androgen-deprivation sensitivity of the cancer cells and
restore their apoptotic potential, which can be induced by androgen deprivation
[10]. Fourteen studies of nineteen models published have confirmed improvement
in the quality of life during the off-treatment periods and alleviation of adverse
side effects such as sexual dysfunction, hot flushes, and fatigue [1]. However, it is
unknown how to optimally plan the IAS therapy.

Ideta, et al. [9], introduce a mathematical model commonly referred to as the
ITTA model that describes the growth of a prostate tumor under IAS therapy
based on monitoring of the serum prostate-antigen. By treating the tumor growth
as a mixed assembly of androgen-dependent and androgen-independent cells, they
investigate the difference between CAS and IAS in order to understand the factors
that result in AI relapse. The ITTA model is known as a hybrid dynamical system
because tumor growth is continuous in time whereas the on- and off-treatment
protocol is discrete in time. In [9] and [18] bifurcation analysis of the ITTA model
is used to characterize parameter regions that distinguish a prevention of relapse
(cancer free state) from the occurrence of relapse.

In contrast, Portz, et al. [12], and Everett, et al. [6], utilize models that include
serum PSA as a compartment that evolves dynamically in response to a combina-
tion of the AD cells, AI cells, intracellular androgen, and an independent clearance
rate. Moreover, they include bidirectional mutation rates between the AD and AI
compartments. Although these models include more details regarding the interac-
tion of the compartments within the ITTA model, the ultimate conclusion in [6] is
that a simpler model may provide more accurate information for predictive use.

Hirata, et al. [8], extend the ITTA model so that the androgen independent cells
may exist in either a reversible or an irreversible state. During an on-treatment
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cycle, an androgen dependent cell may change to an androgen independent cell of
either type and a reversible AI cell may change to an irreversible AI cell. During
an off-treatment cycle, an AI cell that is in the reversible state may change to an
AD cell. They show that their model provides a better description of the dynamics
of prostate cancer under IAS than a model with only reversible or irreversible cell
types. Suzuki, et al. [17], simplify the ITTA model and assume that the androgen
levels are constant (i.e., at steady-state) during both on- and off-treatment cycles.
This yields two linear, autonomous dynamical systems: one for the on-treatment
phase and one for the off-treatment phase. They propose a region-dividing method
which exploits the phase plane dynamics and saddle-point nature of the disease
free equilibrium to control the switching between on- and off-treatment cycles and
guarantee a cancer free state. They show that the region-dividing method effectively
controls both the ITTA model and the Hirata model.

In this paper, we modify the ITTA model in order to create and analyze math-
ematical models for continuous, intermittent and periodic androgen suppression
(CAS, IAS, and PAS respectively). Our models for IAS and PAS retain the qual-
itative behavior of the system under the feedback control defined in [9], yet are
simple enough so that sensitivity analysis may be conducted to determine both
the dynamic impact of parameters during treatment and the relative importance
of parameter values on relapse time. Each of the studies [9] [18], and [17] include
models that describe the prevention of relapse (i.e., the cancer free state), but we
consider only those parameter values that allow for disease relapse as we are not
aware of any clinical data that support prevention of relapse by IAS therapy. Al-
though sensitivity to initial conditions can provide valuable information within a
parameter estimation process, here we are focused on the relative importance of
parameters under three different treatment options (CAS, IAS, and PAS) and we
note the importance of collecting data at various times within a clinical trial that
includes these options in order to improve estimates for those parameters.

We now summarize the basic structure and parameters of the ITTA model. First,
it is assumed the administration is alternatively either present during on-treatment
periods (u = 1) or absent during off-treatment periods (u = 0). The serum an-
drogen concentration is denoted a(t) with units of nmol/l. The normal androgen
concentration is denoted by a0 (nmol/l), which takes a value of 8 ≤ a0 ≤ 35 for
typical adult males [9]. The speed of the recovery and decay of the androgen con-
centration is controlled by the parameter γ (days−1). The androgen dynamics are
modeled as a linear, non-autonomous ordinary differential equation:

ȧ(t) = −γ [a(t)− a0]− γa0u(t). (1)

The tumor growth is described with changes in the numbers of AD and non-
reversible AI cells, and we assume the proliferation and apoptosis rates of AD and
AI cells are dependent on the androgen concentration a(t). The tumor dynamics are
represented by a system of nonlinear differential equations, where x1(t) and x2(t)
represent the populations of AD and AI cells, respectively:

ẋ1(t) = [α1p1(a(t))− β1q1(a(t))−m(a(t))]x1(t) (2)

ẋ2(t) = m(a(t))x1(t) + [α2p2(a(t))− β2]x2(t) (3)

where

p1(a) = a(a+ k2)−1, (4)

q1(a) = k3 + (1− k3)a(a+ k4)−1, (5)
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m(a) = m1(1− a/a0), and (6)

p2(a) = 1− κa/a0. (7)

Here we use the parameter κ to distinguish between two different models investi-
gated by Ideta, et al. [9]:

(i)κ = 0, (ii)κ = 1− β2/α2. (8)

The coefficients α1, β1, and α2, are parameters which depend on the bone metastatic
site, i.e., the rate at which the tumor cells spread to the bones. The functions α1p1
and α2p2 represent the proliferation rates for the AD and AI cells, respectively.
Similarly, β1q1 and β2 represent apoptosis rates for each compartment, where the
apoptosis rate of the AI cells is assumed to be constant in time since these cells
are unaffected by treatment. Finally, the function m defines the rate at which AD
cells mutate to the AI state, and the parameter m1 denotes the maximum mutation
rate.

The functional forms and parameters in (1)-(8) were defined in [9] for both qual-
itative and quantitative accuracy and, where possible, based on experimental data.
For example, since AD cells do not multiply in the absence of androgen and the
proliferation rate is known to be approximated by α1 = 0.0204 days−1 for large
values of a, the function p1(a) was chosen so that p1(0) = 0 and p1 approaches
1 as a increases. A more detailed discussion for all of these functional forms and
parameters may be found in [9]. Parameter values, which assume a bone metastasis
site, are summarized in Table 1, and the initial conditions used are

a(0) = 30, x1(0) = 15, x2(0) = 0.01. (9)

The suggested range of values for each parameter was created to stay within values
available in the literature and in the cases where no such information was available,
a standard deviation was used to ensure that the sample coefficient of variation
remained under 30%. In Section 3 we further discuss the use of these parameter
ranges to simulate data for sensitivity analysis.

Recall that the serum PSA is an effective biomarker for the prostate tumor
growth. Its concentration is the only observable output of the system and is used
as a basis for the intermittent administration in IAS therapy. Since a large amount
of serum PSA is secreted by cancer cells, the PSA concentration y(t) is assumed to
be represented by the total sum of the subpopulations of cancer cells, i.e.,

y(t) = x1(t) + x2(t). (10)

The administration is suspended when the serum PSA concentration falls below r0
(ng/ml) during on-treatment periods and it is re-instituted when the concentration
exceeds r1 (ng/ml) during off-treatment periods. Therefore, how to plan the IAS
therapy or how to appropriately set the adjustable parameters r0 and r1 under the
condition of r1 > r0 > 0 is a significant issue for clinical practice. The model for IAS
therapy in [9] consists of equations (1)-(10) coupled with an algorithmic feedback
control determined by

u(t) =

{
0→ 1 when y(t) = r1 and ẏ > 0,
1→ 0 when y(t) = r0 and ẏ < 0.

(11)

Based on this model, Ideta, et al., use numerical simulations and bifurcation analysis
to show how tumor growth and relapse time are influenced by the net growth rate
of the androgen-independent cells and the mutation rate from androgen-dependent
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Table 1. Parameter values used for continuous, intermittent and
periodic androgen suppression models are listed with their baseline
value, units of measurement, and a range of values used for data
simulation.

Parameter Variable Baseline Value Range
Normal androgen level a0 30 nmol/l 26.25-33.75 nmol/l

Androgen concentration rate γ 0.08 days−1 0.0425-0.1175 days−1

Androgen dependent proliferation rate α1 0.0204 days−1 0.0129-0.0279 days−1

Androgen dependent apoptosis rate β1 0.0076 days−1 0.00685-0.00835 days−1

Androgen independent proliferation rate α2 0.0242 days−1 0.0216-0.0268 days−1

Androgen independent apoptosis rate β2 0.0168 days−1 0.0130-0.0206 days−1

Maximum mutation rate m1 0.00005 days−1 1.25-8.75×10−5 days−1

AD proliferation half-saturation level k2 2 nmol/l 1.25-2.75 nmol/l
AD androgen free apoptosis constant k3 8 7.25-8.75
AD apoptosis rate half-saturation level k4 0.5 nmol/l 0.275-0.725 nmol/l
Minimum PSA concentration r0 10 ng/ml 6.5-13.5 ng/ml
Maximum PSA concentration r1 15 ng/ml 11.5-18.5 ng/ml

Treatment transition rate λ 1100 days−1 500-1700 days−1

cells to androgen-independent cells. In [12] and [6], a direct sensitivity to andro-
gens for both the AD and AI compartments is assumed and their models include
a response to intracellular androgen concentrations for both types of cells. How-
ever, the coupling of the differential equations (1)-(3) allows for indirect effects of
androgen on even the AI compartment through changes in the parameter space. It
is important to quantify these effects using sensitivity analysis in order to make a
comparison with the outcomes of other models.

The remainder of this paper is organized as follows. In Section 2 we discuss
the model under an assumption of continuous androgen suppression that will be
used as a baseline for sensitivity analysis that will be extended to the intermittent
and periodic models. In Section 3 we construct and analyze a dynamic model for
IAS that treats the administration of anti-androgen therapy in (11) as a continuous
state variable on the same time scale as the other compartments. In Section 4, we
investigate a model for periodic androgen suppression (PAS) where u is modeled as
a periodic function of time. We compute both relapse times and on-treatment times
as r0 varies in the IAS model and the period varies in the PAS model. Floquet theory
is used to determine feasible parameter regions for relapse to occur. We derive an
approximate relapse time and use this expression to rank the relative sensitivity of
the relapse time with respect to the model parameters. Finally, in Section 5 we
summarize our main results and discuss model behavior, treatment protocol, and
the medical significance of sensitivity analysis with regard to performing clinical
trials and data collection.

2. Continuous androgen suppression. To effectively analyze the effects of In-
termittent Androgen Suppression (IAS), we first look at a Continuous Androgen
Suppression (CAS) therapy model in order to establish a baseline for which sen-
sitivity analysis can be performed in a straightforward manner. Moreover, this
treatment regimen is currently the only recommended option as a standard of care
outside of Europe [4]. CAS is modelled by letting u = 1 in equation (1). In Figure
1 we present the solutions under this assumption (κ = 0) using the baseline pa-
rameter values presented in Table 1. Here the dashed line represents the androgen
concentration, a(t), which decays exponentially. The time constant for this decay is
γ−1 = 12.5 days so that the decay rate is relatively fast on a yearly time scale. The
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solid line is a plot of the concentration of AD cells, x1(t), which initially grows but
then quickly decays as androgen is removed from the system. Finally, the dash-dot
line illustrates the initial slow growth of concentration in AI cells, x2(t), followed
by an eventual steep rise after the AD cells have been removed and all cells are in
the AI state.

Time (days)
0 100 200 300 400 500 600 700 800 900

(n
m
o
l/
l)

0

5

10

15

20

25

30

a(t)

x1(t) x2(t)

Figure 1. Solutions for all three compartments in the CAS model
are presented. Baseline values for all parameters are used, as shown
in Table 1.

Given the coupled system of differential equations (1)-(3), an understanding of
the influence that parameters within the model have on solutions is important since
changes in the values of those parameters (e.g., the androgen concentration rate,
γ) may be under investigation in a medical trial (e.g., how different pharmaceutical
options affect the suppression of androgen). If a model is sensitive to a particular
parameter value, then altering the value of that parameter may have a dramatic
influence on the output of the model. One way to quantify this influence are the
time-dependent sensitivity functions defined for a generic parameter θ and a generic
differential equation, ẋ = f(t, x), by a sensitivity equation that models the change
in model output relative to changes in the parameter value [2]:

ṡ = s(t)
∂f

∂x
+
∂f

∂θ
, (12)

s(0) = 0. (13)

Each equation in a dynamical system yields a corresponding sensitivity equation for
each parameter within the model. Thus, for a model that has n nonlinear equations
with m total parameters, the sensitivity functions are determined by solving 2nm
equations. Each sensitivity equation is subject to trivial initial conditions. In the
CAS model, an illustrative example is provided by the following sensitivity equations
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for each compartment with respect to the parameter γ:

ṡaγ = −γsaγ − a,

ṡx1
γ =

(
α1
dp1
da
− β1

dq1
da
− dm

da

)
x1s

a
γ + [α1p1(a)− β1q1(a)−m(a)]sx1

γ ,

ṡx2
γ =

(
dm

da
x1 + α2

dp2
da

x2

)
saγ +m(a)sx1

γ + [α2p2(a)− β2]sx2
γ ,

where

dp1
da

=
k2

(a+ k2)2
,

dq1
da

=
k4(1− k3)

(a+ k4)2
,

dm

da
= −m1

a0
,

dp2
da

= − κ

a0
.

We note here that the derivative of p2 with respect to α2 and β2 will depend on
the form of κ. Solutions to these equations provide important information about
the original system when the chosen parameter value is perturbed about some a
priori fixed value of that parameter. Here we use the baseline values in Table 1
for those fixed values. A large magnitude in the sensitivity function indicates a
point in time when data collection will be most informative during a clinical trial
for estimating a particular parameter [3]. Furthermore, a spike in the sensitivity
function provides information that is helpful in producing high quality numerical
solutions for the model. Whenever parameter sensitivity is high for any parameter
in the model, increasing the length of subdivisions in the discretization in time may
lead to inaccurate solutions at that point in time and at future times [16].

The sensitivity solution for androgen concentration with respect to the parameter
γ can be seen in Figure 2. There is a spike in the graph between t = 0 and t = 50
days where the magnitude of sensitivity increases significantly, indicating that the
androgen concentration is sensitive with respect to γ during this time period. No
significant difference between the cases κ = 0 and κ = 1 − β2/α2 was observed, so
in this section we only present the results for the first case. The negative values for
the sensitivity function in Figure 2 indicate that as the value of γ is increased by a
small amount, the response of the androgen concentration compartment is decreas-
ing. Data should be collected at times during the 0-50 day interval to optimally
determine the recovery/decay rate of the androgen concentration (γ). The sensitiv-
ity of androgen concentration with respect to other parameters remains constant as
in this case the androgen dynamics depending only on γ.

Next, we consider the sensitivity of the androgen dependent cells to changes
in the parameter space. In Figure 3 we present the sensitivity functions for the
AD population with respect to the parameters α1 and β1, respectively. Here we
see a very large magnitude of sensitivity to α1 and to β1 during the first four
months of treatment. Further analyzing the extrema of these graphs, an initial
surge of sensitivity to the AD proliferation rate occurs first, followed by a slightly
longer period of higher sensitivity to the apoptosis rate. The sensitivity of the
AD population to the parameters γ and m1 mimics that of the sensitivity of this
compartment to the apoptosis rate, but at a lower magnitude.

In contrast, sensitivity of the AI population to changes in the parameter space
remains relatively low until many months of treatment have elapsed. In Figure
4 we see that sensitivity of this compartment to the androgen concentration rate
γ has magnitude similar to that of the effects of this parameter on the androgen
concentration, but now the effects are near the end of our simulation time frame.
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Figure 2. CAS sensitivity of androgen concentration, saγ , with
respect to the concentration rate γ. The negative sensitivity indi-
cates that as γ is increased, androgen concentration will decrease.
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Figure 3. CAS sensitivity of androgen dependent cells (x1) to
the proliferation rate α1, shown in (a), and the apoptosis rate β1,
shown in (b).

Likewise, the sensitivity of the AI population to the proliferation and apoptosis rates
for the AD population (α1 and β1, respectively) is comparable in magnitude and
direction with the respective sensitivities of the AD population to these parameters,
but again the steep increase in sensitivity is delayed until over a year of continuous
treatment has passed. This time frame surpasses the typical induction period of
ADT during an administration of IAD [15]. The sensitivity of the AI population to
the proliferation and apoptosis rates for the AI population (α2 and β2, respectively),
behave in much the same way but at a higher magnitude due to their direct impact
on the AI population itself. Moreover, the sensitivity of the AI population to the
maximum mutation rate follows this pattern and achieves the highest magnitude
of all the sensitivity functions, as shown in Figure 5. As a result, data collection
efforts aimed at estimating the parameters in this model must remain consistent in
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Figure 4. CAS sensitivity of androgen independent tumor cells,
sx2
γ , with respect to the androgen concentration rate γ.

frequency for roughly three full years of CAS treatment, even though a relapse is
likely to have occurred.
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Figure 5. CAS sensitivity of androgen independent tumor cells,
sx2
m1
, with respect to the maximum mutation rate m1.

In Section 5, we further explore the CAS model in order to examine the effect of
our choice for the value of κ on the length of time before disease relapse occurs, along
with a similar analysis for models that include intermittent treatment. Having here
established a baseline for sensitivity of the model compartments to the parameter
space, we now consider how that sensitivity changes under a new model for IAS.

3. Modeling intermittent androgen suppression. In order to compare the
parameter sensitivity in this scenario with what we computed for CAS treatment,
we first reformulate the algorithmic definition as an ordinary differential equation.
First, we consider the switch from on-treatment to off-treatment (from u = 1 to
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u = 0) represented in the second half of (11). We model the requirement y(t) = r0
as a product of step functions:

H(y − (r0 − ε))H(r0 + ε− y), (14)

where ε > 0 and

H(y −K) =

{
0 if y ≤ K,
1 if y > K.

(15)

Because of numerical inaccuracies, y(t) = r0 may not be achieved on a particular
interval of time. Therefore, a small value of ε is used to account for small differences
in |y(t) − r0| during a simulation. In order to meet the condition that ẏ < 0, We
multiply (14) by H(−ẏ).

To create a smooth transition from u = 1 to u = 0, we use a logistic function
with stable equilibrium u = 0 and unstable equilibrium u = 1 + ε̂,

f10(u) = u(u− (1 + ε̂)), (16)

where ε̂ represents a different small positive number. Thus, if 0 < u(t) < 1 + ε̂ at
some time t, then u will approach zero.

Finally, the dynamics of u for the switch from on-treatment to off-treatment
(u = 1 to u = 0) are modeled by combining these terms:

u̇10 = H(y − (r0 − ε))H(r0 + ε− y)H(−ẏ)u(u− (1 + ε̂)). (17)

Similarly, we model the switch from off-treatment to on-treatment (i.e., from u = 0
to u = 1) shown by the first half of (11) as

u̇01(t) = H(y − (r1 − ε))H(r1 + ε− y)H(ẏ)(u+ ε̂)(1− u). (18)
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Figure 6. Sample plots of the treatment function u(t), as deter-
mined by (19), based on a parameter value of λ = 1100. Here we
illustrate the behavior for κ = 0 in (a) and κ = 1− β2/α2 in (b).

We model the back and forth switching in (11) by adding (17) and (18). Hence,
we have the following ordinary differential equation:

u̇ = λ[H(y − (r0 − ε))H(r0 + ε− y)H(−ẏ)u(u− (1 + ε̂))

+H(y − (r1 − ε))H(r1 + ε− y)H(ẏ)(u+ ε̂)(1− u)].

(19)
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Here we use a parameter λ > 0 to control the rate at which u transitions from
1 to 0 and vice versa. The value of the parameter λ is chosen using numerical
experimentation. For example, we found that for λ = 1000, u oscillates but becomes
negative. We simulated (19) using many different values and found λ = 1100 to
accurately represent the on and off switching in the model of Ideta, et al., as shown
in Figure 6. In Figure 7, we present the behavior of the serum PSA level y(t) using
this model. The parameters ε and ε̂ are chosen small enough so that our simulations
demonstrate the same qualitative behavior as that produced by the algorithmic
model (1)-(11) used in [9] (see Figures 8(a) and 9(a)). They both produce a PSA
that oscillates between y = 5 ng/ml and y = 20 ng/ml and then increases without
bound, representing a relapse.
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Figure 7. These graphs illustrate the long term behavior of the
androgen levels a(t), plotted as a dotted line, and serum PSA con-
centration y(t), plotted as a solid line, using the model from equa-
tions (22)-(25). The plots in (a) correspond to κ = 0 and in (b)
correspond to κ = 1− β2/α2.

To accurately conduct parameter sensitivity computations, we need to ensure
that the right side of (19) is differentiable. Thus, we will use the arctangent function
to approximate the step functions in (19). In particular, if z depends on a parameter
θ, we define

G[z(θ)] =
1

π
tan−1[10000 z(θ)] +

1

2
, (20)

so that
d

dθ
G[z(θ)] =

10000

π
(1 + [10000 z(θ)]

2
)−1

dz

dθ
, (21)

and hence continuity of the derivative of z will ensure that G is differentiable. We
replace each instance of H in (19) with an appropriate form of G. Our model for
IAS then becomes

ȧ = f (1)(a) + g(1)(u), (22)

ẋ1 = f (2)(a), (23)

ẋ2 = f (3)(a), (24)

u̇ = g(2)(u). (25)
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where

f (1)(a) = −γ(a(t)− a0) (26)

g(1)(u) = −γa0u(t), (27)

f (2)(a) = [α1p1(a(t))− β1q1(a(t))−m(a(t))]x1(t), (28)

f (3)(a) = m(a(t))x1(t) + [α2p2(a(t))− β2q2(a(t))]x2(t), (29)

g(2)(u) = λ[G(y − (r0 − ε))G(r0 + ε− y)G(−ẏ)u(u− (1 + ε̂))

+G(y − (r1 − ε))G(r1 + ε− y)G(ẏ)(u+ ε̂)(1− u)]. (30)

We use the following system for the sensitivity to each parameter θ, where ṡaθ ,
ṡx1

θ , ṡx2

θ , and ṡuθ determine the sensitivity functions for a(t), x1(t), x2(t), and u(t),
respectively.

ṡaθ = f (1)a (a)saθ(t) + f
(1)
θ (a) + g(1)u (u)suθ (t) + g

(1)
θ (u), (31)

ṡx1

θ = f (2)x1
(a)sx1

θ (t) + f
(2)
θ (a), (32)

ṡx2

θ = f (3)x2
(a)sx2

θ (t) + f
(3)
θ (a), (33)

ṡuθ = g(2)u (u)suθ (t) + g
(2)
θ (u). (34)

with initial conditions

saθ(0) = sx1

θ (0) = sx2

θ (0) = suθ (0) = 0. (35)

The sensitivity solutions for the parameter γ can be seen in Figure 8. Sensitivity
of a(t) to γ spikes as we shift from on-treatment to off-treatment and vice-versa,
with negative sensitivity during the on-treatment times (as in the CAS model) and
positive sensitivity during the off-treatment times. Note that the magnitude of these
spikes increases over time and that this behavior extends further in time for the case
κ = 1− β2/α2 since a(t) continues to oscillate well past 700 days, the approximate
time at which this sensitivity decays to zero for κ = 0. Similar behavior is observed
for sensitivity of x1(t) to γ. However, note that the negative sensitivity during
on-treatment periods of time has a much larger magnitude and the rate of change
in sensitivity is much larger than positive sensitivity during off-treatment periods.
Finally, x2(t) remains mostly insensitive to γ until after relapse has occurred, similar
to the behavior observed under CAS but with small oscillations occurring between
on-treatment and off-treatment times.

In contrast, the sensitivities for the mutation parameter m1, shown in Figure 9
remain relatively low until after a year of treatment has elapsed, when mutation has
a chance to have a significant effect on the AD compartment. Afterwards, sensitivity
of a(t) spikes in the positive direction when switching to on-treatment and in the
negative direction when switching to off-treatment. These spikes continue to grow
in magnitude over time until relapse occurs. For the AD compartment, x1(t),
the expected negative sensitivity to m1 during periods of off-treatment steadily
decreases over time, interrupted by increasingly large spikes of positive sensitivity
when switching to on-treatment periods. Sensitivity for the AI compartment, x2,
remains relatively low for the first year of treatment and then eventually grows
exponentially. Similar behavior is observed for many other parameters in the model,
but the magnitude of spikes in sensitivity to m1 were the most significant.

In Figure 10 we see the sensitivities to the parameter r0, which determines when
off-treatment periods may begin. Although the behavior here is similar to that
for γ, we note the asymmetry in the magnitude for sensitivities of a(t) and x1(t)
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Figure 8. Sensitivity analysis for androgen concentration, saγ ,
androgen dependent tumor cells, sx1

γ , and androgen independent
tumor cells, sx2

γ , with respect to the parameter γ for intermittent
treatment. The left column presents results for κ = 0, while the
right column presents the sensitivities when κ = 1 − β2/α2. Here
red depicts on-treatment while black depicts off-treatment.

during periods of on-treatment, which are negative, compared with periods of off-
treatment when these sensitivities are positive. Moreover, note that sensitivity
spikes are possible even after treatment has been permanently turned on once relapse
has occurred. Somewhat surprisingly, the sensitivities to the parameter r1, which
determines when on-treatment periods must begin, were all very low in magnitude
at all times.

Thus, we generally expect the same behavior of our sensitivity functions during
periods of on-treatment as are observed in the CAS model, but an opposite behavior
is generally observed during periods of off-treatment. These swings in sensitivity
generally spike at points in time where treatment is turned either on or off. For
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Figure 9. Sensitivity analysis for androgen concentration, sam1
,

androgen dependent tumor cells, sx1
m1
, and androgen independent

tumor cells, sx2
m1
, with respect to the mutation parameter m1

for intermittent treatment. The left column presents results for
κ = 0, while the right column presents the sensitivities when
κ = 1− β2/α2. Here red depicts on-treatment while black depicts
off-treatment.

a(t) and x1(t), sensitivities tend to decay after relapse has occurred, while for x2(t)
sensitivities tend to remain low until after relapse. This indicates the importance
of continuing to collect data in a clinical trial of IAS even after the decision has
been made to remain on-treatment permanently. Additionally, the magnitude of
the spikes in sensitivities for a(t) and x1(t) frequently double within a year, as seen
in Figures 8 and 9, indicating an increase in the importance of collecting data at
these switching points. However, as seen in Figure 10, we may reach a point in time
of maximum sensitivity for a(t) and/or x1(t) many months prior to relapse.

We also examine the relative sensitivity of our model to each parameter in order
to determine which parameters have the biggest impact on the long-term behavior of
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Figure 10. Sensitivity analysis for androgen concentration, sar0 ,
androgen dependent tumor cells, sx1

r0 , and androgen independent
tumor cells, sx2

r0 , with respect to the parameter r0 for intermittent
treatment. The left column presents results for κ = 0, while the
right column presents the sensitivities when κ = 1 − β2/α2. Here
red depicts on-treatment while black depicts off-treatment.

our solution components. Using the range of parameter values presented in Table
1 and an assumption that each parameter was normally distributed in its range,
independent of the other parameter values, 100 randomized parameter sets were
generated and used to generate simulated data sets ẑ = (â, x̂1, x̂2, û)T at the same
points in time as our computed solutions using the baseline values of our parameters,
z(t) = (a(t), x1(t), x2(t), u(t))T . We define a cost function

J(q) =
∑
k

||z(tk;q0)− ẑ(tk;q)||22,

representing a squared error in the Euclidean norm of the difference between our
solutions generated using the baseline parameters (represented by q0) and solutions
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generated with one of the randomized parameter sets (represented by q). Hence,

∂J

∂q
(q0) = 2

∑
k

(z(tk;q0)− ẑ(tk;q))
T ∂z

∂q
(tk;q0).

For each randomized parameter set, we calculate the relative sensitivity to a given
parameter θ as

ΥJ
θ :=

∂J

∂θ
× θ

J
.

In Figure 11, we present a summary of these values for the case κ = 0. The
parameters r0, α2, and β2 had the highest median relative sensitivity, in magnitude,
and the widest range of relative sensitivities over the simulated data sets. Similar
results are presented for the case κ = 1 − β2/α2 in Figure 12, and in Table 2 we
present the median values of our computed relative sensitivities for both cases. The
model is also somewhat sensitive to α1 and β1 for both cases, and is sensitive to
m1 when κ = 0. We note that other than r0, the list of parameters for which our
model is most sensitive depend a great deal on the site of metastasis. We expect
that data from clinical trials would need to be carefully collected in attempts to
better estimate values of these parameters.
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Figure 11. These boxplots illustrate the relative sensitivity of
the IAS model to each parameter for the case κ = 0. In subfigure
(b) data for the three parameters for which the median relative
sensitivity exceeded the others by at least an order of magnitude are
summarized. For clarity of the display, boxplots for the remaining
parameters are presented in (a).

4. Periodic androgen suppression and relapse time. In Ideta, et al., Figures
8 and 9 show simulations of the IAS model for κ as in (8). With all other parameters
in the model fixed, the time to relapse is observed to be dependent upon r0. In
this section, we formulate a periodic androgen suppression (PAS) model in order to
investigate the relapse time and its sensitivity to parameters in the model. We use
a simple definition of relapse time:

TR = {t > 0 | y(t) = y} , (36)
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Figure 12. These boxplots illustrate the relative sensitivity of the
IAS model to each parameter for the case κ = 1− β2/α2. Here we
have preserved the same arrangement of parameters as displayed
in Figure 11.

Table 2. Median relative sensitivities of the cost function J to
the parameters in the IAS model. These statistics are based on
100 simulated data sets generated using random samples of the pa-
rameters from independent normal distributions with means given
by the baseline values in Table 1 and standard deviations that limit
the sample coefficients of variation to no more than 30%.

θ ΥJ
θ , κ = 0 ΥJ

θ , κ = 1− β2/α2

r0 −1362 −50.19
α2 −292.9 −9.261
β2 +189.3 +6.416
m1 −9.609 −0.2761
α1 −8.772 +0.8986
β1 +6.459 +1.246
γ +3.463 −0.3032
k3 +2.658 +0.07086
k4 +1.807 +0.1499
k2 +1.433 +0.2360
a0 +0.3096 −0.6929
λ −0.03408 −0.003861
r1 −0.002916 −0.0003114

where y is a pre-determined threshold value of total PSA, y(t). We note that a
clinical definition of relapse, for example as described in [9], is different from this
mathematical definition.

The IAS model (1)-(10) controls the treatment indicator function u through the
algorithmic feedback control (11). When r1 = 15, a wide range of values of r0 results
in an initial periodic-like behavior in y. Disease relapse occurs as these oscillations
cease, the AD cells are extinguished, and the AI cells increase without bound (see
Figure 7 above and Figures 8 and 9 in [9]). Figure 13 shows the relapse time as r0
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varies using the IAS model with on- and off-treatment u controlled by algorithmic
feedback (11) and our model (19). This figure also shows the total time the patient
is on-treatment which we denote Ton. We can compute Ton using the treatment
indicator function u(t) as follows

Ton =

∫ TR

0

u(τ) dτ. (37)

It can be seen in Figure 13 that in general r0 should be small (when all other
parameters are fixed as in Table 1) in order to maximize relapse time and minimize
on-treatment time. For κ = 0, the maximum difference between relapse time and
on-treatment time occurs at r0 ≈ 1.5, when relapse time is approximately 818 days
and on-treatment time is approximately 362 days. For κ = 1−β2/α2, the maximum
difference between relapse time and on-treatment time occurs at r0 ≈ 2.6, when
relapse time is approximately 1709 days and on-treatment time is approximately
755 days.
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Figure 13. These curves show the relapse time from (36) with
y = 20 and the on-treatment time from (37) where κ = 0 in (a)
and κ = 1 − β2/α2 in (b). The solid curves use the ITTA model
for IAS with u as in (11) and the dashed curves use our model for
IAS with u as in (19).

The periodic nature of y observed prior to relapse motivates our consideration of
periodic cycling of androgen suppression. Specifically, we model u as a T-periodic
function such that u(t) = û(t+ T ) for all t ≥ 0, where

û(t) =

{
1 when 0 ≤ t < T/2,
0 when T/2 ≤ t < T.

(38)

The PAS model consists of equations (1)-(8) with treatment control (38). After
substituting (38) into (1), the androgen dynamics are a(t) = â(t + T ) for all t ≥ 0
where

â(t) =

{
a0e
−γt, when 0 ≤ t < T/2,

a0e
−γt + a0

[
1− e−γ(t−T/2)

]
, when T/2 ≤ t < T,

(39)

with a(0) = a0 as in Ideta, et al. Next we substitute (39) into (2) and (3) to get
a linear system of two equations with periodic coefficients. This system has the
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matrix form dX/dt = A(t)X, with X = (x1, x2)T and

A(t) =

[
α1p1(a)− β1q1(a)−m(a) 0

m(a) α2p2(a)− β2

]
. (40)

Denoting initial conditions as X(0) = X0, the solution is determined by standard
methods [7] to be X(t) = Φ(t)X0 where Φ(t) is the fundamental matrix which solves
dΦ/dt = A(t)Φ, subject to Φ(0) = I, with I the 2× 2 identity matrix. That is, the
columns of Φ are determined by solving dX/dt = A(t)X subject to X(0) = (1, 0)T

and X(0) = (0, 1)T . Straightforward calculations yield

Φ(t) =

 exp
(∫ t

0
[f1(τ)−m(τ)] dτ

)
0

ψ(t) exp
(∫ t

0
f2(τ) dτ

)  , (41)

where

f1(τ) = α1p1(a(τ))− β1q1(a(τ)), (42)

f2(τ) = α2p2(a(τ))− β2, (43)

ψ(t) = e
∫ t
0
f2(τ) dτ

∫ t

0

m(a)e
∫ t
0
(f1(τ)−m(τ)−f2(τ)) dτ dτ. (44)

Figure (14) depicts the serum PSA y(t) = x1(t) + x2(t) computed from the funda-
mental matrix solution (41) when T = 200 and using the values of κ in (8). The
serum PSA level typically rises as a(t) rapidly decays towards zero and increases
(in the case of κ = 0) or remains relatively constant (in the case of κ = 1− β2/α2)
when a(t) is near its threshold value of a0.
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Figure 14. The periodic androgen suppression model where
y(t) = x1(t) + x2(t) is plotted (solid) with x1(t) and x2(t) com-
puted as in (41) with κ = 0 on the left and κ = 1 − β2/α2 on
the right. The androgen level a(t) is also plotted (dash-dot) and
oscillates with period T = 200 in both cases. The initial conditions
are a(0) = 30, x1(0) = 15, and x2(0) = 0.01.

Simulation of the PAS model reveals that for T smaller than a certain threshold
value, the AD cell population may oscillate with an increasing average value. Typ-
ically, in the IAS model disease relapse occurs as AD cells mutate to AI cells and
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the AD cell population becomes negligible so that eventually all cells are in the AI
state. In this case, x1(t) and x2(t) obey

lim
t→∞

x1(t) = 0, lim
t→∞

x2(t) =∞. (45)

The following theorem details conditions under which (45) holds for the PAS model.

Theorem 4.1. If the parameters are chosen so that∫ T

0

[f1(τ)−m(τ)] dτ < 0 and κ < ρ−1(1− β2/α2), (46)

where ρ = 1/2 + (γT )−1 then (45) holds.

Proof. The equation for x1(t) is given by model equation (2), a first order, linear,
homogenous differential equation with a periodic coefficient f1(t) defined in (42).
Solving this problem with initial condition x1(0) and using Floquet theory [7], [19]
yields that

x1(t) = x1(0) exp

(∫ t

0

[f1(τ)−m(τ)] dτ

)
= p1(t) exp (ζ1t) (47)

where

ζ1 = T−1
∫ T

0

[f1(τ)−m(τ)] dτ, (48)

and p1(t) is a T periodic function. Thus assuming the first inequality in (46) holds,
then the limit for x1(t) in (45) must hold.

We next determine x2(t) from the model equation (3) which is a linear, first order,
non-homogeneous differential equation. The solution of (3) with initial condition
x2(0) (which may be determined by the integrating factor method), is that

x2(t) = x2(0) exp

(∫ t

0

f2(τ) dτ

)
+ ψ(t) (49)

with f2(t) defined in (43) and ψ(t) as in (44). The first term on the right side of
(49) solves the homogeneous problem dx2/dt = f2(t)x2(t) with periodic coefficient
function f2(t), which again after applying Floquet theory, may be expressed as

xh2 (t) = x2(0) exp

(∫ t

0

f2(τ) dτ

)
= p2(t) exp (b2t) (50)

where b2 = T−1
∫ T
0
f2(τ) dτ and p2(t) is a T periodic function. After substituting

(43) and integrating, we get that

b2 = T−1
∫ T

0

f2(τ) dτ = α2(1− κā/a0)− β2, (51)

where

ā = T−1
∫ T

0

a(τ) dτ =
a0
γT

(
e−γT/2 − e−γT

)
+
a0
2
. (52)

Using the bound ā/a0 < 1/2 + (γT )−1 it follows from (51) that b2 > 0 when
the second inequality in (46) holds. Thus we see from (50) that xh2 (t) → ∞ as
t→∞. Inspection of (39) and (50) shows that m(a(t))x1(t) > 0 and it follows that
x2(t) > xh2 (t) for t > 0 (see Corollary 6.3 of Theorem 6.1 in [7]). This implies that
the second limit in (45) must hold.
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In order to determine a parameter set such that the inequalities (46) hold, we
first compute ζ1 from (48) to get

ζ1 = γ−1T−1[−α1v2 − α1w12 + a0α1c
−1
2 s21 − k3β1γT + (1− k3)β1v4

+β1(1− k3)w13 − a0β1(1− k3)c−13 s31 −m1γT/2
−m1(e−γT/2 − 1) +m1(eγT/2 − 1)(e−γT − e−γT/2)],

(53)

where

vi = ln

(
a0e
−γT/2 + ki
a0 + ki

)
,

wij = ln

(
cie
−γT + cj

cie−γT/2 + cj

)
,

sij = ln

(
cie

γT + cj
cieγT/2 + cj

)
,

and

c1 = a0

(
1− eγT/2

)
, c2 = a0 + k2, c3 = a0 + k4.

Numerically, we find a critical value Tc ≈ 123 at which ζ1 changes sign. The value
of ζ1 is positive for T < Tc and negative for T > Tc assuming all other parameters
in (53) are fixed at the baseline values in Table 1. To satisfy the inequalities (46)
we let T > Tc so that ζ1 < 0, ensuring the first inequality holds, and choose κ small
enough so that the second inequality holds. Note that the second case for κ in (8)
is small enough to satisfy this condition.

We next use the results in Theorem 4.1 to derive a closed form expression that
approximates the relapse time TR given by (36) for the PAS model and then compute
the parameter sensitivity of TR using this approximation. First we note that for
t < O(γ−1) it can be seen that a(t) ≈ a0 and x1(t) initially increases at a rate
α1p1(a0)− β1q1(a0). The results in Theorem 4.1 show that x1(t) may be expressed
as in (47) where ζ1 is defined in (48) and computed in (53). Since p1(t) is T -periodic,
it follows that |ζ1| controls the decay rate of x1(t), assuming (46) hold so that ζ1 < 0.
To approximate the relapse time for the periodic model when t > O(γ−1) we then
assume x1(t) ∝ e−|ζ1|t on this interval. With these approximations the solution of
(2) is

x̂
(1)
1 (t) = x1(0)et/τ1 , 0 ≤ t < γ−1, and (54)

x̂
(2)
1 (t) = x̂

(1)
1 (γ−1) e−|ζ1|(t−γ

−1), t ≥ γ−1, (55)

where

τ−11 = α1p1(a0)− β1q1(a0)

= α1a0(a0 + k2)−1 − β1
[
k3 + (1− k3)a0(a0 + k4)−1

]
. (56)

We next approximate x2(t) on 0 ≤ t < T/2 assuming γ−1 < T/2. In this case,
we let a = a0 on 0 ≤ t < γ−1 and a = 0 on γ−1 ≤ t < T/2. We solve (3) with x1(t)
as in (54) and (55) to get that

x̂
(1)
2 (t) = (x2(0)− θ1) eb1t + θ1e

t/τ1 , 0 ≤ t < γ−1, and (57)

x̂
(2)
2 (t) =

(
x̂
(1)
2 (γ−1)− θ2

)
eb2(t−γ

−1)

+ θ2e
−|ζ1|(t−γ−1), γ−1 ≤ t < T/2, (58)
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where the constants are defined as

b1 = α2p2(a0)− β2 = α2(1− κ)− β2, b2 = α2p2(0)− β2 = α2 − β2, (59)

θ1 = m1x1(0)
[
τ−11 − b1

]−1
,

θ2 = m1x̂
(1)
1 (γ−1) [|ζ1| − b2]

−1
. (60)

For κ = 0 the constants b1 and b2 are equal and b1 = b2 = α2−β2. In this case we
may extend the interval in (58) to t ≥ γ−1. If TR−γ−1 >> |ζ1|−1 and m1 << 1 we
approximate TR by ignoring the second term in (58) and solving x2(t) ≈ y(t) = y
to get that

TR ≈
1

α2 − β2
ln

(
y

x̂
(1)
2 (γ−1)− θ2

)
+ γ−1. (61)

For κ = 1 − β2/α2 it follows that b1 = 0 when a = a0 so that x2(t) is constant
on (n+ 1)T/2 ≤ t < (n+ 1)T , n = 0, 1, 2, . . ., and the solution of (3) with x1(t) as
in (54) and (55) is

x̃
(1)
2 (t) = x̂

(2)
2 (T ) exp

{
(α2 − β2)

(
t− n+ 1

2
T

)}
,

nT ≤ t <
(
n+

1

2

)
T, and (62)

x̃
(2)
2 (t) = x̂

(2)
2 (T ) exp

{
(α2 − β2)

1

2
nT

}
,(

n+
1

2

)
T ≤ t < (n+ 1)T, (63)

where n is any natural number. To approximate the relapse time, we solve x2(t) = y
and using (62), (63) for x2(t) yields that

TR ≈
1

α2 − β2
ln

(
y

x̂
(2)
2 (T )

)
+
Nc + 1

2
T, (64)

where

Nc =

⌈
2

T (α2 − β2)
ln

(
y

x̂
(2)
2 (T )

)⌉
. (65)

Figure 15 shows comparisons of the actual and approximated relapse times from
(61) and (64) as T varies and y = 20. The re-setting behavior that occurs in the
relapse time for κ = 1 − β2/α2 is a result of the plateaus in y(t) during the on-
treatment cycles when a(t) ≈ a0 as observed in Figure 14. If the period is such
that y(t) plateaus at y, then the relapse time re-sets to a smaller value. In addition,
Figure 15 shows the on-treatment time from (37). Here it can be seen that T should
be small in order to maximize relapse time and minimize on-treatment time, which
mimics the response of relapse time to changes in r0 as observed in Figure 13. For
κ = 0, the maximum difference between relapse time and on-treatment time occurs
at T ≈ 206 days, when relapse time is approximately 824 days and on-treatment
time is approximately 413 days. For κ = 1−β2/α2, the maximum difference between
relapse time and on-treatment time occurs at T ≈ 409 days, when relapse time is
approximately 1643 days and on-treatment time is approximately 825 days.

To approximate the relapse time for the continuous model, where we can solve
(1) analytically, we have a(t) = a0e

−γt for t ≥ 0 and we note that this is simply the
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Figure 15. The solid and dash-dot curves show the relapse time
TR and on-treatment time Ton respectively for the PAS model with
TR as in (36) where y = 20 and Ton from (37). Here we use κ = 0
in (a) and κ = 1 − β2/α2 in (b). The dashed curves show the
approximation of relapse time from (61) in (a) and (64) in (b).

limiting case T → ∞ for the periodic model. The approximations of x2(t) in (57)
and (58) depend on T through the parameter ζ1, and using (53) we get that

lim
T→∞

|ζ1| = β1

(
k3 +

1

2
c−13 a0(1− k3)

)
− 1

2
c−12 α1 −

1

2
m1. (66)

Figure 16 shows the relapse time for κ ∈ (0, 1) estimated from (61) with |ζ1| replaced
by (66) and also shows the relapse time determined by solving the continuous model
directly (using an integrating factor method with a(t) = a0e

−γt and Matlab’s adap-
tive Lobatto quadrature routine to perform the integration). Note that the relapse
time increases with κ as b1 depends on κ.

For a generic parameter θ, we define the relative sensitivity index [5] in the relapse
time as

ΥTR

θ :=
∂TR
∂θ
× θ

TR
. (67)

We use the sensitivity index to investigate the sensitivity of the relapse time to
the parameters in the model and summarize these results in Figures 17 and 18
and Table 3. For the periodic model we compute ΥTR

θ using 100 random draws
of the period T distributed normally. Here we use a mean value of 425 days and
a standard deviation of 25 days so that we expect most of the data to be in the
range 350 ≤ T ≤ 500. The lower bound of this range is well above the critical value
Tc = 123 for model feasibility that is guaranteed by the conditions in Theorem 1.
Inspection of Figure 15 shows that this range of T is in the optimal treatment region
that ensures relatively large relapse times and relatively short on-treatment cycles.

For the continuous model we compute ΥTR

θ using 100 random draws of κ dis-
tributed normally. Here we use a mean value of 0.5 and a standard deviation of
0.165 so that we expect most of the data to be in the range 0.005 ≤ κ ≤ 0.995,
corresponding (approximately) to the range of κ depicted in Figure 16.

Table 3 displays the mean values of the sensitivity indices. In all cases, the mean
and median values were very close. These values inform us as to how changes in each
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Figure 16. This plot depicts the relapse time as it depends on
κ for the continuous model. The dashed curve is the relapse time
TR (where y = 20) as a function of κ estimated from (61) with |ζ1|
as in (66). The solid curve is the relapse time as it depends on κ
computed using the model equations (2) and (3) with continuous
androgen suppression and solving x1(t) + x2(t) = 20 for t.

Table 3. Average sensitivity indices of relapse time TR for the
data depicted in Figures 17 and 18 where Periodic (i) is κ = 0 and
Periodic (ii) is κ = 1− β2/α2.

Parameter Periodic (i) Periodic (ii) Continuous
a0 −0.017 −0.0091 −0.0058
γ +0.069 +0.035 +0.032
α1 −0.075 −0.041 −0.054
β1 +0.13 +0.070 +0.11
α2 −3.12 −1.69 −3.15
β2 +2.18 +1.18 +2.20
m1 −0.13 −0.074 −0.13
k2 +0.0069 +0.0037 +0.0034
k3 +0.10 +0.054 +0.091
k4 +0.0099 +0.0053 +0.0024
T +0.033 +0.47 −

parameter influence relapse time. For example, if κ = 0 (with all other parameters
fixed at their baseline values), increasing α2 by 1% decreases the relapse time by
3.12%. Figures 17 and 18 and Table 3 show that the magnitude of the sensitivity
index of TR to both α2 and β2 are significantly larger than the other sensitivity
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Figure 17. This figure shows the sensitivity indices of relapse
time TR from (67) for the periodic model. The box plots summarize

the values of ΥTR

θ computed from 100 random draws of the period T
distributed normally with mean 425 days and standard deviation 25
days. In the top row κ = 0 and the relapse time TR was computed
from (61). In the bottom row κ = 1− β2/α2 and the relapse time
TR was computed from (64). The parameter values p are displayed
along the horizontal axis. Outliers are not displayed.

indices in each case. In the periodic model for κ = 1− β2/α2, the sensitivity index
to the period is also relatively large.

5. Conclusions. In this paper we have investigated mathematical models that de-
scribe the treatment of advanced prostate cancer by androgen suppression. Our
dynamical system models, derived from the hybrid dynamical system presented in
[9], allow us to simulate continuous androgen suppression (CAS), intermittent an-
drogen suppression (IAS), and periodic androgen suppression (PAS). These models
describe the behavior of the androgen dynamics as well as the dynamics of both an-
drogen dependent (AD) and non-reversible androgen independent (AI) cancer cells.
We alter feedback mechanism for the treatment control function u from [9] (shown
in (11)), using a differential equation model in equation (19) for IAS and a periodic
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Figure 18. This figure shows the sensitivity indices of relapse
time TR from (67) for the continuous model. The box plots sum-

marize the values of ΥTR

θ computed from 100 random draws of κ
distributed normally with mean 0.5 and standard deviation 0.165.
The relapse time TR was computed from (61) with |ζ1| replaced by
(66). The parameter values p are displayed along the horizontal
axis. Outliers are not displayed.

model of u in equation (38) for PAS. With these models we analyze parameter sen-
sitivity and relapse time for the two main values of κ in (8), where κ controls the
proliferation rate of the AI cells.

Our dynamic sensitivity analysis for the CAS model produced an expected result
- compartments in the model were highly sensitive to parameters influencing their
growth and decay, but only during times when the solution variables for those
compartments had a large enough magnitude that we could expect their presence to
be measurable in a clinical experiment. When considering the dynamic sensitivities
for the IAS model, this pattern continues in an expected way as we switch between
on-treatment and off-treatment periods of time. However, we learned that the spikes
in the sensitivity of androgen (a) and the AD cell population (x1) at these switching
points actually increases in magnitude over time for most of our parameters until
a and x1 permanently decay in value, indicating a relapse. Simultaneously, the
sensitivity of the AI cell population (x2) remains relatively low until after relapse, as
with the CAS model. This underscores the necessity of maintaining data collection
efforts each time a switch is made between on-treatment and off-treatment and then
continuing well after the decision has been made to cease drug holidays. We also
observed, through relative sensitivities based on simulated data, that the IAS model
is much more sensitive to the parameter r0, which controls the PSA level at which
off-treatment times begin, than any other parameter in the model. Surprisingly,
the model is least sensitive to the parameter r1, which controls the PSA level at
which on-treatment times begin. Thus, our model indicates that calibrating how
we decide to begin a so-called drug holiday may be much more important than how
we choose to end those drug holidays. We expect that data from a clinical trial can
therefore be useful in estimating not only r0, but also parameters influencing cancer
cell proliferation, apoptosis, and mutation.

Unlike intermittent androgen suppression where the on and off treatment is gov-
erned by certain threshold levels of total PSA, treatment with periodic androgen
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suppression requires that the patient switch between on and off treatment at certain
intervals defined by the period T . Specifically, the patient remains on-treatment for
the first half of the period and off-treatment for the second half of the period. Here
we solved the periodic equations and established conditions on κ and T that guar-
antee relapse. We derived expressions for the relapse time, TR, for the two main
values of κ and computed the relative sensitivity of TR over a parameter region
that is optimal for patient care (that is, large relapse time and small on-treatment
time). Finally, we compared TR and on-treatment time Ton (see Figures 13 and
15) as the main control parameters r0 (IAS) and T (PAS) vary. When we compare
IAS and PAS at parameter values for which the difference between relapse time and
on-treatment time is maximum, for κ = 0 the PAS model produced a slightly better
relapse time of 824 days versus 818 days (0.7% larger) while the IAS model produced
a better on-treatment time of 362 days versus 413 days (12% smaller). However, if
κ = 1− β2/α2, the IAS model produced better results in both instances: a relapse
time of 1709 days versus 1643 days for PAS (4% larger) and an on-treatment time of
755 days versus 825 days for PAS (8% smaller). This indicates that IAS is generally
better (although not by a large amount) when considering the optimal treatment
protocol. Finally, one advantage of PAS when compared with IAS is that periodic
androgen suppression does not require regular blood samples from the patient in
order to monitor PSA and determine when treatment should be switched on to off
and vice versa. To our knowledge, PAS is not currently used in clinical practice.
Our observations on the modest differences in relapse times suggest that a scheduled
periodic treatment regimen may warrant further investigation.

In this paper we derived our models using only the foundational model of Ideta,
et al., from [9]. In this case, the AI cells are not reversible and the AD cells are
independent of the AI cells. This allowed us to approximate relapse time in a
relatively straightforward manner as the model equations are only forward coupled.
Future work may include investigations of IAS and PAS models where the AI cell
types are both reversible and irreversible. In this case, the AD cell proliferation will
also depend on the AI cells during the off-treatment cycle as described in [8], and a
more detailed analysis of the relapse time is necessary as the model equations are
backward coupled.
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