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Università degli Studi del Sannio, Benevento (Italy)

Piazza Roma, 21, Benevento 82022, Italy

(Communicated by Yang Kuang)

Abstract. The epidemiology of X-linked recessive diseases, a class of genetic

disorders, is modeled with a discrete-time, structured, non linear mathematical
system. The model accounts for both de novo mutations (i.e., affected sibling

born to unaffected parents) and selection (i.e., distinct fitness rates depending

on individual’s health conditions). Assuming that the population is constant
over generations and relying on Lyapunov theory we found the domain of at-

traction of model’s equilibrium point and studied the convergence properties
of the degenerate equilibrium where only affected individuals survive. Exam-

ples of applications of the proposed model to two among the most common

X-linked recessive diseases (namely the red and green color blindness and the
Hemophilia A) are described.
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1. Introduction. Epidemiological studies concern with models of the occurrence
of diseases in space and time. They are carried out relying on mathematical models
and their analysis’ tools; mathematic aids in inferring disease causes, predicting
the future course of an outbreak and planning the most appropriate control mea-
sures. The most numerous epidemiological mathematical models are in the field
of infectious diseases [11, 19, 24]. Under different assumptions, dynamical systems
have been designed to predict the number of infected people over times, as well as
to quantify the effect of diseases’ spread control measures such as pharmacological
therapies or social actions. [2, 22, 41].

When referring to genetic diseases, epidemiological studies examine the role of
genetic factors and their interaction with environmental features in the occurrence
of human genetic diseases i.e., an illness caused by abnormalities within the DNA
sequence of human genes. Their general aim is to understand the role of genetic
factors in the etiology of diseases in human populations with the ultimate goal of
disease control and prevention [25].

Mathematical models and analyses have successfully been applied in human ge-
netics epidemiology (see [25, 26, 27] and reference therein). Dynamic models have
been developed to describe gene distributions in evolving populations, as well as
changes in a single genome or biochemical process regulated by genes [16, 43, 17].
Mathematical models can help to provide non intuitive insights into disease spread
within a population as well as to predict the influence of de novo gene mutations on
the incidence of these diseases or quantify the effectiveness of treatments [7, 3, 44].

We studied the epidemiology of a class of genetic disorders, namely the X-linked
recessive diseases; these include the serious diseases hemophilia A, Duchenne/Becker
muscular dystrophy, and Lesch-Nyhan syndrome as well as common and less serious
conditions such as male pattern baldness and red-green colour blindness. Although
genetic diseases are very rare, it has been estimated that millions of people are
affected worldwide [21]. The incidence of an X-linked recessive disease depends on
the disorder’s severity: it ranges from 1 in 3000 newborn males for Duchanne/Becker
muscular dystrophy to 1 in 20 for the red and green color blindness.

Despite their relevance, only a few mathematical models have been specifically
developed to study the dynamics and spread of X-linked recessive diseases in a
population [43, 14]. Related studies analyze the inheritance mechanism of any
gene—not necessarily responsible for a genetic disease—placed on the X chromo-
some [29, 28]; they belong to the field of population genetics. In these works geno-
types frequencies—i.e., the frequency or proportion of genotypes in a population—
are often chosen as model’s variables. Under the hypothesis of infinite population
and starting from a genotypes’ distribution, the genotypes’ proportions in the next
generation are evaluated according to the inheritance mechanism and to the effects
of selection or mutation. The average fitness (see [30] pag. 385-387) is frequently
studied as a suitable Lyapunov function candidate to analyze stability properties
of model’s equilibrium points. Even in this generic scenario seldom contributions
examine the combined effects of selection and mutation on population’s dynamics
and equilibrium (see [31, 39] and reference therein). Furthermore findings of these
researches can not be applied to epidemiological studies. In fact the ultimate goal
of genetic epidemiology is to predict the number of individuals carrying the dis-
ease responsible gene; this number can not be inferred from genotypes’ frequency
distribution when assuming infinite population size.
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We developed a discrete time mathematical model aiming at describing the
spread of X-linked recessive diseases in the population as well as quantifying the
influence on diseases distribution of related factors such as individual’s fitness and
sporadic genetic mutation.

In our preliminary studies [14, 15] we developed an X-linked recessive diseases
model which did not take into account the class of affected women. In [14] we made
the simplifying hypothesis that only sons born from healthy couples could be born
affected owing to spontaneous mutations. Fitness rates were assumed identical for
all individuals, regardless of their health conditions. In that simplified scenario we
proved that the population asymptotically distributes among classes in proportions
depending on the spontaneous mutation rate values. In [15] we studied the influence
of fitness factors on the same model framework and we inferred general system
properties assuming that either selection or mutation apply.

Encouraged by previous results and leveraging on the same framework, we elab-
orated the model we are here presenting which includes the class of affected women
leading to a five state system. We also took into account genetic mutations pos-
sibly occurring to any couples’ offspring and fitness factors varying according to
individual’s health conditions. These features enable to reproduce the inheritance
mechanism and the spread in a population of any X-linked disease.

Although the mathematical model we developed is nonlinear, it is suitable to cer-
tain analyses using classical nonlinear methods to gain information about system
behavior, equilibrium existence and their convergence properties. We remark that
in genetic epidemiology convergence means that a population initialized at some
point (i.e., with an assigned initial allocation among healthy, affected and carrier
people) will move, through a time sequence of generations, to a (possibly) differ-
ent population distribution [10]. Similar analysis have been conducted in general
biological systems: in [4] a Lyapunov method is proposed for finding the invariant
sets of non-negative dynamical systems modeling overpopulation species in ecology,
while in [8] equivalent results are obtained using Jacobian analysis.

The organization of the paper is as follow. In Section 2 we introduce a back-
ground on X-linked recessive diseases, details on spontaneous genetic mutation and
individual’s fitness factors. After giving details on the assumptions and on the
inheritance mechanisms of X-linked diseases we propose a mathematical model in
Section 3 and its equilibrium points are analyzed in Section 4. Simulation results
and a sensitivity analysis are given respectively in Section 5 and 6. Finally, some
discussions and conclusions are presented in Section 7 and 8.

2. The X-linked recessive inheritance mechanism. Clinical expression and
inheritance patterns of X-linked recessive diseases are related to individual gender.
While females possess two X chromosomes, males have one X chromosome and
one Y chromosome; thus females possess two copies of each X chromosome gene,
whereas males only have a single copy of each X and Y chromosome genes [16].

X-linked diseases can be either recessive or dominant [18]. In X-linked recessive
diseases females harbor one copy of each the disease responsible and the normal
gene. As the effects of the abnormal gene are counteracted by those of the normal
gene located on the alternative X chromosome, females usually show no signs of
disease. For that reason, they are called carriers, and can transmit either the
normal or the abnormal gene to their progeny. Thus, to become affected by an
X-linked recessive disease, females have to harbor a copy of the disease-related gene
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Figure 1. Inheritance pattern of X-linked recessive disease

on both X chromosomes. In contrast, males harboring an abnormal gene on their
unique X chromosome are usually affected, even if the disease is recessive. Indeed,
the Y chromosome lacks all X chromosome genes, and is therefore unable to exert
any compensatory effect.

An X-linked recessive disease may be inherited according to the following rules:

• Affected males never spread the disease to their sons, as no male-to-male
transmission of the X chromosome occurs (see Figure 1(a)).

• Affected males pass the abnormal X chromosome to all of their daughters,
who are described as obligate carriers (see Figure 1(a)).

• On average, female carriers pass a defective X chromosome to half of their sons
(who will born affected) and half of their daughters (who become carriers).
The remaining half of their siblings inherit a normal copy of the chromosome
(see Figure 1(b)).

• Affected females are the rare result of an affected male and a carrier or affected
female mating. They are more frequent in less serious X-linked recessive
diseases that do not comprise reproduction capacities.

We refer the reader to [18] for details on clinical expression and inheritance
patterns of X-linked recessive diseases.

Other than the result of the described, well characterized patterns of inheritance,
the current spread of genetic disorders within a given population is influenced by
additional factors, including sporadic mutations and individual’s fitness. Both are
“driving forces” in the transmission mechanism of X-linked recessive diseases and
they will be described in the next section; other factors such as prenatal diagnosis,
population migrations and non random mating slightly affect diseases’ spread [31,
35].

2.1. Spontaneous genetic mutation. A genetic disease that occurs when neither
parent is affected or carrier of any genetic defect is called sporadic mutation or de
novo gene mutations. These cases arise via random genetic mutations within the
DNA sequence; the mutation can occur in the germ-line cell population—i.e. in
eggs and sperm cells—in subjects without any prior genetic defect and it can be
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Table 1. X-linked recessive inheritance probabilities for sons.

PARENTS SONS

father
mother healthy affected

XAY XaY

XAY XAXA 1− γ γ
XAY XAXa 1

2 (1− γ) 1
2 (1 + γ)

XAY XaXa 0 1
XaY XAXA 1− γ γ
XaY XAXa 1

2 (1− γ) 1
2 (1 + γ)

XaY XaXa 0 1

transmitted down to one of the offspring [5]. The genetic mutation can also occur
in the zygote cell, i.e. the initial cell formed when two gametes join.

A sporadic mutation can be the cause of an X-linked recessive disease (whereas
it is unlikely for an autosomal recessive disorder) as a single mutation is enough
in males to cause the disease. Males can be born affected due to a spontaneous
gene mutation as a single abnormal gene copy is enough for the disease to become
manifest; females can also be born carriers owing to random mutations.

Gametes are haployd cells, i.e., they only have one copy of the sex chromosomes
(X or Y). To model the effects of spontaneous mutation on the diseases’ distribution
among the population, it is necessary to quantify the probability of inheriting an
abnormal gene copy due to spontaneous mutation. Mutation may occur in any gene
of the X chromosome, not all of them will cause a disease. From here on we consider
only those mutations that occur on disease related genes. If the effects of de novo
mutations are not considered, a carrier female has half of her gametes carrying a
defective gene copy (Xa) and half hosting a normal gene (XA) while the gametes
of a healthy female contains only normal gene copies. All X gametes of an affected
male carry the abnormal gene copy.

We let γ denote the probability of a relevant mutation in the X chromosone of a
gamete changing a normal gene copy into an abnormal one. Owing to spontaneous
mutation, a healthy male has a probability equal to γ of transmitting a defective
gene copy to his daughters; consequently, 1 − γ is the probability of transmitting
a normal gene copy. In contrast, all the gametes of an affected male host only
defective X chromosomes; hence the daughter of an affected male will receive a
defective X chromosome with probability one.

Similarly, a healthy woman has a probability equal to γ or 1 − γ to transmit
a defective gene copy or a normal gene copy to any of her progeny respectively.
The combinations of these probabilities merged with the female and male X-linked
inheritance pattern lead to the probabilities of having a healthy, carrier or affected
child reported in Tables 1 and 2. Specialized medical literature, (see for example
[12, 37]) report γ ranges in [0, 10−5]; the rate of de novo mutations varies widely
among different geographic regions, and depends on a number of factors, including
environmental exposure to mutagenic agents, breadth of gene sequence and ability
of the cell machinery to actually repair or correct the mutations [13].

Recent studies have shown that the longer is the disease’s responsible gene the
greater is the probability of spontaneous mutations.

Finally we notice that some recent studies suggest different mutation rates be-
tween females and males. This topic is currently discussed in the scientific com-
munity and there are not shared opinions (see for instance [42] [39]); the above
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Table 2. X-linked recessive inheritance probabilities for daughters.

PARENTS DAUGHTERS

father
mother healthy carrier affected

XAXA XAXa XaXa

XAY XAXA (1− γ)2 2γ(1− γ) γ2

XAY XAXa 1
2 (1− γ)2 1

2 (1 + γ − 2γ2) 1
2γ(1 + γ)

XAY XaXa 0 1− γ γ
XaY XAXA 0 1− γ γ
XaY XAXa 0 1

2 (1− γ) 1
2 (1 + γ)

XaY XaXa 0 0 1

differentiation is beyond the purpose of our work which specifically refers to dis-
eases’ responsible gene; hence in what follows we will adopt the mutation rate γ to
both females and males changing the non defective gene A into a.

2.2. Individual fitness. The contribution of an individual to the next generation
varies according to the individual’s health and it is usually referred as individual’s
fitness [30, 33]. Affected individuals may be in various ways disadvantaged to re-
produce compared with healthy ones: this might be due to a lower likelihood to
survive, hence to reach reproduction age, or to reduced fertility. These individuals,
accordingly, will have relatively less children compared with healthy ones thus re-
ducing the probability of passing the disease responsible gene to the next generation.
This selective difference mechanism leads to a gradual evolution in the population’s
proportions among healthy, affected and carriers.

Following [32], the fitness factors wi are the product of the viability, i.e., the
probability that an individual survives until the reproduction age, and the fertility,
i.e., the average number of individual progeny. Hence the fitness factor wi—also
called fertility factor—models reproduction capacity of individuals of class i accord-
ing to their health conditions. The parameters wi are positive and are bounded by
clinical considerations: the more severe the disease the smaller are their values in
affected individuals.

3. Mathematical model of X-linked recessive diseases. In an attempt to
further improve the predictive value of genetic disease’ spread within a population,
we designed a detailed model of the epidemiology of X-linked recessive diseases. Our
model fits in the category of structured models [16, 17]. The studied population
is divided into homogeneous groups in relation to some major parameters (such as
subject’s age, sex or health conditions).

We divide the population into five classes, according to sex and health conditions
(namely healthy and affected men, healthy, carrier and affected women) and, unlike
other work in the literature, we choose the number of individuals in each class as
system variables. Thus we introduce variables x1 and x2 to denote the number of
healthy and affected males respectively and x3, x4 and x5 to denote the number
of healthy, carrier and affected females. This allows to reproduce the population
distribution in the five classes at each generation and to predict the number of
healthy, affected and carrier individuals at time.

We make the following assumptions:

• time is discrete and denotes generations;
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• generations are non-overlapping thus each person breeds with a person of the
same generation;

• the population is constant and equal to 2N , that is,

x1(k) + x2(k) + x3(k) + x4(k) + x5(k) = 2N ∀k; (1)

• in each generation there is an equal number of males and females, that is,

x1(k) + x2(k) = x3(k) + x4(k) + x5(k) ∀k. (2)

• The number of sons (equal to number of daughters) of each couple varies
according to parents’ health conditions and this is modeled through the fitness
factors wi for i = 1 . . . 5 that will be illustrated below.

• Spontaneous genetic mutations are modeled according to their probability of
occurrence described in Section 2.1.

The number of males born from a person of class i ∈ {1, 2} with a person of class
j ∈ {3, 4, 5} is:

1

2
wiwj

xi
(x1 + x2)

xj
(x3 + x4 + x5)

(x1 + x2 + x3 + x4 + x5)

=
wiwjxixj

N
(3)

where wi is the fitness factor of a person of class i.
For example consider a couple formed by a healthy father (an individual of class 1)

and a healthy mother (an individual of class 3); γ sons of this couple (on average)
will be affected and γ̃ will be healthy. Consider all couples of class 1, 3 in the
population; the number of their healthy sons at the next generation will increase of

γ̃

2
w13

x1
(x1 + x2)

x3
(x3 + x4 + x5)

(x1 + x2 + x3 + x4 + x5). (4)

In view of the assumptions (1) and (2) system dynamics can be written using
one state variable of the male population (i.e., x1 or x2) and two variables of the
female population (i.e., two among x3, x4 or x5). In the following we will restrict
our analysis to healthy males and healthy and carrier females dynamics.

Let x = [x1 x3 x4]T be the state variables vector. The population dynamics are
described through the following nonlinear, discrete-time system:

x+ = f(x) (5)

where x+(k) := x(k + 1), f = [f1 f3 f4]T and

f1(x) =
1

N

[
w13γ̃x1x3 +

1

2
w14γ̃x1x4 + w23γ̃(N − x1)x3

+
1

2
w24γ̃(N − x1)x4

]
(6a)

f3(x) =
1

N

[
w13γ̃

2x1x3 +
1

2
w14γ̃

2x1x4

]
(6b)

f4(x) =
1

N

[
2w13γγ̃x1x3 + w23γ̃(N − x1)x3
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+ w15γ̃x1(N − x3 − x4) +
1

2
w24γ̃(N − x1)x4

+
1

2
w14(1 + γ − 2γ2)x1x4

]
(6c)

with

γ̃ := 1− γ and wij := wiwj .

Term (4) is the first element in the right side of equation (6a); all other terms
are derived with similar reasoning.

System (5)-(6) has been designed according to the inheritance pattern of X-linked
recessive disease described in Section 2, the spontaneous mutation occurrence in
Section 2.1, and given the newborn children as in (3).

We explicitly note that negative solutions of the dynamic equations (5)-(6) are
not meaningful for an epidemiological model. The positivity of the state trajectories
of system (5)-(6) is guaranteed assuming wij within appropriate sets that may be
derived exploring systems equation; an example of how these sets may be inferred
is reported in the Appendix 8.

For the analysis in the following sections, it is helpful to rewrite system (5)-(6)
in the form reported below:

x+ = Ax+ x1Bx (7)

with

A =

 0 a12 a13
0 0 0
a31 a32 a33

 , B =

0 b12 b13
0 b22 b23
0 b32 b33

 (8)

where:

a12 = a32 = w23γ̃

a13 = a33 =
1

2
w24γ̃

a31 = w15γ̃

b12 =
1

N
γ̃(w13 − w23)

b13 =
1

2N
γ̃(w14 − w24)

b22 =
1

N
w13γ̃

2

b23 =
1

2N
w14γ̃

2

b32 =
1

N
[2w13γγ̃ − w23γ̃ − w15γ̃]

b33 =
1

N

[
1

2
w14(1 + γ − 2γ2)− w15γ̃ −

1

2
w24γ̃

]
.

4. System’s equilibrium analysis. System (7) may admit many equilibrium
points; according to [38] less than 23. One is the zero vector x̄ = (0, 0, 0) which
implies x2 = x5 = N ; when a population reaches this equilibrium, individuals are
all affected.

Other equilibrium states depend on wi, i = 1, . . . , 5, and γ; if one component of
the equilibrium point is either negative or greater than N , then it is unfeasible due
to model’s hypothesis.
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Let x̄ be a generic equilibrium point for system (7) and define y , x − x̄. We
rewrite (7) as

y+ + x̄ = A(y + x̄) + (y1 + x̄1)B(y + x̄).

Since x̄ = Ax̄+ x̄1Bx̄ we obtain

y+ = Ãy + y1By (10)

where

Ã = A+

x̄3b12 + x̄4b13 x̄1b12 x̄1b13
x̄3b22 + x̄4b23 x̄1b22 x̄1b23
x̄3b32 + x̄4b33 x̄1b32 x̄1b33

 .
Note that convergence of system (10) to ȳ = (0, 0, 0) corresponds to convergence

of system (7) to x̄.

Theorem 4.1. If matrix Ã is Schur then, the equilibrium state x̄ of system (10) is
asymptotically stable with

Λ = {x | (x− x̄)TH(x− x̄) < r} (11)

as a region of attraction where

r = δ2/λ4 δ :=

√(
b
λ1

)2
+ λ1

λ3
− b

λ1

λ1 := λmin(H−1G) λ2 := 1/λmin(H)
λ3 := λmax(H−1BTHB) λ4 := λmax(H−1CCT )

b := λ2‖BTHÃ‖ C = [1 0 0]T

and G and H are positive definite symmetric matrices satisfying

ÃTHÃ−H = −G. (12)

The proof is carried out considering the following Lyapunov function

V (y) = yTHy with y = x− x̄. (13)

Detailed demonstration is reported in the Appendix 8.

Remark 1. Theorem 4.1 for equilibrium point x̄ = (0, 0, 0) requires that matrix
A is Schur; ranges of the fertility factors that guarantee this condition are given in
the Appendix 8.

4.1. Stability analysis of the origin. Convergence of system (7) to the equilib-
rium point x̄ = (0, 0, 0) coincides with the epidemiological situation where all the
individuals are affected. Since this is not desirable it is useful to know the domain
of attraction of x̄ = (0, 0, 0) and avoid it. As matter of fact any point in this region
represents a population distribution among healthy, affected and carriers individu-
als that leads, towards generations, to all affected people. In what follows our gaol
is to delineate a wider domain of attraction for x̄ = (0, 0, 0) compared to Λ in Theo-
rem 4.1 and explore global stability. To this aim, we propose a candidate Lyapunov
function for the zero equilibrium point of system (7); we will show through simula-
tion that this Lyapunov function leads to a larger domain of attraction compared
to Λ.

In addition, we give conditions for global asymptotic stability of x̄ = (0, 0, 0) in
terms of fertility factors wij .

Consider the following candidate Lyapunov function:

V (x) = αx1 + βx3 + µx4 (14)
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with α, β and µ > 0. It holds:

∆V = V (x+)− V (x) = (µa31 − α)x1 +
[
(α+ µ)a12

− β
]
x3 +

[
(α+ µ)a13 − µ

]
x4 + x1

[
(αb12 + βb22

+ µb32)x3 + (αb13 + βb23 + µb33)x4

]
. (15)

4.1.1. Local stability analysis. The sufficient conditions for local stability (i.e., on
linear terms in (15)) are:

µa31 − α < 0→ w15 <
α

µγ̃
(16a)

(α+ µ)a12 − β < 0→ w23 <
β

γ̃(α+ µ)
(16b)

(α+ µ)a13 − µ < 0→ w24 <
2µ

γ̃(α+ µ)
. (16c)

Let’s assume that (16) hold; equation (15) can be rewritten as:

∆V = (µa31 − α)x1

+
[
(α+ µ)a12 − β + (αb12 + βb22 + µb32)x1

]
x3

+
[
(α+ µ)a13 − µ+ (αb13 + βb23 + µb33)x1

]
x4

in order to have ∆V < 0, x1 should verify the following conditions:
x1 <

β − (α+ µ)a12
αb12 + βb22 + µb32

=
k1
k2

x1 <
µ− (α+ µ)a13

αb13 + βb23 + µb33
=
z1
z2

with k1 > 0 and z1 > 0. Depending on values of k2 and z2 we can derive the domain
of attraction Φ of the equilibrium point (0, 0, 0):

(i) k2 > 0, z2 > 0:

Φ =
{
x
∣∣∣x1 < min

(
k1
k2
,
z1
z2
, N

)}
; (19)

(ii) k2 > 0, z2 < 0: since z1 > 0 the domain of attraction is given by

Φ =
{
x
∣∣∣x1 < min

(
k1
k2
, N

)}
; (20)

(iii) k2 < 0, z2 > 0: since k1 > 0 the domain of attraction is identified by

Φ =
{
x
∣∣∣x1 < min

(
z1
z2
, N

)}
; (21)

(iv) k2 < 0, z2 < 0: the equilibrium point is globally asymptotically stable.

Conditions on k2 and z2 in (i), (ii), (iii) or (iv) depends on w13 and w14 values;
for example, holding (16), k2 > 0 and z2 > 0 if both of the following two conditions
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apply:

w13 >
α+ β

γ̃(α+ βγ̃ + 2µγ)

w14 >
2(α+ µ)

αγ̃ + βγ̃2 + µ(1 + γ − 2γ2)
.

Proposition 1. Assume that wij verify (16) and one of conditions in (i), (ii) or
(iii) holds, then the equilibrium point x̄ = (0, 0, 0) of system (7) is asymptotically
stable within Φ.

4.1.2. Global stability analysis.

Proposition 2. If wij are small enough such that constraints (16) hold and

w13 <
(α+ µ)w23 + µw15

α+ βγ̃ + 2µγ
(23a)

w14 <
[(α+ µ)w24 + 2µw15]γ̃

αγ̃ + βγ̃2 + µ(1 + γ − 2γ2)
, (23b)

then system (7) is globally asymptotically stable about (0, 0, 0).

Proof. Constraints (23) on wij assure that k2 < 0, z2 < 0.

Remark 2. So far we have introduced two Lyapunov functions; the first in (13) is
suitable to analyze convergency properties of any equilibrium in system (10)—that
is equivalent to system (5)-(6)—and gives a domain of attraction for the analyzed
point. After that we designed the Lyapunov function (14) to specifically analyze
the zero equilibrium point convergency properties. Compared to (13) the Lyapunov
function (14) allows to:

1. Obtain the sufficient conditions for system’s global asymptotic stability re-
ferred to x̄ = (0, 0, 0).

2. Avoid conservative relations, such as norm and eigenvalue inequalities, for
determining the domain of attraction; this could imply that region Φ is larger
than Λ although we were not able to formally prove this.

3. Relax the conditions of local stability for two state variables, namely x3 and
x4.

4.2. Choosing optimal values of the parameters α, β and µ. In this section
we present a procedure to select the parameters’ value α, β, µ of the Lyapunov
function in (14). Due to the critical role of the zero equilibrium point, we choose
these values such that the domain of attraction Φ of the equilibrium point (0,0,0)
is maximized.

The optimal values α∗, β∗ and µ∗ of the parameters are obtained by solving the
following optimization problem:

max
α,β,µ

Φ(x, α, β, µ)

subject to

µa31 − α < 0

(α+ µ)a12 − β < 0

(α+ µ)a13 − µ < 0

α, β, µ > 0.
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Table 3. Parameters values.

N γ w13 w14 w15 w23 w24 r
scenario 1 150 10−4 0.5 0.45 0.1 1 0.9 11232
scenario 2 150 10−4 0.5 1 0.5 0.5 1 8284
scenario 3 150 10−4 0.63 1.4 0.14 0.7 1.5 2121

Table 4. Parameters values for Lyapunov function in (14).

α∗ β∗ µ∗ x1
scenario 1 0.0917 0.9999 0.9072 150
scenario 2 0.2486 0.3729 0.4953 150
scenario 3 0.0247 0.1359 0.1766 63.6

The objective function to be maximized is one of the regions of attraction (19), (20)
and (21) according to k2 and z2 signs; the constraints are given by the sufficient
conditions (16) for the local stability of the zero equilibrium point.

Genetic Algorithm (GA) method has been exploited for solving this constrained
nonlinear optimization problem which is not well suited for standard optimization
methods. GA peculiar mechanisms to avoid local minima make the use of a GA
reasonable in facing problems with complex nonlinear objective function (like in our
case) in place of gradient based methods which are designed to be fast and efficient
for finding local minima.

5. Simulations. In what follows we present some simulations of system (7) that
is equivalent to (5)-(6). We show results obtained in Section 4 on the local stability
of the equilibrium point x̄ = (0, 0, 0); namely we evaluate the domains of attrac-
tion Λ and Φ obtained through the Lyapunov functions (13) and (14) respectively.
Moreover we give results related to a non zero equilibrium and show its conver-
gency according to Theorem 4.1. Finally we depict the trajectories for some of the
analyzed scenarios.

5.1. Domain of attraction for x̄ = (0, 0, 0). We assign three different sets of
values to wi parameters, reported in Table 3; they have been chosen such that
matrix A in system (7) is Schur (i.e., conditions (27) are satisfied).

Using Theorem 4.1 we determine the domain of attraction Λ of the equilibrium
point x̄ = (0, 0, 0) according to (11); Λ is an ellipsoid centered in the equilibrium
point with semi-principal axes equal to the square roots of the reciprocals of ma-
trix H eigenvalues multiplied by r. Matrix H is the solution of discrete Lyapunov
equation (12) where matrix G has been chosen equal to the identity matrix. Fig-
ure 2 depicts the domains of attraction Λ for each scenario in Table 3, where the
corresponding values of r are reported.

To apply results in Proposition 1 we evaluate the coefficients of Lyapunov func-
tion (14) for each scenario in Table 3. To this aim we solve the optimization problem
in Section 4.2 and we compute the domains of attraction Φ = {x|x1 < x1}; the ob-
tained α∗, β∗, µ∗ and x1 for the three scenarios are reported in Table 4.

Figure 3 depicts the domains of attraction Φ compared to the ellipsoids Λ. Note
that in each of the reported scenarios Φ is sensibly greater than Λ; indeed for the
first two scenarios Φ corresponds to system states space.
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Figure 2. Region of attraction corresponding to wi parameters in
Table 3.

Figure 3. Region of attraction corresponding to wi parameters in
Table 3 using the two Lyapunov functions.

5.2. Equilibrium point other than x̄ = (0, 0, 0). We consider w1 = 0.9, w2 =
2, w3 = 1, w4 = 1 and w5 = 0.5, γ = 10−4 and N = 150; for this choice of
parameters system (5)-(6) has the following two equilibrium points: x̄A = (0, 0, 0),
x̄B = (72.5, 26.5, 68.9). Note that these parameters do not satisfy (27); thus matrix
A in system (7) is unstable, and system (5)-(6) will not converge to x̄A. Finally

matrix Ã in system (10) evaluated at x̄B is stable, and Theorem 4.1 applies. The
corresponding domain of attraction Λ has r = 341.45 and it is depicted in Figure 4.

5.3. State portrait. Figure 5 depicts trajectories of system (5)-(6) in state space
with the wi parameters assigned according to the scenario 1 in Table 3. The initial
conditions are chosen within the corresponding domain of attraction shown in Figure
2; as expected, all trajectories asymptotically go to zero.

Figure 6 represents trajectories of system (5)-(6) and convergency to x̄B when
initial conditions are inside the domain of attraction obtained in Section 5.2.
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Figure 4. Region of attraction of x̄B = (72.5, 26.5, 68.9) and sys-
tem’s parameters as in Section 5.2.

Figure 5. Trajectories with different initial conditions and wi in (27).

6. Sensitivity analysis. Local sensitivities have been performed to analyze the
dependency of the dimension of the domain of attraction Λ in (11) on system’s
fitness factors. Local sensitivity analysis is performed in a static way; the output
obtained changing each parameter in a predefined interval and with constant step
are evaluated. Namely we quantify the influence of couples’ fitness factors wij on r
in (11). The analysis is performed perturbing one parameter at time on M different
values equally distributed on an interval. We set wij = w̄ij , and obtain the nominal
trajectory rnom; rpert is obtained perturbing one parameter from its nominal value.
For each perturbed parameter, we compute the following function:

∆El =
(
rpertl − rnom

)2
,

where l = 1, . . . ,M denotes the values of the considered perturbed parameter.
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Figure 6. Trajectories converging to x̄B .

To compute the nominal trajectory we consider γ = 10−4, N = 150 and we fix the
nominal conditions [w̄13, w̄14, w̄15, w̄23, w̄24] = [0.5, 0.5, 0.5, 0.5, 0.5]. The perturbed
trajectories are obtained letting wij vary in the range [0, 1.3], with a constant step of
0.01. Only one parameter varies per time; all others are set at their nominal value.
To each combination of wij values corresponds a set of system’s equilibrium points
that always include x̄ = (0, 0, 0); in order to perform a meaningful comparison
between the domains of attraction we only referred to the Λ of the zero equilibrium.
The range in which the wij vary assures that the matrix A is always Schur.

Figure 7 depicts the sensitivity functions with respect to each wij . A flat sen-
sitivity curve represents a little influence of the parameter on the output; a steep
curve implies a great influence. Function r in (11) appears to be most sensitive
to w15 and then to w24, that are related to the sufficient conditions for the local
stability of the system (see equation (27)).

7. Discussion. Genetic epidemiological studies have the ultimate goal of estimat-
ing the spread of a disease in a population. This is quite a recent and rapidly
expanding research filed, but the implications on individual or population health
are still unclear [36]. Findings in genetic epidemiology are exploited to design ge-
netic screening campaign aiming at assessing, through DNA sequencing tests, how
many people are affected or carry the disease’s responsible gene. Usually females
carring a defective gene copy don’t show any symptoms of the disease, thus their
number is usually hard to estimate. State x4 of model (5)-(6) predicts the number
of carrier in a population and may be successfully applied to genetic epidemiology.

Genetic epidemiology may also contribute to measure the effect of environment’s
risk factors on disease spread. Urban areas exposed to toxins, radiations or other
agents are periodically examined; sampled data on the spread of genetic diseases
are compared with predicted values determined through mathematical models. By
simulating model (5)-(6) one can evaluate the effects of fitness factors variations on
spread of the disease. Simulations results may help in taking decisions on appropri-
ate corrective strategies aiming at preventing the spread of the disease.
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Figure 7. Static sensitivity analysis with respect to wi.

Finally technological and other advances will allow the potential of genetic epi-
demiology to be revealed over the next few years, and the establishment of large
population-based resources for such studies (biobanks) should contribute to this
endeavor.

Consider an X-linked disease in an assigned population 2N ; parameters in model
(5)-(6)—the mutation rate γ of the disease responsible gene and the fertility factors
wi i = 1, . . . , 5— can be derived through clinical considerations or found in spe-
cialized medical literature. Applying the results on global asymptotic stability of
equilibrium x̄ = (0, 0, 0), one can conclude that the population will asymptotically
converge to all individuals affected if the assigned values of wi verify (16) and are
within the range defined in (23). For the other equilibrium points of system (5)-(6)

one can verify if matrix Ã is stable and derive the corresponding region of attraction
using Theorem 4.1 results. In what follows we apply our model and the results on
stability analysis to two X-linked recessive diseases: red and green color blindness
and Hemophilia A.

7.1. Application 1. Color blindness, or color vision deficiency, is the inability or
decreased ability to see color, or perceive color differences, under normal lighting
conditions. Color blindness affects a significant percentage of the population. The
most common cause of the disease is a fault in the development of one or more sets
of retinal cones that perceive color in light and transmit that information to the op-
tic nerve. This type of color blindness is usually an X-linked condition as genes that
produce photopigments are carried on the X chromosome; if some of these genes
are missing or damaged, color blindness will be expressed in males with a higher
probability because in females a functional gene on only one of the two X chro-
mosomes is sufficient to yield the needed photopigments. According to statistical
datas, [23] and [1], color blindness affects a significant number of people, although
exact proportions vary among groups. Isolated communities with a restricted gene
pool sometimes produce high proportions of color blindness, including the less usual
types. Examples include rural Finland, Hungary, and some of the Scottish Isles.
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We apply our model to study the red and green color blindness diffusion in Scot-
tish Isles. As reported in the National Records of Scotland, in 2011 Scottish Isles
had a population of 87252. According to data in [34], the mutation rate for red
and green color blindness (γ in our model), is approximately 2 · 10−5. Red and
green color blindness does not effect individual’s ability to survive or procreate
thus unitary fitness factors (wi = 1, i = 1, . . . , 5) can be assigned. Substituting
the above parameters’ values in system (5)-(6) the following equilibrium points are
found: x̄A = (0, 0, 0), x̄B = (40231.5, 37100.5, 6263.7). Matrix A in system (7)
is not Schur, thus model (5)-(6) will not converge to equilibrium x̄A, that is the
population will never converge to the state where all people are affected. Moreover
matrix Ã in (10) is Schur if evaluated at x̄B . Applying Theorem (4.1), the domain
of attraction Λ for equilibrium x̄B is Λ = {x | (x − x̄)TH(x − x̄) < 1.23 · 106}. In-
terestingly enough the distribution among healthy, affected and carrier people in
equilibrium x̄B is very close to the one in literature [1].

7.2. Application 2. Hemophilia A disease, is a hereditary bleeding disorder caused
by a lack of blood clotting factor VIII, a protein encoded by FVIII gene placed on
the X chromosome. It is largely an inherited disorder, that is the spontaneous gene
mutation rate of the diseases (γ in our model) can be considered negligible [6];
therefore we can set γ = 0. Affected males show a reduced reproduction capacity
related to the severity of the disease symptoms; carrier females do not usually
show any sign of the disease [9]. Due to the severity of the disease, one can assign
fertility factors equal to zero to affected individuals (w2 = w5 = 0); based on clinical
observations the fertilities factors of the other classes can be assigned as follows:
w1 = w3 = 1 and w4 = 0.6. We studied the diffusion of the hemophilia A in
the Italian population (2N in our model) that was equal to 59685228 individuals
in 2012 (see [20]). Substituting the above parameters’ values in system (5)-(6),
the following equilibrium points are found: x̄A = (0, 0, 0), x̄B = (N,N, 0). The
domain of attraction of equilibrium x̄A = (0, 0, 0) can be derived applying results
in Proposition 1. We compute the coefficients of Lyapunov function (14) by solving
the optimization problem in Section 4.2 through GA, obtaining the optimal values
α∗ = 0.01, β∗ = 4.83 and µ∗ = 2.51 and we compute the domain of attraction

Φ = {x
∣∣∣x1 < 5.95 ∗ 107}. Indeed for almost any initial population distribution

system (5)-(6) will converge to x̄A; different fertility factors datas, gathered from
direct population analysis, could lead to a different population distribution.

8. Conclusions. We developed a discrete time nonlinear model for X-linked re-
cessive diseases aiming at describing the spread of such diseases in a population.
The model accounts for de novo mutations on the inheritance pattern and dis-
tinct fitness factors. Under the assumption of constant population size we analyzed
system’s properties and performed stability analysis of equilibrium points through
Lyapunov second method.

Extensions of the present work should consider sensitivity analysis to parameters
variations as well as the effect on the results when weakening some of the model
assumptions such as the hypothesis that the population has a constant size or an
equal number of females and males.

Future developments will assign different de novo gene mutation rates to females
and males as well as include de novo mutation possibly changing a defective gene
into a normal one.
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Appendix.

Proof of Theorem 4.1.

Proof. Consider the candidate Lyapunov function:

V (y) = yTHy with y = x− x̄.
Then,

∆V (y) = V (y+)− V (y)

= [Ãy + y1By]TH[Ãy + y1By]− yTHy

= yT (ÃTHÃ−H)y + 2yTBTHÃyT y1 + yTBTHByy21

= −yTGy + 2yTBTHÃyy1 + yTBTHByy21

≤ −yTGy + 2‖y‖2‖BTHÃ‖|y1|+ yTBTHBy|y1|2. (25)

Since HT = H > 0, we can use the following as upper bounds for terms in inequality
(25):

−yTGy ≤ −λ1yTHy λ1 := λmin(H−1G)
‖y‖2 ≤ λ2yTHy λ2 := 1/λmin(H)
yTBTHBy ≤ λ3yTHy λ3 := λmax(H−1BTHB).

Substituting these inequalities into (25) leads to:

∆V ≤ −V (y)(λ1 − 2b|y1| − λ3|y1|2) (26)

where b := λ2‖BTHÃ‖. One may verify that λ1 − 2b|y1| − λ3|y1|2 > 0 if and only
if |y1| < δ where

δ :=

√(
b

λ1

)2

+
λ1
λ3
− b

λ1
> 0.

Since |y1|2 = (Cy)TCy where C = [1 0 0]T and HT = H > 0, exploiting properties
on eigenvalues of symmetric and positive definite matrices we have

|y1|2 ≤ λ4yTHy λ4 := λmax(H−1CCT ).

Hence, whenever V (y) < r = δ2/λ4 we have |y1| < δ. It now follows from (26) that

∆V (y) < 0 when 0 < V (y) < r.

Conditions for matrix A to be Schur. When x̄ = (0, 0, 0), matrix Ã in system
(10) is equal to matrix A in (8).

Matrix A in (8) is Schur iff :

γ̃w24 + γ̃2w15w24 < 2. (27)

Proof. The characteristic polynomial of A is given by

p(λ) = det(λI −A) = λ3 − a13λ2 − a13a31λ.
Since a13, a31 ≥ 0, the criterion for a Schur polynomial reduces to

a13a31 < 1

a13 < 1− a13a31
which are equivalent to

a13 + a13a31 < 1
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that is,
γ̃w24 + γ̃2w15w24 < 2.

Conditions on wij for positiveness of system (5)-(6). In what follows we prove
that system (5)-(6) is positive if the system is initialized in a positive state and if
wij are chosen within an appropriate set.

In particular we detail the proof for f1(x); analogous reasoning gives the condi-
tions for the positiveness of f3(x) and f4(x).

Let’s assume wij ≤ 1 ∀i, j, w1 ≥ w2, w3 ≥ w4, γ ≤ 1 and the initial states
0 ≤ xi(0) ≤ N , i = 1, 3, 4; if we rewrite (6a) as:

f1(x) =
1

N

[
w3γ̃(w1 − w2)x1x3 +

1

2
w4γ̃(w1 − w2)x1x4 + w23γ̃Nx3 +

1

2
w24γ̃Nx4

]
we can deduce that, holding the previous assumptions, x1(1) ≥ 0. Consider now

N − f1(x) = N − γ̃

2N

[
(2w3x3 + w4x4) (Nw2 + (w1 − w2)x1)

]
≥ N − γ̃

2N

[
w3(2x3 + x4) (Nw2 + (w1 − w2)x1)

]
≥ N − γ̃

2N

[
2w3N (Nw2 + (w1 − w2)N)

]
= N − γ̃w13N (29)

Under the previous assumptions the condition N − f1(x) ≥ 0 holds, hence x1(1) ≤
N . By mathematical induction, we prove 0 ≤ x1(k) ≤ N , ∀k > 0.

Note that conditions on wij do not affect the comprehensiveness of our epidemi-
ological model, since they simply require that affected individuals show a fitness
factor less than or equal to healthy ones.
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