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Abstract. Multi-host pathogens infect and are transmitted by different kinds

of hosts and, therefore, the host heterogeneity may have a great impact on the

outbreak outcome of the system. This paper deals with the following problem:
consider the system of interacting and mixed populations of hosts epidemiolog-

ically different, what would be the outbreak outcome for each host population

composing the system as a result of mixing in comparison to the situation with
zero mixing? To address this issue we have characterized the epidemic response

function for a single-host population and defined a heterogeneity index mea-

suring how host systems are epidemiologically different in terms of generation
time, basic reproduction number R0 and, therefore, epidemic response func-

tion. Based on the individual epidemiological characteristics of populations,
with heterogeneities and mixing affinities, the response of subpopulations in

a multi-host system is compared to that of a single-host system. The case of

a two-host system, in which the infection transmission depends solely on the
infection susceptibility of the receiver, is analyzed in detail. Three types of

responses are observed: dilution, amplification or no effect, corresponding to

lower, higher or equal attack rates, respectively, for a host population in an
interacting multi-host system compared to the zero-mixing situation. We find

that no effect is generally observed for zero heterogeneity. A dilution effect is

always observed for all the host populations when their individual R0,i < 1.
Whereas, when at least one of the individual R0,i > 1, then the hosts “i”

with R0,i > R0,j undergo a dilution effect while the hosts “j” undergo an

amplification effect.

1. Introduction. Consider the mixing of two populations of hosts epidemiologi-
cally different with respect to the infection and transmission of a pathogen. What
would be the outbreak outcome (e.g., in terms of attack rate) for each host popu-
lation as a result of mixing in comparison to the situation with zero mixing? To
address this question one would need to define what is meant by epidemiologically
different and how mixing takes place.

To proceed, let’s consider situations where mixing of epidemiologically differ-
ent populations of hosts occurs. Such situations involve generalist (as opposed to
specialist) pathogens capable of infecting multiple hosts and of being transmitted
by multiple hosts [33]. Many of such pathogens cause zoonoses such as influenza,
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sleeping sickness, rabies, Lyme or West Nile, to cite a few [33]. In this paper, we
focus on a specific example of a multi-host pathogen, the highly pathogenic avian
influenza virus (HPAI) H5N1 - a virus considered as a potential pandemic threat
by the scientific community.

The avian influenza virus can infect many hosts: wildfowl and domestic bird
species, with occasional spill-over to mammals (including humans); the severity
degree of the disease being species dependent: highly lethal (swans, chicken), few
deaths (Common Pochards, humans), and asymptomatic (Mallards). Following the
re-emergence of the highly pathogenic strain of H5N1 in China 2005 [6, 7, 28], a
series of outbreaks spread throughout Western Europe, including France in 2006 [13,
16, 20]. The ensuing epizootics showed a need for adapted surveillance programs
and a better understanding of the epidemiology of HPAI H5N1 [18]. In this context,
this study is part of the French national project for assessing the risk of exposure of
domestic birds and poultry farms to avian influenza viruses following introduction
by wild birds; although human activities and commercial exchanges are also main
sources for introduction of avian influenza [15, 17, 27, 30].

The motivation for this study stems from the 2006 HPAI H5N1 outbreak that
took place in France, in the Dombes wetlands. The area is one of the two main
routes used by birds migrating across France, and an important stopover, breeding
and wintering site for many wild waterfowl species. The outbreak was of minor
size and affected mainly wild Anatidae bird species [13, 16, 20]: Common Pochards
(Aythya ferina) and Mute Swans (Cygnus olor). Although the environmental con-
ditions were conducive to the spread of the virus in the Dombes’ ecosystem [31, 34],
it was suggested that the heterogeneity in the response to H5N1 viral infection of
different bird species was a possible explanation for the reduced size of the out-
break [13]. Some studies have shown that averaging together different groups of
a population, can only lead to a decrease (or no change) observed in the global
reproduction number, compared to when no group structure of the population is
considered [1]. Ref. [2] pointed out that the variance in the mixing rate between
populations can have a substantial effect one the outbreak outcome. Other studies
show that for multi-host pathogens, increasing host or species diversity may lead
to either reduction or enhancement of the disease risk [12, 24]. Therefore, address-
ing the question posed in the beginning of this section would provide insights and
allow advances in the understanding of how avian influenza may spread in such
ecosystems.

Our aim in this paper is to use a SIR compartmental model to investigate the ef-
fect of host heterogeneity on the disease outbreak in a multi-host population system.
More precisely, we study how the outbreak outcome for each constituent population
of hosts is affected in a multi-host population system with mixing in comparison
with the single-host situation where individual populations are not mixed. The re-
mainder of the paper is as follows. First, the key parameters and response functions
characterizing the outbreak outcome are defined and determined for a single-host
system in Section 2, and next the defined parameters are used to define the epidemi-
ological heterogeneity in Section 3. Second, Section 4 is devoted to studying how
the outbreak outcome in a multi-host population system is changed, due to mixing
of epidemiologically heterogeneous hosts, compared to the outbreak outcomes in a
single-host situation. Finally, the paper ends with the application of the results in
the context of the Dombes area and concluding remarks in Section 5.
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2. Single-host system. In this section we define the key characteristic parameters
of the interacting population-pathogen system and the response function character-
izing the outbreak outcome for such a system. To this end, consider a single species
or single-host system in which the dynamics of an infection induced by a pathogen
can be described within the framework of the compartmental susceptible-infected-
recovered (SIR) model ([25]) in which susceptible individuals, S, become infected
upon contact with infected ones at a rate λ, infected individuals, I, remain in-
fected and are infectious for a mean duration of 1/α and they may recover from the
infection to become recovered individuals, R, with a probability x.

At any time t, the size of the population is N = S+ I+R and the SIR dynamics
is described by the system of differential equations given by,

dS

dt
= −λS

dI

dt
= λS − αI

dR

dt
= xαI

(1)

where λ = pβI = βI/N is the force of infection with p = 1/N denoting the contact
or encounter probability between two individuals, β is the rate of infection trans-
mission from an infected to a susceptible and x the fraction of infected individuals
that recover. As we will be dealing with situations of short-lived outbreaks, no pop-
ulation renewal by ways of either reproduction or immigration will be considered in
this analysis.

In writing Eq.(1) we have used the homogeneously mixing hypothesis and con-
sidered that the transmission of infection is frequency-dependent (i.e. the force
infection is proportional to the inverse of the population size) like for the true
mass-action kinetics [8]. For x < 1, a proportion (1− x) of the infected population
dies, while for x = 1, the Eq.(1) reduces to the classical SIR model which has been
thoroughly studied in the literature [2, 8, 25].

2.1. Characteristic parameters. The above SIR model is characterized by two
(non independent) quantities: the generation time g = 1/α and the basic reproduc-
tion number (i.e., the mean number of secondary cases generated by an index case
in a population of susceptible individuals during the entire period of infectiousness)
given by [3]1,

R0 =
βN0

β + αN0
, (2)

1The derivation in Ref. [3] goes as follow. Consider a single infected individual applying a
constant force of infection λ to a naive population of size N0. The probability that any susceptible

individual of the population becomes infected at time t is given by, u(t) = 1 − e−λt, such that
u(t = 0) = 0 at the beginning of the exposure of the naive population to the infectious individual

and u(t→∞) = 1 in the case both the infectious duration and the contact between the infectious

individual and the naive population last for a very long time. By the definition of R0, the total
expected number of new infected individuals originated from contact with a single infected one is

given by the product of the population size times the probability u(t) averaged over the distribution

ψ(t) of infectious durations as, R0 = N0

∫∞
0 u(t)ψ(t) dt. Now, using an exponential distribution,

ψ(t) = αe−αt, we found, R0 = λN0/(λ+ α). The classical expression, R0 = λN0/α, corresponds

to the λ� α limit, and, as it should be, R0 is always smaller than N0 and reaches its maximum
R0 = N0 at the λ→∞ limit. To obtain Eq.(2) we use λ = β/N0 (as given below Eq.(1) for I=1).

Note that Eq.(2) reduces to R0 = β/α in the αN0 � β limit.
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Figure 1. Cumulative distribution function (cdf) for the attack
rate (left panel) and the reduced extinction time (right panel), for
x = 0 and R0 = 0.5 (dashed line), 1 (dotted line), and 2 (solid
line).

where N0 = N(t = 0) is the initial population size. Both g and R0 parameterize the
SIR dynamics in Eq.(1) by providing the time and magnitude scales of the infection
outbreak. The infection will takeover for R0 > 1 (major outbreaks) while it will cool
down to zero for R0 ≤ 1 (minor outbreaks). In general, the R0 carries information
on the magnitude of the contact-transmission over a period of g.

2.2. Response function. To define a response function characterizing the out-
break outcome of the SIR model, we consider the following two indicators:

• the reduced persistence or extinction time, τ : starting at t = 0 the system
in an initial state with infected individuals I > 0, we denote by tp the time
elapsed until the system reaches the state I = 0 for the first time (representing
the persistence of infection in the system until to extinction). We define by
the reduced persistence or extinction time the ratio of tp by the generation
time as, τ = tp/g. The τ is a random variable with the mean denoted as
〈τ〉 = T

• the attack rate, a: defined as the ratio of the outbreak size (cumulated number
of infected individuals) to the initial size S(0) of the susceptible population.
The attack rate, a, (the fraction of the total number of susceptible who catch
the infection during the course of the outbreak) is a random variable given by,
a = 1 − S(τ)/S(0), where S(τ) is the susceptible population never infected.
The mean value of a will be denoted 〈a〉 = A

To investigate τ and a, we have run SIR stochastic simulations in a population of
size, N0 = 2500 (see Appendix A). Figure 1 illustrates the cumulative distribution
functions (with corresponding distributions for R0 = 2 shown in Fig. 2) of a and
τ for a system with x = 0 (all infected individuals die) and R0 = 0.5, 1 and 2.
Inspection of these figures shows that the distributions of a and τ are both bimodal
with the number and tip values of the modes depending on R0. For the attack rate,
the two modes are rather peaked and located around a = I(0)/N0 and a = 1 with
the probability of finding a close to the lower mode (minor epidemics) decreasing
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Figure 2. Distributions of attack rate a (left) and of reduced ex-
tinction time τ (right) for R0 = 2 and x = 0.
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Figure 3. Mean attack rate A (dashed lines) and mean reduced
extinction time T (solid lines) as a function of R0 for x = 0 (left
panel) and x = 0.9 (right panel).

with R0. For the reduced extinction time, the values of τ are smaller for both
R0 < 1 and R0 > 1 than for R0 ∼ 1.

Bearing the distributions of a and τ in mind, we now deal with the mean attack
rate, A, and the mean reduced extinction time, T , as a function of R0 as displayed
in Fig. 3 for x = 0 (all infected individuals die) and for x = 0.9 (90% of infected
individuals recover). Clearly, there is a one-to-one functional relationship between
A and T indicating that both carry somehow similar information and, therefore, T
can be obtained from A and vice versa. Finally, in what follows we will only focus
on A for which an approximate expression is derived in Appendix B. Figure. 3 shows
that A is null or very small for R0 < 1, starts to increase sharply from the threshold
R0 = 1 and monotonically increases toward an asymptote of value one for higher
R0.

When x = 1, the contact probability p between two individuals is constant and
independent of time, while when x < 1 the encounter probability between two
individuals increases with time as the total population decreases because of deaths.
As a result, the mean attack rate increases when x decreases for fixed R0 [e.g.,
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Figure 4. Probability ω(Ith) of an outbreak occurrence as a func-
tion of R0 for x = 0 and different values of the threshold Ith. Star
markers represent the mean attack rate A.

A(x = 0, R0) > A(x = 0.9, R0)] as the force of infection dynamically increases
because of the increase in the contact probability when x gets lower.

On the other hand, consider the probability ω(Ith) of the occurrence of an out-
break with the total number of infected individuals greater than or equal to a
threshold Ith. Figure 4 shows the results of stochastic simulations of ω(Ith) as a
function of R0 for different values of Ith. Interestingly, we find that ω(Ith) exhibits
a behavior very much alike to the mean attack rate A as a function of R0 and, in
addition, ω(Ith) ≈ A for Ith ≥ 10.

Thus, it follows from what precedes, that the mean attack rate A (and similarly,
the probability ω(Ith ≥ 10) of an outbreak occurrence) can be considered as the
response function characterizing the outbreak outcome for a single host system
parameterized by g and R0. Therefore, we define a characteristic response function
F as,

A = F (R0, g, x) ; R0 = F−1[A(g, x)] , (3)

where F (· · · ) is given in Fig. 3 (or by the approximation in Eq. (16) in Appendix B)
and F−1(· · · ) by inverting F from Fig. 3 (or using the approximate Eq. (19) in
Appendix B).

3. Definition of epidemiological heterogeneity. Within the epidemiological
framework as described in the Section 2, a host population interacting with a
pathogen can be canonically characterized by two key parameters (or two dimen-
sions): the basic reproduction number, R0, and the generation time, g, both de-
scribing the tempo and the order of magnitude of an outbreak. Accordingly, two
indices HR and Hg for R0 and g, respectively, can be used to characterize the het-
erogeneity along the two scales of the system such that the overall heterogeneity of
the system can be written as, H2 = H2

R + H2
g . For a population of n hosts, with

fi the proportion of the population of host “i” (i = 1, 2, · · · , n, and
n∑
i=1

fi = 1), the
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heterogeneity Hh along a dimension h can be defined as the ratio of the standard
deviation to the mean squared:

Hh =

n∑
i=1

fih
2
i(

n∑
i=1

fihi

)2 − 1 ; hi = R0, g . (4)

It follows that a population of n hosts will be considered as epidemiologically het-
erogenous when the overall H > 0; the larger H is, the more the system is hetero-
geneous.

For a single-host population, Hh = H = 0, and for a two-host system, n = 2,
Eq.(4) can be written as,

Hh = y

(
z − 1

zy + 1

)2

with y =
f2
f1

and z =
h2
h1

(5)

where hi is either R0 or g for each host. Because of the symmetric relations,
Hh(y, z) = Hh(1/y, 1/z) and Hh(1/y, z) = Hh(y, 1/z), the heterogeneity can be
calculated anywhere from the Hh in the range 0 ≤ z ≤ 1. Hh = 0 either in the
single-host limit (y = 0 or y → ∞) or for z = 1. Figure 5 shows the reduced
one-dimensional heterogeneity, Hh/y, as a function of z for different values of y. It
appears that Hh/y changes a lot as a function of z for fixed y whereas it changes
very little as a function of y for fixed z.

Note that different demographic fractions fi’s correspond to different y, while
different hi’s may correspond to the same z [e.g. z = 0.5 for (h1, h2) = (0.5, 0.25),
(1, 0.5), (3, 1.5), · · · ]. This indicates that, for y fixed, several epidemiologically
different situations with identical z may correspond to identical heterogeneity, and
Hh does not show any distinction between them.

4. n-host system. Now, we consider a heterogeneous system (in the sense of Sec-
tion 3) constituted of n epidemiologically different single-host subsystems interact-
ing with each other by mixing. The question we would like to address here is how
the outbreak outcome for each single-host subsystem (characterized as described in
the Section 2) will be affected by mixing interactions.

To proceed, consider n single-host subsystems, each of population size Ni = fiN
(i = 1, 2, · · · , n), where N is the total population of the system and fi (0 ≤ fi ≤ 1

and such that
n∑
i=1

fi = 1) the population fraction of the host i. Within the framework

of the SIR model where Si, Ii and Ri denote the number of susceptible, infected-
infectious and recovered individuals of the host i, with Ni = Si + Ii + Ri, the
dynamics of the infection in each single-host subsystem is described by the system
of differential equations given by,

dSi
dt

= −λiSi

dIi
dt

= λiSi − αiIi

dRi
dt

= xiαiIi

(6)

where λi, 1/αi and xi have the same meaning given in Section 2. The mixing
interaction between single-host subsystems manifests itself in the force of infection
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Figure 5. Reduced one-dimensional heterogeneity, Hh/y, as a
function of z, for different values of y. The values y = 0.25, 1
and 2.3 correspond to f1 = 1 − f2 = 0.8, 0.5 and 0.3, respectively,
filled circles to z = h2/h1 = 0.53 [with (h1, h2) = (1.5, 0.8)], and
filled diamonds to z = 0.1, 0.53, 0.625, and 1.

as, λi =
n∑
j=1

pijβijIj , where pij is the matrix of contact or encounter probability

between two individual hosts i and j, and βij is the infection transmission rate in
the case of direct contact from an infected host j to a susceptible one i.

Assuming a hypothesis of homogeneous mixing of individuals for both within
populations of hosts of the same kind (intra) and between host populations of
different kind (inter), the elements of the matrix of contact probabilities can be
written as, 

pii(t) =
1

Ni(t)

[
1−

n∑
j=1;j 6=i

φijNj(t)

Mi(t)

]
pij(t) =

φij
Mi(t)

; Mi(t) =
n∑
j=1

[
1− δφij ,0

]
Nj(t)

(7)

where δk,l is the Kronecker delta function, equal to 1 if k = l and to 0 otherwise,
Mi represents the total population entering in contact with hosts i and φij = φji
(0 ≤ φij ≤ 1 and φii = 1) is the assortative symmetric matrix that measures the
intrinsic affinity to contact between two different kind of hosts i and j. Eq. (7) states
that intra-host populations are homogeneously mixed and φij measures the degree
of homogeneously mixing host populations i and j with φij = 0 corresponding
to zero (inter) contacts between hosts i and j and therefore to non mixed and
totally separated populations i and j, whereas φij = 1 corresponding to the case of
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completely mixed populations where hosts i and j contact each other regardless of

their kind. Note that in general pij 6= pji and

n∑
j=1

pijNj = 1.

For the transmission of avian influenza viruses of interest here, we assume that
infectious individuals of any kind are efficient sources of virus excretion such that the
transmission of the infection to uninfected individuals only depends on the infection
susceptibility of the receiver. That is to say that the infection transmission rate βi,j
from host j to host i only depends on the host i, i.e., βi,j = βi,i = βi. In this case,
the force of infection can written as,

λi(t) =

[
fiN0R0,i

fiN0 −R0,i

]
αi
∑
j=1

pij(t)Ij(t) with R0,i =
βifiN0

βi + αifiN0
, (8)

where N0 = N(t = 0) is the initial population size of the system and R0,i is the
intrinsic basic reproduction number of the single-host subsystem i as already defined
in Eq. (2).

To go further and for the sake of simplicity, we specialize to the case of n = 2
subsystems and reformulate the question we are addressing: what would be the
outbreak outcome (in terms of attack rate) for each individual subsystem when two
epidemiologically heterogeneous (H 6= 0) subsystems (each of which is characterized
by R0,i and gi) are epidemiologically interacting (φij 6= 0)?

For the mixing between n = 2 epidemiologically different single-host subsystems,
the population fractions are such that f1+f2 = 1 and the assortative matrix reduces
to φij = φ. The two-host population SIR system thus involves seven independent
parameters: N , f1, R0,1, R0,2, α1, α2 and φ. The outbreak outcome can be analyzed
at two levels: the whole system level and the subsystems level of each constituent.

4.1. Outbreak outcome at the whole system level: Global reproduction
number, R0. General considerations on the outbreak outcome can be drawn from
the R0 of the entire system. The disease will invade the multi-host population
when R0 > 1 but it will stutter to die for R0 < 1 [9, 10, 21]. The threshold R0 for
a multi-host system can be determined using the next generation matrix (NGM)
approach [11]. In the case of a two-host system, the NGM, K, is a 2 × 2 matrix
with the elements given by,

K1,1 =

(
R0,1f1N0

f1N0 −R0,1

)
[1− φf2] ; K1,2 =

(
R0,1f1N0

f1N0 −R0,1

)(
α1

α2

)
φf1

K2,1 =

(
R0,2f2N0

f2N0 −R0,2

)(
α2

α1

)
φf2 ; K2,2 =

(
R0,2f2N0

f2N0 −R0,2

)
(1− φf1)

(9)

In this approach, R0 corresponds to the dominant eigenvalue of K, given by,

R0 =
1

2

[
K2,2 +K1,1 +

√
(K2,2 −K1,1)

2
+ 4 (K2,1K1,2)

]
. (10)

Because of the term K2,1 × K1,2 in Eq.(10), R0 is independent of α1 and α2 in-
dicating that heterogeneity Hg alone do not impact the outbreak. A subsequent
sensitivity analysis was conducted using the extended Fourier amplitude sensitivity
test (FAST) [32] to study the effects of the parameters N , f1, R0,1, R0,2 and φ on
R0. Figure 6 summarizes the results of the sensitivity analysis. It appears that the
parameters having both main and total effects (main effect plus interaction with
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other parameters) on R0 are (ranked from the least to the most important): N , φ,
f1, R0,1 and R0,2; indicating that the outbreak outcome is sensitive to host hetero-
geneity (characterized at least by different R0,1 and R0,2, i.e., HR 6= 0). Inspection
of Eq.(10) indicates that:

• For a fixed nonzero heterogeneity HR, the R0 always decreases as a function
of φ from R0 = max(R0,1, R0,2) (by definition of the dominant eigenvalue) at
zero mixing φ = 0 to R0 = Rm at complete mixing φ = 1, where Rm is the
population weighted average of intrinsic reproduction numbers given by:

Rm =

(
f1N0

f1N0 −R0,1

)
R0,1f1 +

(
f2N0

f2N0 −R0,2

)
R0,2f2 . (11)

The decreasing of R0 with φ is due to the crowding or herd immunity ef-
fect. Note that at exactly zero mixing the infection remains confined in the
host population initially infected, i.e., R0 = R0,i 6= max(R0,1, R0,2) where i
corresponds to the initially infected host population.

• For a fixed nonzero mixing φ, the effect of HR on R0 is not straightforward
because R0 is neither an explicit nor an implicit function of HR. Since HR is
a function of demography y and reproduction z (see Section 3), two scenarios
can be drawn:

– for any fixed ratio of reproductive numbers z, the R0 decreases as a
function of y (i.e., HR) due to the crowding effect

– for fixed demography y, the R0 increases with max(R0,1, R0,2) (rather
than the ratio z).

The R0-level curves in Fig. 7 illustrate the effects of HR and φ on the variety of
behaviors of R0 as a function of R0,1 and R0,2.

4.2. Outbreak outcomes at the subsystem level: Equivalent basic repro-
duction number, Reqv,i. To investigate the effects of mixing on individual out-
break outcomes at the level of each subsystem, we have run SIR stochastic sim-
ulations in a two-host system (see Appendix A) with a total population of size,
N0 = 5000 and heterogeneities, HR 6= 0 and Hg = 0. For the purpose of the investi-
gation in the context of avian influenza, we have set the parameters α1 = α2 = 0.2,
x1 = 0, x2 = 0.9 while the others φ, f1, R0,1 and R0,2 are allowed to vary. Values
of α’s and x’s are chosen to correspond to mean durations of virus excretion and
recovering probabilities for swans (highly susceptible species) and ducks (mildly
susceptible species) infected with HPAI H5N1 [4, 5, 22, 23, 26, 29].

Figure 8 illustrates the cumulative distribution (cdf) of the attack rates for each
host in the system and for the whole system. The cdf of the whole system is broad
and close to that of the most abundant population host 1 (f1 > f2). The distribution
of attack rate is almost bimodal for host 1 (similar to a single-host system) while it
is much broader for the host 2 as a result of mixing. In what follows, we focus on
the mean attack rates.

Because of mixing, the mean attack rate Ai for each host i involves two contribu-
tions: Ai = Aii +Aij,i 6=j , where Aij is the mean attack rate in the host population
“i” caused by infections transmitted by the host population “j”, with Aii < A0,i

where A0,i is the mean attack rate at zero mixing or for a single-host system. To
assess to which extent mixing and heterogeneity affect the outbreak response for
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Figure 6. Sensitivity analysis on R0 using extended FAST
method. For each parameter, the light area represents the main
effect and the gray area the interaction effect between parameters.

each host population, we consider the ratio,

ηi =
F−1i (Ai)

F−1i (A0,i)
=
Reqv,i
R0,i

, (12)

where we have used the relation in Eq.(3) (see Section 2) to define the equivalent
basic reproduction number as, Reqv,i = F−1i (Ai), where F−1i is obtained from the
numerical inversion of Fi given in Fig. 3. No effect (i.e., Ai = A0,i) corresponds
to ηi = 1, while ηi > 1 and ηi < 1 indicates amplification and dilution effects for
host “i”, respectively. The amplification (dilution) effect occurs when the outbreak
response for species “i” in the multi-host system is greater (smaller) than the one
in the absence of population mixing [24].

Several combinations of R0,1 and R0,2 with varying f1 and φ were explored
using stochastic simulations (see Appendix A). Results are summarized in Table 1,
showing the different kinds of outbreak responses observed when mixing two host
populations, for which the infection transmission between individuals depends on
the infection susceptibility of the receiver:
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Figure 7. Contour diagrams in the space {R0,1, R0,2} showing
level curves of R0 = 0.5, 1, · · · , 3.5 (quoted numbers) for different
φ and f1 and for a total population size N = 5000.
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Figure 8. Cumulative distribution function (cdf) for the attack
rate for host 1 (dashed line), host 2 (dotted line) and the total
population (solid line) in a two-host system. The initial conditions
are I1(0) = 1 and I2(0) = 0, with parameters x1 = 0, x2 = 0.9,
f1 = 1 − f2 = 0.8, R0,1 = 1.5 and R0,2 = 0.8, corresponding to
HR = 0.043 [filled circle (y, z) = (0.25, 0.53) in Fig. 5], and φ = 0.5
for a global R0 = 1.4

• three kinds of behaviors for each host population are possible depending on
the mixing and heterogeneity parameters: dilution, no effect or amplification
behaviors. As shown in Table 1, the interaction between two heterogenous
hosts, with at least a R0,i > 1, leads to a dilution effect for the hosts with
higher R0,i and to an amplification effect for the hosts with lower R0,i. In
terms of metaphor, this is reminiscent to the thermalization effect when mix-
ing two miscible liquids at different temperatures. However, this effect does
not hold when R0,i < 1 for the two hosts where dilution effects are observed
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heterogeneity outbreak response

host 1 host 2

•HR > 0 ∗R0,1 &R0,2 < 1 dilution dilution

∗R0,1 < R0,2 with amplification dilution

at least one R0,i > 1

•HR = 0 ∗ x1 = x2 no effect no effect

∗ x1 < x2 and


R0,i < 1

R0,i > 1

dilution

no effect

dilution

amplification

Table 1. Synthetic summary of stochastic simulations for con-
structing the phase diagram of the outbreak response at individual
host level as a function of the combined effects of mixing (φ 6= 0)
and heterogeneity. Dilution, no effect and amplification responses
correspond to ηi < 1, = 1 and> 1, respectively, where ηi in Eq. (12)
is the ratio of the equivalent to the bare basic reproduction number.
These observations are symmetric with respect to inversion of host
1 and 2, and for each host i the effect on the outbreak response
increases when fi (fj) decreases (increases), and conversely.

for both hosts regardless their relative values of R0,i. The dilution effect is due
to the crowding or herd immunity effect while the amplification stems from
the addition of cross infected cases (Aij) between host subsystems, and no
effect results from either zero impact or compensation of dilution and amplifi-
cation effects. Therefore, the whole system characterized by R0 consists of the
coexistence of two-phase behaviors, i.e., subpopulation of hosts undergoing a
dilution effect while the other one an amplification effect.

• the extent to which a subsystem undergoes dilution or amplification is a func-
tion of demographic and mixing parameters with a possible transition from
dilution via no effect to the amplification behaviors (and vice versa), when
varying the individual R0,i.

• as the proportion of recovered xi did not appear explicitly inR0,i, we purposely
did not include xi in the heterogeneity indices. Table 1 shows that the overall
heterogeneity does matter in the outbreak outcome indicating hence the need
to incorporate x into H.

4.3. Overall effect of heterogeneity. Figures 9 and 10 illustrate some of the
situations presented in Table 1. Figure 9 shows the coexistence of two-phase behav-
iors (dilution effect for a subpopulation and amplification effect for the other one),
where the R0 of the whole system increases with max(R0,1, R0,2) and decreases with
φ, whereas outbreak responses of host 1 (dilution or amplification) increase with
φ. In Fig 10, we explore the effect of initial conditions (Ii(0), i.e. in which host
population the infection starts) not shown in Table 1. Clearly R0 is not sensitive to
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Figure 9. Effects of the heterogeneity and mixing on the
outbreak outcome. The reduced equivalent reproduction num-
ber, η1, for host 1, and global reproductive number R0 (from
Eq.(10)) as a function of assortative mixing φ for various values of
heterogeneity, HR, and R0,2. The initial conditions are I1(0) = 1
and I2(0) = 0, with parameters x1 = x2 = 0, and f1 = 1−f2 = 0.5.
Values of HR correspond to filled diamonds along the line y = 1 in
Fig. 5 with HR = 0 (R0,1 = R0,2 = 0.8 for z = 1), 0.05 (R0,1 = 0.8
; R0,2 = 0.5 for z = 0.625), 0.092 (R0,1 = 0.8 ; R0,2 = 1.5 for
z = 1.88) and 0.67 (R0,1 = 2 ; R0,2 = 0.2 for z = 0.1).

initial conditions and decreases with φ as expected, whereas the extent of the two
coexisting behaviors (dilution effect for a subpopulation and amplification effect for
the other one) very much depends on the initial conditions for low φ. The extent of
dilution and amplification effects for the same system with same parameters may
be different at low φ depending on initial conditions and become identical at higher
φ.

5. Concluding remarks. The aims of this work were to define the epidemiological
host heterogeneity and investigate the effect of host heterogeneity on the disease
outbreak outcomes for each host in a multi-host population system, given prior
knowledge of the disease epidemiology for each host population in the zero mixing
situation. In other words, what is the impact of a multi-host system on the outbreak
response of individual host populations involved?

We have shown that a single-host system can be canonically parametrized us-
ing two quantities, the basic reproductive number R0 and the generation time g,
and characterized by an epidemic or outbreak response function F (R0, g, x) (like in
Fig. 3) describing how a host population responds (in terms of attack rate, persis-
tence time) to an infection introduction. To deal with a heterogeneous multi-host
system involving epidemiologically different single-host populations, two ingredients
must be considered:

• Heterogeneity index H: involving two dimensions, the generation time and
the basic reproduction number, H measures to which extent host populations
are different in terms of R0 and g combined with their demographic weights
f . A homogeneous system correspond to H = 0 while H > 0 corresponds
to epidemiologically different populations, having different epidemic response
functions F (R0, g, x).
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Figure 10. Impact of the initial conditions on effects of
the heterogeneity and mixing on the outbreak outcome.
Reduced equivalent reproduction numbers ηi (i = 1, 2) and global
reproductive number R0 (from Eq.(10)) as a function of the assor-
tative mixing φ for the two hosts for different heterogeneity. The
initial conditions are I1(0) = 1 and I2(0) = 0 (filed symbols for η1
and open symbols for η2), and I1(0) = 0 and I2(0) = 1 (open sym-
bols for η1 and filled symbols for η2) with the parameters x1 = 0,
x2 = 0.9, R0,1 = 1.5 and R0,2 = 0.8. Values of HR correspond to
filled circles at z = R0,2/R0,1 = 0.53 in Fig. 5 with HR = 0.043
(f1 = 1−f2 = 0.8 for y = 0.25), 0.093 (f1 = 1−f2 = 0.5 for y = 1)
and 0.101 (f1 = 1− f2 = 0.3 for y = 2.3).

• Interaction matrix: which takes into account both epidemic and demographic
characteristics to structure how different hosts interact with each other. By
interactions we mean that hosts have an epidemic and a demographic role
in the transmission and spreading of the infection. For the two-host case
presented in this analysis, the control parameter for the interaction matrix
reduces to a single assortative mixing index φ that measures the degree of
homogeneously mixing two kinds of host populations.

As minimal definition and necessary conditions, we state that the epidemiolog-
ical host heterogeneity occurs in a system of epidemiologically interacting popula-
tions where each host population is characterized by a different epidemic response
function. There is no host heterogeneity in the absence of interactions between
populations or when interacting populations have all identical epidemic response
functions.



750 ALINA MACACU AND DOMINIQUE J. BICOUT

Regarding the impacts of host heterogeneity on the outbreak outcomes, we found
that they are twofold in the case of the infection transmission depending on the
receiver infection susceptibility: i) - outbreak dampening, i.e., the outbreak in the
heterogeneous multi-host system is always smaller than the summation of outbreaks
for individual subsystems taken separately, and ii) - as summarized in Table 1, three
kinds of outbreak outcomes are possible for the individual subsystem depending
on the mixing and heterogeneity parameters: dilution, no effect or amplification
behaviors where the outbreak responses in the multi-host system are lower, similar
or higher than in the single host system, respectively, with the magnitude depending
both on H and φ.

Previous works, [14], have shown that, in the case of preferential mixing, like
in this study (though with a different mixing pattern), the disease can invade the
population when any subgroup is self-sufficient for the disease transmission (i.e.,
R0,i > 1). In addition, increasing the intra-group mixing rate increases the proba-
bility for the disease to invade the population. This is consistent with our finding
that the global R0 decreases when φ increases (i.e., decreasing the intra-group mix-
ing rate). However, in our model, having an individual R0,i > 1 is not sufficient to
ensure R0 > 1. Indeed, for φ = 1, the global R0 is given by Eq. 11, which can result
to R0 < 1 for sets of f1, f2, R0,1 and R0,2. This difference stems from differences
in the mixing structure between our model and that described in [14].

The previous works were largely focused on the impacts that heterogeneity may
have on the global R0, or the ability of a disease to invade a population consisting
of different subgroups, as opposed to a homogenous population. Even though we
address this issue in our paper as well, we highlight the effects that a mixing of
heterogenous sub-populations has on the ability of the disease to invade each sub-
population, compared to a situation were no mixing is considered.

The situation of the HPAI H5N1 outbreak in mid-February 2006 in the Dombes,
France, can be analyzed within the framework of the afore outlined approach. As
mentioned in the Introduction section, although the environmental conditions were
conducive to the spread of the virus in the Dombes’ ecosystem [31, 34], the outbreak
was of minor size, mainly affecting Common Pochards (Aythya ferina) and Mute
Swans (Cygnus olor) [13, 16, 20]. It was suggested that the host heterogeneity in the
response to H5N1 viral infection of different bird species was a possible explanation
for the reduced size of the outbreak [13].

During the outbreak period, the situation in the Dombes was that Swans, Com-
mon Pochards and Mallards were found well mixed with a census of 600, 15000, and
7500, respectively [20]. Given that Swans are highly susceptible to influenza virus
infection with a short mean death time, and a high viral excretion level, Common
Pochards are less susceptible than Swans to influenza virus infection, with low mor-
tality rate, and Mallards have a low susceptibility to influenza virus infection with
no associated mortality [13], we may infer that R0,swan > R0,pochard > R0,mallard

with likely R0,swan > 1. In addition, analysis of migration patterns indicated that
as the swan population migrated to the Dombes area about two months before the
outbreak onset, the disease was therefore likely introduced in the area by ducks
(Pochards) following their massive arrival in early February as a result of a cold
spell [19]. Based on all of this, the 2006 outbreak in the Dombes can be described
within the framework of epidemiological host heterogeneity with R0,duck < 1 (com-
bining Common Pochards and Mallards) and R0,swan > 1 just like llustrated in
Fig 10 (with Swans = 1 and ducks = 2 and initial conditions I1(0) = 0 and
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I2(0) = 1). In this figure, Swans (host 1) undergo a dilution effect, while ducks
(host 2) an amplification effect. Given the small numbers of both dead Swans and
infected and dead ducks during the outbreak, one may suggest that i) - the duck
R0,duck was substantially smaller than one, ii) - the mixing φ between Swans and
ducks was large perhaps close to one, and iii) - even speculate that the epidemic
threshold transition from R0,swan > 1 to Reqv,swan < 1 occurred for swans.

To conclude, we have depicted a framework for defining the epidemiological host
heterogeneity and assessing its impacts on outbreak outcomes in terms of epidemic
response functions for host populations in interaction. The approach was illustrated
for the case of frequency-dependent direct transmission where the infection trans-
mission depends on the receiver infection susceptibility, (i.e., βi,j from j to host i
only depends on the host i, i.e., βi,j = βi,i) and the two-host system was used as the
minimal multi-host system. This work can be extended in several other directions:
generalization to n > 2 hosts systems, use of a general transmission matrix βi,j ,
and including spatial heterogeneities.
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Appendix A. Stochastic simulations of SIR. Stochastic simulations for the
SIR model were generated using the stochastic discrete time version of the system
of equations in Eq.(6), in which Si, Ii and Ri for the each host i are random variables
with the transitions:

(Si, Ii, Ri) → (Si − 1, Ii + 1, Ri) at rate λi(t)Si

(Si, Ii, Ri) → (Si, Ii − 1, Ri + 1) at rate αiIi with probability xi

(Si, Ii, Ri) → (Si, Ii − 1, Ri) at rate αiIi with probability 1− xi

(13)

describing the transition from susceptible to infected following a Poisson process
of parameter λi(t), the sojourn times in infected-infectious state by an exponential
distribution of mean 1/αi, and the probability for infected to recover by xi. To avoid
uncontrolled changes in λi(t), the step ”(Si, Ii, Ri) → (Si − 1, Ii + 1, Ri)” must be
performed in parallel for all hosts prior to others processes. Starting from the initial
conditions, (Si(0), Ii(0), Ri(0)) , at any time t the population for a given stochastic
trajectory is given by the random vectors, (Si(t), Ii(t), Ri(t)). All calculations are
implemented in Matlab software, release 7.0

• Single-host system: The subscript i can be dropped and the λ(t) is expressed
in terms of R0 using Eq.(2) as,

λ(t) = pβI =

[
N0R0

N0 −R0

]
α× I(t)

N(t)
, (14)

where N(t) = S(t) + I(t) + R(t). In addition, the time is scaled by 1/α. A
total of 4×104 stochastic simulations in a population of size, N0 = 2500, with
the initial conditions, (S(0), I(0), R(0)) = (N0 − I(0), 1, 0).

• Two-hosts system: λi(t) is given by Eq.(8),

λi(t) =

[
fiN0R0,i

fiN0 −R0,i

]
αi
∑
j=1

pij(t)Ij(t) , (15)

where pij(t) are the time-dependent contact probabilities. A total of 4× 104

stochastic simulations in a population of size, N0 = 5000.

Appendix B. Approximate expression of the mean attack rate. When all
infected individuals recover from infection, i.e., x = 1, an equation for A can be
derived from Eq.(1) as ([25]),

A = 1− exp

{
−
(

R0

N0 −R0

)
[I(0) +AS(0)]

}
. (16)

For x < 1 there is no simple way for deriving an expression for A. However, an
approximation of A can be derived using the two modes, a = I(0)/N0 and a = 1,
of a as follows,

A =

(
I(0)

N0

)
× u+ 1× (1− u) , (17)

where u can be regarded as the probability of minor epidemics. We found by
numerical analysis that u can be described by,

u = tanh
(
c× e−bR0

)
(18)
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Figure 11. Left panel: Probability of minor epidemics as a func-
tion of R0. Triangle markers represent data from stochastic sim-
ulations and solid line through the data Eq.(18) for x = 0. Right
panel: Mean attack rate as a function of R0 for x = 0, comparison
of simulations (solid line) and the formula in Eq.(16) (dashed line).

where the constants b and c depend on g, x andN0. Figure 11 shows the comparisons
between simulation results and analytical expressions for u and A given by Eqs. (17)
and (18), respectively, with c = 10.375 and b = 2.123 for x = 0. Therefore, the
expression given in Eq. (17) is considered as an approximate of the characteristic
response function F , and the inverted function F−1 is given by,

R0 = F−1(A) = −1

b
ln

{
− 1

2c
ln

[
I(0)−AN0

I(0)− (2−A)N0

]}
. (19)
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