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Abstract. We analyze a mathematical model of quorum sensing induced
biofilm dispersal. It is formulated as a system of non-linear, density-dependent,
diffusion-reaction equations. The governing equation for the sessile biomass
comprises two non-linear diffusion effects, a degeneracy as in the porous medium
equation and fast diffusion. This equation is coupled with three semi-linear
diffusion-reaction equations for the concentrations of growth limiting nutri-
ents, autoinducers, and dispersed cells. We prove the existence and uniqueness
of bounded non-negative solutions of this system and study the behavior of
the model in numerical simulations, where we focus on hollowing effects in
established biofilms.

1. Introduction. Biofilms are dense accumulations of microbial cells on biotic or
abiotic surfaces (called substrata) in aqueous environments. Once the microbial cells
become sessile, they produce extracellular polymeric substances (EPS) that protect
them against antibiotic attacks and mechanical washout [29]. Due to the sorption
properties and enhanced mechanical stability of biofilms, they are beneficially used
in wastewater treatment, soil remediation and groundwater protection [43]. On the
other hand, biofilm formation and detachment can have very disadvantageous effects
and lead to serious infections in the human body, biocorrosion of drinking water
pipes or industrial facilities [11], contamination in food processing plants [27, 30],
etc. Biofilm formation is characterized by the balance of attachment, growth and
detachment or dispersal processes [23, 41]. Among these phenomena, there is a
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growing interest in the study of the latter, i.e. the release of microbial cells from
the biofilm into the aqueous environment. Commonly, by detachment one refers to
cell losses into the aqueous environment that are caused by external forces. Usually
these external forces are shear forces due to bulk flow hydrodynamics [32]. These
detachment losses can manifest themselves as sloughing or erosion of cells from the
outer layers of the biofilm. By dispersal we refer to cell losses that can be internally
triggered, e.g. by enzyme-mediated breakdown of the biofilm matrix [6], production
of surfactants which loosen cells from the biofilm [8]; or externally triggered, e.g. by
changes in nutrient availability [23], production of free radicals [4], or controlled by
quorum sensing systems [34, 37, 45]. Dispersed cells can originate from inner layers
of the biofilm and can contribute to downstream colonization, and thus eventually
result in pipe obstruction, bacterial infection (biomedical implants), or increased
microbial contamination in food processing plants [40].

Numerous mathematical models of biofilms have been proposed in the literature,
focusing on different time and length scales and processes, and utilizing different
mathematical concepts, from agent based to continuum mechanistic and from sto-
chastic to deterministic. All dynamic models of biofilm formation include growth
processes, including their dependence on nutrients. On the other hand, detach-
ment and dispersal processes are often neglected, or treated in a rather qualitative
manner, e.g. by coupling the detachment rate to biofilm thickness [12, 43, 44]
or geometrical properties of the biofilm structure [46], without accounting for the
processes that induce cell loss. No biofilm model is known that includes several
or all known detachment and dispersal mechanisms. Rather each modeling study
focuses on one particular trigger. A number of biofilm growth models have been
proposed that include a physics based description of sloughing or erosion due to
external forces, cf [1] for a simple one-dimensional model set in the Wanner-Gujer
framework, and [31] for a 2D cellular automaton model. Only few papers have
been published that use models of internally triggered biofilm dispersal: A cellular
automaton model for nutrient limited dispersal was presented in [22, 23], a cellu-
lar automaton model for detachment caused by enzymatic breakdown of the EPS
matrix was presented in [47]. A partial differential equation based model for cell
dispersal triggered by quorum sensing was presented in [18] and investigated there
in first computer simulations. The question of well-posedness of the solutions of
this model remained open. To give an answer to this question will be the focus of
our current paper.

The model in [18] is an extension of a prototype biofilm growth model, which
was originally introduced in [13] and did not include any detachment or dispersal
processes. The biofilm is characterized in terms of the volume fraction that cells
and EPS locally occupy. This is described by a highly non-linear diffusion-reaction
equation for biomass, with two non-Fickian effects: (a) the diffusion operator de-
generates like the porous medium equation for vanishing biomass densities and (b)
it blows up if the local cell density approaches its maximum value. These effects
ensure that the biofilm/water interface spreads at a finite speed and that the max-
imum biomass density is never exceeded. The biofilm expands spatially if the local
cell density fills up the available volume while it does not spread notably if there is
space locally available to accommodate new cells. In the prototype biofilm growth
model, this biomass model is coupled with an additional non-degenerate diffusion-
reaction equation for the nutrient that limits biomass growth. In [18] this model
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was extended to account also for the concentration of the quorum sensing molecules
that trigger dispersal, and for an equation that describes the dispersed cells.

Previous extensions of this prototype biofilm growth model that included quorum
sensing effects focused on the role of bulk hydrodynamics to facilitate non-local up-
regulation due to advective transport [21], and on quorum sensing controlled EPS
production [20] as a mechanism to switch from a colonization mode, in which re-
sources are primarily invested in proliferation, to a protected mode of growth, in
which EPS is produced, e.g. to mechanically stabilize the biofilm. In these mod-
els, down- and up-regulated cells are treated as two different cell fractions. For
the model in [21] existence and uniqueness were derived in [38], whereby special
features of the model assumptions could be used that do not hold in other, seem-
ingly similar applications of the same biofilm modeling framework. In the current
model, up-regulation is implicit. Rather than distinguishing between down- and
up-regulated cells, we distinguish between cells that are sessile in the biofilm and
motile ones, which after up-regulation disperse from the colony. The structure of
the quorum sensing induced dispersal model is different from the previous multi-
component biofilm models [10, 24, 38, 40], in which one biomass type is described
by a degenerate diffusion-reaction equation, and the other one by a semi-linear one.

To prove existence and uniqueness of solutions and continuous dependence of
solutions on initial data we will use here ideas applied in [17] for the mono- species
model and in [3] for a scalar degenerate reaction-diffusion equation of porous-
medium type.

2. Mathematical model. We analyze the mathematical model of quorum sensing
induced detachment in biofilms which was proposed in [18]. In this model we
consider particulate biomass, i.e. biofilm bacteria, and suspended biomass, i.e.
dispersed cells. As is common in many biofilm modeling studies, cf [44], we do not
explicitly track EPS but subsume them in the biomass. The growth of both biomass
fractions depends on a growth limiting nutrient. The bacterial cells have the ability
to produce quorum sensing signal molecules which can trigger a switch from the
sessile to the suspended mode of growth. The model is formulated for the dependent
variables local density of particulate biomass (biofilm), M̃ , the concentration of

dispersed cells, Ñ , the concentration of a nutrient, C̃, and the quorum sensing
molecule or autoinducer concentration Ã. The independent variables are time t̃ and
the spatial coordinate x̃ ∈ Ω ⊂ R

n, n = 2, 3; Ω is here the model domain that will
be made more precise later. The model in dimensional form reads

∂t̃M̃ = ∇x̃ · (D̃M (M)∇x̃M̃) + µ̃
C̃

k̃1 + C̃
M̃ − k̃2M̃ − η̃1

(
Ãm

τ̃m + Ãm

)
M̃,

∂t̃Ñ = d̃1∆x̃Ñ + µ̃
C̃

k̃1 + C̃
Ñ − k̃2Ñ + η̃1

(
Ãm

τ̃m + Ãm

)
M̃,

∂t̃C̃ = d̃2∆x̃C̃ − σ̃
C̃

k̃1 + C̃

(
M̃ + Ñ

)
,

∂t̃Ã = d̃3∆x̃Ã− λ̃Ã+

[
α̃+ β̃

Ãm

τ̃m + Ãm

](
M̃ + Ñ

)
.

(1)

In model (1) we have intentionally omitted the re-attachment terms which were
originally included in the model [18], because the simulations in [18] show that
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only a negligible amount of dispersed cells gets re-attached. Hence the inclusion or
exclusion of the re-attachment terms will not make a significant difference from an
application point of view, but it simplifies the mathematical analysis.

In the first equation of model (1), the diffusion term describes spatial expansion
of the biofilm. This is a volume filling problem: as long as locally space is available
to accommodate new cells the biofilm expands very slowly or not at all. When
the maximum biomass density M̃∞ that can be locally accommodated is nearly
reached the biofilm starts to expand quickly. Following [13], this is described here
by nonlinear, density dependent diffusion, with coefficient

D̃M (M) = d̃
Ma

(1−M)b
, where a > 1, b > 1, d̃ > 0. (2)

Here M := M̃/M̃∞ is the volume fraction occupied by the biomass. This implies

that we must have 0 ≤ M < 1. The diffusion coefficient D̃(M) vanishes when
the biomass density approaches zero and blows up when it tends to its maximum
value. Note that the prototype biofilm growth model of [13] is a special case for this

model in the absence of quorum sensing and/or dispersal effects, i.e. if α̃ = β̃ = 0

(and initially Ã ≡ 0 ≡ Ñ) or if η̃1 = 0. The spatial expansion of the biofilm is
thus driven by biomass accumulation. The polynomial degeneracy Ma, well known
from the porous medium equation, guarantees that spatial spreading is negligible
for low values of M and yields the separation of biofilm and liquid phase. For 0 ≪
M ≈ 1, the equation shows a super-diffusion effect, since the diffusion coefficient
possesses a singularity at M = 1 and blows up. In the prototype biofilm growth
model of [13], this ensures the maximal bound for the biomass density which is a
physical limitation as the number of cells that fits into a unit volume is bounded
[16]. In particular, the blow up of the diffusion coefficient guarantees that M < 1 if
homogeneous Dirichlet conditions are specified forM on some parts of the boundary
of the domain [16]. Since the production of biomass depends on the availability of
nutrients, the upper bound on M cannot be guaranteed by the growth terms alone.
The degeneracy Ma alone does not yield this maximum bound for the cell density,
while the singularity (1 − M)−b does not guarantee the separation of biofilm and
liquid region by a sharp interface.

In model (1), diffusion of Ñ , C̃, Ã is Fickian with constant coefficients d̃1,2,3.
This is a simplification of [18], where it was assumed that the diffusion coefficients
are smaller in the biofilm than in the aqueous phase, but well within one order of
magnitude.

The reaction terms in (1) describe the following processes that are the same as
in the model of [18]:

• Growth of sessile and dispersed cells M̃ and Ñ is controlled by the local avail-
ability of nutrients. This is described by standard Monod kinetics, cf [44], in

the first and second equation of (1), where k̃1 is the half saturation concen-
tration and µ̃1 is the maximum specific growth rate. The growth kinetics is
assumed to be the same for both sessile and dispersed biomass.

• Natural cell death occurs at the same rate k̃2 for M̃ and Ñ .
• Dispersal, i.e. the transition of bacteria from the sessile state M̃ into the sus-
pended motile state Ñ , is controlled by the local concentration of the quorum
sensing molecule Ã. For small values of Ã ≪ τ̃ this transition is nearly zero
(i.e. the biofilm is primarily down-regulated), but increases for large concen-

tration values Ã ≫ τ̃ , and levels off at a maximum rate η̃1 if Ã is large (i.e.
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the biofilm is primarily up-regulated). This transition between both states
is described by a Hill function, where τ̃ is the induction threshold and the
exponent m > 1.

• Consumption of nutrients is proportional to biomass growth, i.e. described
by the same Monod kinetics. The maximum consumption rate is defined as
σ̃1 = µ̃1/Y where Y is the yield coefficient.

• The signal molecules Ã in the fourth equation of (1) are produced at a base

rate α̃ if the local signal concentration is small, Ã ≪ τ̃ , and at the increased
rate α̃+ β̃ if it is large, Ã ≫ τ̃ . The transition between these two regimes is
modeled by the same Hill function that was used to describe the triggering
of dispersal, cf also [18]. According to [19] we assume β̃ = 10α̃. Furthermore

we have included an abiotic decay term, at rate λ̃, for the signaling molecule,
which was neglected in [18], but is included in many other quorum sensing
models, e.g. [20, 26, 38, 42].

To non-dimensionalize the model we express the biofilm biomass density M̃ by the
volume fraction M as described above and further introduce the new dependent
variables

N :=
Ñ

M̃∞

, C :=
C̃

C̃∞

, , A :=
Ã

τ̃
,

where C̃∞ is the bulk substrate concentration that enters the model via boundary
conditions (see below). The dimensionless independent variables are introduced as

t := µ̃t̃, x :=
x̃

L̃
,

where L̃ is a characteristic length scale of the domain, e.g. its length in case of
rectangular Ω. In dimensionless form, the model becomes then

∂tM = ∇ · (DM (M)∇M) +
C

k1 + C
M − k2M − η1

(
Am

1 +Am

)
M,

∂tN = d1∆N +
C

k1 + C
N − k2N + η1

(
Am

1 +Am

)
M,

∂tC = d2∆C −
σ C

k1 + C
(M +N),

∂tA = d3∆A− λA +

[
α+ β

Am

1 +Am

]
(M +N).

(3)

Here the spatial derivative operators ∇ and ∆ are now with respect to the dimen-

sionless independent variable x. The parameters in (3) are di := d̃i

µ̃L̃2
, i = 1, 2, 3,

d := d̃

µ̃L̃2
, DM (M) := d

d̃
D̃(M̃/M̃∞), k1 := k̃1

C̃∞

, α = α̃M̃∞

τ̃ µ̃
, β = β̃M̃∞

τ̃ µ̃
, η1 = η̃1

µ̃
,

σ = σ̃M̃∞

µ̃τ̃
and λ := λ̃

µ̃
. The full list of the parameters and their values in dimen-

sionless form that we use in our simulations later on is found in table 1.
In this model, the actual biofilm is the region where sessile biomass is present,

Ω2(t) := {x ∈ Ω : M(t, x) > 0}, whereas the surrounding aqueous phase corresponds
to the region where sessile biomass is absent, Ω1(t) := {x ∈ Ω : M(t, x) = 0}, cf.
Figure 1. Since M changes with time due to growth and dispersal, also these
two regions change. They are separated by the biofilm/water interface, Γ(t) :=
∂Ω2(t) \ ∂Ω. Neither Ω1(t) nor Ω2(t) need to be connected domains. In fact, Ω2(t)
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Figure 1. Schematic of the biofilm system cf [18]: The aqueous
phase is the domain Ω1(t) = {x ∈ Ω : M(t;x) = 0}, the biofilm
phase Ω2(t) = {x ∈ Ω : M(t;x) > 0}. These regions change over
time as the biofilm grows. Biofilm colonies form attached to the
substratum, which is a part of the boundary of the domain.

will in general consist of several colonies that are separated from each other by water-
filled channels and voids. If a biofilm is contained in the inner region of Ω, away
from its boundary, it is often called microbial floc (biofilm without substratum).
This situation plays a major role in biological wastewater treatment.

It remains to specify initial and boundary values for the biomass fraction M and
the concentrations of detached cells N , nutrient C and quorum sensing molecule A
to complement the model. This will be made precise in the following section.

3. Analysis of the quorum sensing dispersal model.

3.1. Preliminaries. For technical reasons we study the model in the auxiliary form

∂tM = ∇ · (DM (M)∇M) +
C

k1 + C
M − k2M − η1

(
|A|m

1 + |A|m

)
M

︸ ︷︷ ︸
=g(M,N,C,A)

,

∂tN = d1∆N +
C

k1 + C
N − k2N + η1

(
|A|m

1 + |A|m

)
M

︸ ︷︷ ︸
=f1(M,N,C,A)

,

∂tC = d2∆C −
σ C

k1 + C
(M +N)

︸ ︷︷ ︸
=f2(M,N,C,A)

,

∂tA = d3∆A− λ|A|+

[
α+ β

|A|m

1 + |A|m

]
(M +N)

︸ ︷︷ ︸
=f3(M,N,C,A)

,

(4)

with the initial and boundary conditions

M |∂Ω = 0, N |∂Ω = 0, C|∂Ω = C∞, A|∂Ω = 0, (5)

M |t=0 = M0, N |t=0 = N0, C|t=0 = C0, A|t=0 = A0,
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where C∞ = 1, and the functions M0, N0, C0, A0 : Ω → R are non-negative and
bounded. Moreover, we assume that

‖M0‖L∞(Ω) < 1− ρ, (6)

for some ρ ∈ (0, 1), and M0, N0, C0 and A0 satisfy the compatibility conditions.
We point out that non-negative solutions of (3) solve (4) and vice versa, i.e.

after the non-negativity is shown, the absolute value |.| can be removed from (4) to
obtain the original model (3). Constant Dirichlet boundary conditions are imposed
on the nutrient concentration C reflecting a constant unlimited nutrient supply at
the boundary of the considered domain, while homogeneous Dirichlet boundary
conditions are assumed for N and A enforcing the removal of dispersed cells and
quorum sensing signal molecules. Similarly, homogeneous Dirichlet boundary con-
ditions are assumed for the biomass fraction M . This describes the situation of a
growing biofilm in the interior of the considered domain, away from the boundary.
These specific boundary conditions are primarily chosen for convenience regarding
the analysis, albeit boundary conditions of mixed type are often considered more
appropriate in applications. Typically, Dirichlet boundary conditions are prescribed
on some parts of the boundary while Neumann or Robin boundary conditions are
specified on the other parts. In particular, the substratum on which the biofilm
grows is impermeable for all dependent variables, which can be modelled by homoge-
nous Neumann boundary conditions. An extension of our results for the Dirichlet
problem to different boundary conditions can be achieved with the same strategy
that was used in [17] for the prototype single-species/single-substrate biofilm model.

Here and in the sequel, we use the following notations, QT := (0, T ]×Ω for some
T > 0, Q = R

+ × Ω and

Φ(M) :=

∫ M

0

DM (s)ds =

∫ M

0

d
sa

(1− s)b
ds for 0 ≤ M < 1. (7)

Definition 3.1. We call (M,N,C,A) a solution of system (4) on [0, T ] with the
initial and boundary data (5), if the functions

M,N,C,A ∈ C([0, T ];L1(Ω)) ∩ L∞(QT )

and satisfy (4) in distributional sense.

More precisely, if M is a solution of system (4), then
∫

Ω

(Mϕ)
∣∣
s=t

−

∫

Ω

M0ϕ
∣∣
s=0

−

∫

Qt

(M∂sϕ+Φ(M)∆ϕ) =

∫

Qt

g (M,N,C,A)ϕ, (8)

for all t ∈ [0, T ] and ϕ ∈ C2(QT ) such that ϕ ≥ 0 in QT and ϕ|∂Ω = 0. Similarly,
for C we have

∫

Ω

(Cϕ)
∣∣
s=t

−

∫

Ω

C0ϕ
∣∣
s=0

−

∫

Qt

(C∂sϕ+ C∆ϕ) +

∫ t

0

∫

∂Ω

C∞∂νϕ

=

∫

Qt

f2 (M,N,C,A)ϕ,

(9)

for all t ∈ [0, T ] and ϕ ∈ C2(QT ) such that ϕ ≥ 0 in QT and ϕ|∂Ω = 0. As usual,
∂ν denotes the outward unit normal derivative at the boundary. The identities for
N and A are accordingly.
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3.2. Existence for smooth initial data. We consider smooth non-degenerate
approximations for system (4) and show that their solutions converge to the solution
of the degenerate problem (4). The ideas are based on the proof developed for scalar
degenerate reaction-diffusion equations of porous medium type in [2], the solution
theory in [17] for the single species biofilm model and the ideas applied in [10, 24, 38]
and [39] for multi-species biofilm models.

For small ε > 0, we define

Dε(M) :=





dεa if M < 0,

d (M+ε)a

(1−M)b
if 0 ≤ M ≤ 1− ε,

d 1
εb

if M ≥ 1− ε,

Φε(M) :=

∫ M

0

Dε(s)ds,

(10)

and denote the solutions of the regular auxiliary systems

∂tM
ε = ∇ · (Dε(M

ε)∇M ε) + g(M ε, Nε, Cε, Aε),

∂tN
ε = d1∆Nε + f1(M

ε, Nε, Cε, Aε),

∂tC
ε = d2∆Cε + f2(M

ε, Nε, Cε, Aε),

∂tA
ε = d3∆Aε + f3(M

ε, Nε, Cε, Aε).

(11)

where DM is replaced by Dε, by (M ε, Nε, Cε, Aε).

Lemma 3.2. Let the boundary and initial data be non-negative and smooth, M0,
N0, A0 ∈ C∞

0 (Ω), C0 ∈ C∞(Ω) such that C0|∂Ω = 1 and ‖M0‖L∞(Ω) < 1 − ρ for

some ρ ∈ (0, 1). Then, there exist unique solutions (M ε, Nε, Cε, Aε) ∈ C1,2(QT ) of
(4), that are non-negative and uniformly bounded w.r.t. ε > 0.

Proof. By the classical theory for quasilinear parabolic equations there exist unique
solutions (M ε, Nε, Cε, Aε) ∈ C1,2(QT ) of (4) (cf. [25]). We use comparison the-
orems for quasilinear parabolic equations (e.g., see [2] or [5]) for each equation
separately to show the non negativity and uniform boundedness of the solutions.

All components of the solution take non-negative values at the boundary, and
the initial data are non-negative. Moreover, we observe that

g(0, N, C,A) = 0 = f2(M,N, 0, A),

and, hence, zero is a subsolution for M ε and Cε. Since M ε is non-negative and

f1(M, 0, C,A) ≥ 0 for M ≥ 0,

we conclude the non-negativity of Nε. Finally, we observe that

f3(M,N,C, 0) ≥ 0 for M ≥ 0, N ≥ 0,

which implies that zero is a subsolution for Aε. Consequently, the parabolic com-
parison principle implies that M ε, Nε, Cε and Aε are non-negative.

To show the uniform boundedness of M ε we introduce the time-independent
barrier function Mθ = 1 + θ, where θ is a solution of the elliptic problem

∆θ = −1 in Ω,

θ|∂Ω = 0.
(12)

The maximum principle for elliptic equations [33] implies that θ ≥ 0 in Ω, and

1 ≤ Mθ(x) ≤ 1 +R1, x ∈ Ω
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for some constant R1 ≥ 0. Moreover, we observe that

M0 = M ε|t=0 ≤ Mθ|t=0, 0 = M ε|∂Ω ≤ Mθ|∂Ω

and since Mθ is time-independent, it follows that

∂tMθ −∇ · (Dε(Mθ)∇Mθ)−
Cε

k1 + Cε
Mθ + k2Mθ + η1

(
|Aε|n

1 + |Aε|n

)
Mθ

= 0 +
d

εb
−

Cε

k1 + Cε
Mθ + k2Mθ + η1

(
|Aε|n

1 + |Aε|n

)
Mθ

≥
d

εb
−Mθ + k2Mθ ≥

d

εb
− (1 +R1) ≥ 0

= ∂tM
ε −∇ · (Dε(M

ε)∇M ε)− g(M ε, Nε, Cε, Aε) ,

(13)

for all sufficiently small ε > 0. Consequently, by the parabolic comparison principle
there exists ε′0 > 0 such that the solutions M ε are uniformly bounded for all 0 <
ε ≤ ε′0.

Next, we show the uniform boundedness of the nutrient concentration Cε by
defining Cmax := max{||C0||L∞(Ω), 1}. Then

∂tCmax − d2∆Cmax +σ
Cmax

k1 + Cmax

(M ε +Nε) = σ
Cmax

k1 + Cmax

(M ε +Nε) ≥ 0, (14)

where we used the non-negativity of the sessile biomass M ε and the dispersed
cells Nε. This shows that Cmax is an upper solution, and hence, by the parabolic
comparison principle Cε is bounded by Cmax. To prove the uniform boundedness
of Nε we denote by N̂ the solution of the initial value problem

∂tN̂ = d1∆N̂ + N̂ − k2N̂ + η1(1 +R1), (15)

N̂ |∂Ω = 0,

N̂ |t=0 = N0,

where 1 + R1 is the upper bound for the sessile biomass fraction. We observe that
N̂ is non-negative, it satisfies N̂ ∈ L∞(QT ) and

∂tN̂ − d1∆N̂ −
Cε

k1 + Cε
N̂ + k2N̂ − η1

|Aε|m

1 + |Aε|m
M ε (16)

≥ ∂tN̂ − d1∆N̂ − N̂ + k2N̂ − η1(1 +R1) = 0

= ∂tN
ε − d1∆Nε −

Cε

k1 + Cε
Nε + k2N

ε − η1
|Aε|m

1 + |Aε|m
M ε.

Consequently, N̂ is an upper solution for the dispersed cells Nε.
Finally, we prove the uniform boundedness of the quorum sensing signal molecule

concentration by showing that there exists a constant Amax ≥ ‖A0‖L∞(Ω) which
is an upper solution for Aε. It satisfies Amax|∂Ω ≥ 0 = Aε|∂Ω, Amax|t=0 ≥ A0 =
Aε|t=0 and

∂tAmax − d3∆Amax + λAmax −

[
α+ β

|Amax|
m

1 + |Amax|m

]
(M ε +Nε)

= λAmax −

[
α+ β

|Amax|
m

1 + |Amax|m

]
(M ε +Nε)

≥ λAmax − (α+ β)(|M ε|+ |Nε|)

≥ λAmax − (α+ β)(1 +R1 + N̂) ≥ 0,

(17)
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where we use the boundedness of M ε and Nε, and |Amax|
m

1+|Amax|m
≤ 1. This shows

that if the constant Amax is sufficiently large, it is an upper solution, and by the
parabolic comparison principle, it is a uniform upper bound for Aε.

In the following Lemma, we improve the upper bound on the sessile biomass
density, in particular, we show that the singularity for M = 1 is not attained.

Lemma 3.3. Under the hypothesis of Lemma 3.2, there exist δ > 0 and ε0 > 0
such that M ε ≤ 1− δ in QT for all 0 < ε < ε0.

Proof. In order to improve the upper estimate on M we construct a suitable barrier
function and consider the elliptic problem

∆θ = −c1 in Ω,

θ|∂Ω = c2.
(18)

The constants c1 and c2 are defined by

c1 :=‖g(M ε, Nε, Cε, Aε)‖L∞(QT ),

c2 :=‖Φε(M0)‖L∞(Ω),
(19)

for 0 < ε < ε′0, where ε′0 was defined in the proof of Lemma 3.2, and

Φε(M0) =

∫ M0

0

(s+ ε)a

(1− s)b
ds for 0 ≤ M0 < 1− ε. (20)

We remark that for sufficiently small ε1 < ε′0, the constants c1 and c2 can be chosen
uniform for all 0 < ε < ε1. Moreover, the solution θ of (18) is bounded on Ω, and
by the maximum principle for elliptic problems [33] it follows that θ ≥ c2 in Ω.

For 0 < ε < ε1 we define Zε := Φ−1
ε (θ) and observe that

∂tZε −∆(Φε(Zε)) = c1 = ‖g(M ε, Nε, Cε, Aε)‖L∞(QT ) ≥ ∂tM
ε −∆(Φε(M

ε))

in QT . Moreover, the boundary conditions imply that

Zε|∂Ω = Φ−1
ε (θ)|∂Ω = Φ−1

ε (c2) ≥ M ε|∂Ω = 0,

and the initial data satisfies

Zε|t=0 = Φ−1
ε (θ)|t=0 ≥ Φ−1

ε (c2) ≥ Φ−1
ε (Φε(M0)) = M0, (21)

where we used the monotonicity of the function Φ−1
ε . Consequently, the function Zε

is an upper solution for the sessile biomass M ε. Using the fact that θ is bounded in
Ω and that Φε(M

ε) = dMε

εb
forM ε ≥ 1−ε, we conclude by the parabolic comparison

principle that there exist 0 < ε0 ≤ ε1 and δ ∈ (0, 1) such that M ε ≤ Zε = Φ−1
ε (θ) <

1− δ for all 0 < ε < ε0.

Lemma 3.4. Under the hypotheses of Lemma 3.2, the solutions M ε of (11) satisfy
∫

QT

Dε(M
ε)
(
∂tM

ε
)2

+ sup
t∈[0,T ]

∫

Ω

∣∣∇Φε(M
ε)
∣∣2 ≤ c, (22)

∫

QT

(
|∂tN

ε|2 + |∂tC
ε|2 + |∂tA

ε|2
)
+ sup

t∈[0,T ]

∫

Ω

(
|∇Nε|2 + |∇Cε|2 + |∇Aε|2

)
≤ c,

for some constant c > 0.
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Proof. We first multiply the second equation in (11) by ∂sN
ε and integrate,

∫ t

τ

∫

Ω

|∂sN
ε|2 = −

d1
2

∫ t

τ

∫

Ω

∂s|∇Nε|2 +

∫ t

τ

∫

Ω

∂sN
εf1(M

ε, Nε, Cε, Aε), (23)

where 0 ≤ τ ≤ t ≤ T. Using Young’s inequality leads to the estimate
∫ t

τ

∫

Ω

|∂sN
ε|2 +

d1
2

∫

Ω

|∇Nε|2
∣∣∣
s=t

(24)

=
d1
2

∫

Ω

|∇Nε|2
∣∣∣
s=τ

+

∫ t

τ

∫

Ω

∂sN
εf1(M

ε, Nε, Cε, Aε)

≤
d1
2

∫

Ω

|∇Nε|2
∣∣∣
s=τ

+ ξ

∫ t

τ

∫

Ω

|∂sN
ε|2 + Cξ

∫ t

τ

∫

Ω

|f1(M
ε, Nε, Cε, Aε)|2,

for small ξ > 0, and some constant Cξ. Setting τ = 0 we obtain

(1 − ξ)

∫

Qt

|∂sN
ε|2 +

d1
2

∫

Ω

|∇Nε|2
∣∣∣
s=t

(25)

≤
d1
2

∫

Ω

|∇N0|
2 + Cξ

∫

Qt

|f1(M
ε, Nε, Cε, Aε)|2,

for small ξ > 0, and some constant Cξ. Lemma 3.2 and the continuity of f1 now
imply that

∫

QT

|∂tN
ε|2 ≤ C′, sup

t∈[0,T ]

∫

Ω

|∇Nε|2 ≤ C′, (26)

for some constant C′ ≥ 0. The corresponding bounds for the solutions Cε and Aε

can be obtained in the same way.
To derive the estimates for the biomass fraction M ε let

G(M ε, Nε, Cε, Aε) :=

∫ Mε

0

Dε(ζ)g(ζ,N
ε, Cε, Aε)dζ. (27)

Multiplying the first equation of (11) by ∂s(Φε(M
ε)) and integrating over Ω and

from τ to t we obtain
∫ t

τ

∫

Ω

Dε(M
ε)
(
∂sM

ε
)2

=

∫ t

τ

∫

Ω

∂s(Φε(M
ε))∂sM

ε (28)

=

∫ t

τ

∫

Ω

∇ · (Dε(M
ε)∇M ε)∂s(Φε(M

ε)) +

∫ t

τ

∫

Ω

∂s(Φε(M
ε))g(M ε, Nε, Cε, Aε)

=−

∫ t

τ

∫

Ω

Dε(M
ε)∇M ε · ∂s∇(Φε(M

ε)) +

∫ t

τ

∫

Ω

∂s(Φε(M
ε))g(M ε, Nε, Cε, Aε)

=−
1

2

∫ t

τ

∫

Ω

∂s|Dε(M
ε)∇M ε|2 +

∫ t

τ

∫

Ω

∂s(Φε(M
ε))g(M ε, Nε, Cε, Aε),

where we used integration by parts in the second step. Consequently, using the
identity

∫

Ω

G(M ε, Nε, Cε, Aε)
∣∣∣
s=t

−

∫

Ω

G(M ε, Nε, Cε, Aε)
∣∣∣
s=τ

(29)

=

∫ t

τ

∫

Ω

∂s
(
G(M ε, Nε, Cε, Aε)

)
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=

∫ t

τ

∫

Ω

∫ Mε

0

Dε(ζ)∂s
(
g(ζ,Nε, Cε, Aε)

)
+

∫ t

τ

∫

Ω

∂sM
εDε(M

ε)g(M ε, Nε, Cε, Aε)

=

∫ t

τ

∫

Ω

∫ Mε

0

Dε(ζ)
(
∂sN∂Ng(ζ,Nε, Cε, Aε) + ∂sC∂Cg(ζ,N

ε, Cε, Aε)

+ ∂sA∂Ag(ζ,N
ε, Cε, Aε)

)
+

∫ t

τ

∫

Ω

∂s(Φε(M
ε))g(M ε, Nε, Cε, Aε),

it follows that
∫

t

τ

∫

Ω

Dε(M
ε)
(

∂tM
ε

)2

+
1

2

∫

Ω

|Dε(M
ε)∇M

ε|2
∣

∣

∣

s=t

(30)

=
1

2

∫

Ω

|Dε(M
ε)∇M

ε|2
∣

∣

∣

s=τ

+

∫

Ω

G(Mε
, N

ε
, C

ε
, A

ε)
∣

∣

∣

s=t

−

∫

Ω

G(Mε
, N

ε
, C

ε
, A

ε)
∣

∣

∣

s=τ

+

∫

t

τ

∫

Ω

∫

M
ε

0

Dε(ζ)
(

∂sN∂Ng(ζ,Nε
, C

ε
, A

ε) + ∂sC∂Cg(ζ,N
ε
, C

ε
, A

ε)

+ ∂sA∂Ag(ζ,N
ε
, C

ε
, A

ε)
)

,

where ∂N , ∂C , ∂A denote the partial derivatives w.r.t. the variables N,C and A,
respectively. Lemma 3.2 and Lemma 3.3 imply that there exists ε0 > 0 and δ ∈
(0, 1) such that the approximate solutions M ε satisfy M ε < 1 − δ in QT for all
0 < ε < ε0, where δ is independent of ε. Consequently, Dε(M

ε) is positive and
uniformly bounded from above by a constant, which is independent of ε,

dεa ≤ Dε(M
ε(t, x)) = d

(M ε(t, x) + ε)a

(1 −M ε(t, x))b
≤ d

(1 − δ + ε)a

(1− (1 − δ))b
≤

d

δb
, (t, x) ∈ QT ,

for all 0 < ε < ε1 := min{δ, ε0}. The last integral can therefore be estimated by
∫ t

τ

∫

Ω

∫ Mε

0

Dε(ζ)
(
∂sN∂2g(ζ,N

ε, Cε, Aε) + ∂sC∂3g(ζ,N
ε, Cε, Aε) (31)

+ ∂sA∂4g(ζ,N
ε, Cε, Aε)

)

≤
d

δb

∫ t

τ

∫

Ω

(
(|∂sN |2 + |∂sC|2 + |∂sA|

2) +

∫ Mε

0

4∑

i=2

|∂ig(ζ,N
ε, Cε, Aε)|2

)
.

By the above estimates (26), Lemma 3.2, Lemma 3.3 and setting τ = 0, we conclude
that ∫

QT

Dε(M
ε)
(
∂tM

ε
)2

≤ C′, sup
t∈[0,T ]

∫

Ω

|Dε(M
ε)∇M ε|2 ≤ C′,

for some constant C′ ≥ 0.

Lemma 3.5. Under the hypotheses of Lemma 3.2 the approximate solutions of (11)
converge to a solution of the degenerate system (4) as ε > 0 tends to zero.

Proof. By Lemma 3.3 the solutions M ε are uniformly bounded by 1 − δ, and the
following estimate for the diffusion coefficient was shown in the proof of Lemma 3.4,

dεa ≤ Dε(M
ε(t, x)) ≤

d

δb
, (t, x) ∈ QT ,

for all 0 < ε < ε1. Moreover, if ε < ε1 we observe that

DM (M ε) ≤ Dε(M
ε) ≤

d

δb
,
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and consequently,

Φ(M ε(t, x)) ≤ Φε(M
ε(t, x)) ≤ (1− δ)

d

δb
, (t, x) ∈ QT .

Lemma 3.3 and Lemma 3.4 further imply that
∫

QT

(
∂t(Φ(M

ε))
)2

=

∫

QT

(
DM (M ε)∂tM

ε
)2

≤

∫

QT

(
Dε(M

ε)∂tM
ε
)2

(32)

≤ ‖Dε(M
ε)‖L∞(QT )

∫

QT

Dε(M
ε)
(
∂tM

ε
)2

≤ c
d

δb
,

sup
t∈[0,T ]

∫

Ω

∣∣∇Φ(M ε)
∣∣2 = sup

t∈[0,T ]

∫

Ω

∣∣DM (M ε)∇M ε
∣∣2 ≤ sup

t∈[0,T ]

∫

Ω

∣∣Dε(M
ε)∇M ε

∣∣2 ≤ c,

for some constant c ≥ 0. This shows that the family Ψε := Φ(M ε), 0 < ε < ε1, is
uniformly bounded in W = {u ∈ L∞(0, T ;H1(Ω)) | ∂tu ∈ L2(0, T ;L2(Ω))}, which
is compactly embedded into C([0, T ];L2(Ω)) by Aubin-Lions’ Lemma (e.g., see [7],
Theorem II.1.5). Consequently, there exists Ψ ∈ C([0, T ];L2(Ω)) and a sequence
εn tending to zero as n → ∞ such that Ψεn → Ψ in C([0, T ];L2(Ω)). This implies
that M εn = Φ−1(Ψεn) → M and Φ(M εn) → Φ(M) in C([0, T ];L2(Ω)).

Moreover, by Lemma 3.4 the approximate solutions Nε, Cε and Aε are uniformly
bounded in W , which implies that there exist N,C,A ∈ C([0, T ];L2(Ω)) and a
sequence εn tending to zero as n → ∞ such that

Nεn → N, Cεn → C, Aεn → A in C([0, T ];L2(Ω)).

We can now pass to the limit ε → 0 in the distributional formulation of the
degenerate system (3) using the uniform boundedness of the approximate solutions
and the continuous embedding C([0, T ];L2(Ω)) →֒ C([0, T ];L1(Ω)), and conclude
that the limits M,N,C,A are solutions of the degenerate problem.

3.3. Uniqueness and well-posedness for general initial data.

Lemma 3.6. Let the hypotheses of Lemma 3.2 be satisfied. If (M,N,C,A) and

(M̃, Ñ , C̃, Ã) are two solutions corresponding to initial data (M0, N0, C0, A0) and

(M̃0, Ñ0, C̃0, Ã0), respectively, then

‖M(T )− M̃(T )‖L1(Ω) − ‖M0 − M̃0‖L1(Ω) ≤

∫ T

0

∫

Ω

|g0(t, x)|dxdt,

‖N(T )− Ñ(T )‖L1(Ω) − ‖N0 − Ñ0‖L1(Ω) ≤

∫ T

0

∫

Ω

|h1(t, x)|dxdt,

‖C(T )− C̃(T )‖L1(Ω) − ‖C0 − C̃0‖L1(Ω) ≤

∫ T

0

∫

Ω

|h2(t, x)|dxdt,

‖A(T )− Ã(T )‖L1(Ω) − ‖A0 − Ã0‖L1(Ω) ≤

∫ T

0

∫

Ω

|h3(t, x)|dxdt,

(33)

where the functions g0 and hi are defined as

g0 := g(M,N,C,A)− g(M̃, Ñ , C̃, Ã),

hi := fi(M,N,C,A) − fi(M̃, Ñ , C̃, Ã),
(34)

for i = 1, 2, 3.

Proof. The estimates immediately follow from Lemma 3.3 in [17].
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Lemma 3.7. Let B be a bounded subset of R
4
+. Then for all (M,N,C,A) and

(M̃, Ñ , C̃, Ã) ∈ B we have

|g(M,N,C,A)− g(M̃, Ñ , C̃, Ã)|+

3∑

i=1

|fi(M,N,C,A) − fi(M̃, Ñ , C̃, Ã)

≤ c
(
|M − M̃ |+ |N − Ñ |+ |C − C̃|+ |A− Ã|

)
,

(35)

for some constant c ≥ 0.

Proof. Let (M,N,C,A), (M̃ , Ñ , C̃, Ã) ∈ B. For the function f2 we obtain,

|f2(M,N,C,A) − f2(M̃, Ñ , C̃, Ã)|

= − σ
∣∣∣
[(

C

k1 + C

)
(M +N)−

(
C̃

k1 + C̃

)
(M̃ + Ñ)

] ∣∣∣

≤ r1

(
|M − M̃ |+ |N − Ñ |

)
,

(36)

for some constant r1 ≥ 0. To show that the functions f1, f3 and g satisfy (35) we
observe, that

Am
1 X1 −Am

2 X2 = Am
1 (X1 −X2) +X2(A

m
1 −Am

2 )

= Am
1 (X1 −X2) + νX2(A1 −A2)

∫ 1

0

(sA1 + (1 − s)A2)
m−1ds,

(37)

which implies that |Am
1 X1−Am

2 X2| ≤ r|(X1−X2)+X2(A1−A2)| for some constants
ν and r ≥ 0 and (X1, A1), (X2, A2) in bounded subsets of R2

+.
Applying this to f1, we obtain

|f1(M,N,C,A) − f1(M̃, Ñ , C̃, Ã)|

=

∣∣∣∣
[(

C

k1 + C
− k2

)
N + η1

(
Am

1 +Am

)
M

]

−

[(
C̃

k1 + C̃
− k2

)
Ñ + η1

(
Ãm

1 + Ãm

)
M̃

] ∣∣∣∣

≤ |1− k2||N − Ñ |+ |η1|
[
|M − M̃ |+ |M(A− Ã)|

]

≤ r2(|N − Ñ |+ |M − M̃ |+ |A− Ã|)

(38)

for some constant r2 ≥ 0. Similarly, for f3 we obtain

|f3(M,N,C,A) − f3(M̃, Ñ , C̃, Ã)| =

∣∣∣∣
[
−λA+

[
α+ β

Am

1 +Am

]
(M +N)

]

−

[
− λÃ+

[
α+ β

Ãm

1 + Ãm

]
(M̃ + Ñ)

]∣∣∣∣

≤ λ|A− Ã|+ α
[
|M − M̃ |+ |N − Ñ |

]

+ β
[
|M − M̃ |+ |M̃ ||A− Ã|

]
+ β[|N − Ñ |+ |Ñ ||A− Ã|

]

≤ r3(|A− Ã|+ |M − M̃ |+ |N − Ñ |)

(39)
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for some constant r3 ≥ 0. Finally, for g we obtain

|g(M,N,C,A)− g(M̃, Ñ , C̃, Ã)|

=
∣∣∣
[(

C

k1 + C
− k2

)
M − η1

(
Am

1 +Am

)
M

]

−

[(
C̃

k1 + C̃
− k2

)
M̃ − η1

(
Ãm

1 + Ãm

)
M̃

] ∣∣∣

≤ |1− k2||M − M̃ |+ η1

[
|M − M̃ |+ |M̃ ||A− Ã|

]

≤ r4|M − M̃ |+ r2|A− Ã|

(40)

for some constant r4 ≥ 0. Combining equations (36), (38), (39) and (40) gives

|g(M,N,C,A)− g(M̃, Ñ , C̃, Ã)|+
3∑

i=1

|fi(M,N,C,A) − fi(M̃, Ñ , C̃, Ã)|

≤ r′(|M − M̃ |+ |N − Ñ |+ |C − C̃|+ |A− Ã|)

(41)

for some constant r′ ≥ 0.

Theorem 3.8. For every T > 0 and initial data (M0, N0, C0, A0) in C(Ω) such
that

M0 ≥ 0, ‖M0‖L∞(Ω) < 1− ρ, N0 ≥ 0, C0 ≥ 0, A0 ≥ 0,

C0|∂Ω = 1, M0|∂Ω = N0|∂Ω = A0|∂Ω = 0,

for some ρ ∈ (0, 1), there exists a unique solution (M,N,C,A) on [0, T ] of model
(4). The functions M,N,C and A are non-negative, belong to L∞(QT ) and there
exists δ ∈ (0, 1) such that M satisfies ‖M‖L∞(QT ) < 1− δ.

Proof. We first assume the initial data are smooth and satisfy the hypotheses of
Lemma 3.2.

If (M,N,C,A) and (M̃, Ñ , C̃, Ã) are two solutions corresponding to initial data

(M0, N0, C0, A0), and (M̃0, Ñ0, C̃0, Ã0) respectively, then Lemma 3.6 and the esti-
mate in Lemma 3.7 imply that

F (T )− F (0) ≤ c

∫ T

0

F (s)ds,

where

F (t) := ‖M(t)− M̃(t)‖L1(Ω) + ‖N(t)− Ñ(t)‖L1(Ω) (42)

+ ‖C(t)− C̃(t)‖L1(Ω) + ‖A(t)− Ã(t)‖L1(Ω).

By Gronwall’s Lemma we conclude that

F (T ) ≤ F (0)ecT , (43)

for some constant c ≥ 0, which implies the uniqueness of solutions corresponding
to smooth initial data. For general initial data, let Mn

0 , N
n
0 , C

n
0 , A

n
0 be an approxi-

mating sequence satisfying the hypothesis of Lemma 3.2 such that

‖Mn
0 −M0‖L1(Ω) + ‖Nn

0 −N0‖L1(Ω) + ‖Cn
0 − C0‖L1(Ω) + ‖An

0 −A0‖L1(Ω) → 0
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as n → ∞. The Lipschitz continuity of solutions in L1(Ω) norm (43) implies that
the corresponding solutions Mn, Nn, Cn, An satisfy

sup
t∈[0,T ]

{
‖Mn(t)−Mk(t)‖L1(Ω) + ‖Nn(t)−Nk(t)‖L1(Ω)

+ ‖Cn(t)− Ck(t)‖L1(Ω) + ‖An(t)−Ak(t)‖L1(Ω)

}

≤ CT

(
‖Mn

0 −Mk
0 ‖L1(Ω) + ‖Nn

0 −Nk
0 ‖L1(Ω)

+ ‖Cn
0 − Ck

0 ‖L1(Ω) + ‖An
0 −Ak

0‖L1(Ω)

)
.

(44)

for some constant CT ≥ 0 and all n, k ∈ N. Consequently, Mn, Nn, Cn, An form a
Cauchy sequence in C([0, T ];L1(Ω)) and converge to the unique solution M,N,C,A
of (4).

4. Numerical simulations. In the previous section we established the well-posed-
ness of the quorum sensing induced biofilm detachment model, however, we are
currently unable to describe the solutions of the model qualitatively based on rig-
orous analytical arguments. Hence, we illustrate the model behaviour in computer
simulations.

For the numerical solution of the model we use a straightforward extension to
the problem at hand of the numerical method for the prototype biofilm model that
is described in detail in [14, 36]. For space discretisation this uses a Finite Volume
method on a uniform grid, which uses Finite Difference approximations for the
diffusive fluxes across grid cell edges. We extended this method to account for the
new dependent variables A and N which are treated in the same manner as C.
A simple first order semi-implicit method is used for time-stepping. In every time
step, this requires the solution of a sparse linear system for each dependent variable.
By construction of the method, the system matrices are at least weakly diagonally
dominant. These linear systems are solved with the stabilized biconjugate gradient
method [35]. The linear solver is prepared for parallel execution on multi-core
and shared memory multiprocessor architectures using OpenMP as described in
[28]. Simulations are terminated when the biofilm (or the microbial floc) reaches
a set target size, or when a set maximum simulation time is reached. The model
parameters used in our simulations are summarised in Table 1.

In the numerical experiments, we investigate the model behaviour under different
boundary conditions reflecting biofilms or microbial flocs with particular emphasis
on the internal structure of the colonies. We define the following output parameters:

• Relative variation: This is the standard deviation of the sessile biomass density
from its mean in the biofilm,

R(t) :=

[∫

Ω2

(
M(t, x)−

∫

Ω2

M(t, y)dy

)2

dx

] 1

2

(45)

• Relative biofilm (floc) size: This is the size of the biofilm relative to the domain
size,

ω(t) :=
1

|Ω|

∫

Ω2(t)

dx (46)

• Sessile biomass in the biofilm:

Mtot(t) :=

∫

Ω

M(t, x)dx (47)
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Table 1. Parameters used in the numerical simulations

Parameter Description Value Source

k1 half saturation concentration (growth) 0.4 [44]
k2 lysis rate 0.067 assumed
σ nutrient consumption rate 793.65 [19]
η1 maximum dispersal rate varied [18]
λ quorum sensing abiotic decay rate 0.02218 [39]
α constitutive autoinducer production rate varied -
β induced autoinducer production rate 10× α [19]
m degree of polymerization 2.5 [19]
d1 constant diffusion coefficients for N 4.1667 assumed
d2 constant diffusion coefficients for C 4.1667 [15]
d3 constant diffusion coefficients for A 3.234 [15]
d biomass motility coefficient 4.2× 10−8 [13]
a biofilm diffusion exponent 4.0 [13]
b biofilm diffusion exponent 4.0 [13]
L system length 1.0 [15]
H system height 1.0 assumed

• Dispersed cells:

Ntot(t) :=

∫

Ω

N(t, x)dx (48)

• Average signal molecule concentration in the biofilm:

Aave(t) :=

∫
Ω2(t)

A(t, x)dx
∫
Ω2(t)

dx
. (49)

In these definitions, Ω is the fixed computational domain, and Ω2(t) ⊂ Ω is the
biofilm subdomain where M > 0, which evolves in time, as defined in Section 2.

4.1. Microbial floc. In the first simulation experiments, we consider a biofilm
without substratum i.e. a microbial floc. We restrict ourselves to a two-dimensional
setting with rectangular computational domain Ω = [0, 1] × [0, 1]. The boundary
conditions used are the Dirichlet boundary conditions (5). One small circular floc
is placed in the centre of the domain which at time t = 0 contains only sessile cells
of biomass density M0 = 0.1, while everywhere else in the domain M0 ≡ 0; this floc
is circular and occupies 0.03% of the domain Ω.

Initially, no signal molecule A and no dispersed cells N are assumed to be in the
system, thus A0 ≡ 0 and N0 ≡ 0. The nutrient concentration in the interior at time
t = 0 is everywhere at the same level as the concentration at the boundary, C0 ≡ 1.

For the visualization presented in Figure 2, we used an autoinducer production
rate α = 30.7 and a maximum dispersal rate η1 = 0.6, every other parameter is as
listed in Table 1. Immediately after the simulation starts, the floc is very small in
size and the concentration of the signal molecule A is very low. At the snapshots
t = 5, t = 10 and t = 15, the original circular shape of the floc is still visible,
the nutrient is not strongly growth limiting and the floc expands. As the floc
grows within the rectangular domain, it looses its circular shape and expands faster
toward the sides of the domain rather than towards the corners. This is a boundary
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Figure 2. 2-D structural representation of the microbial floc
growth for autoinducer production rate α = 30.7 and maximum
dispersal rate η1 = 0.6 for selected time instances t. Color coded is
the biomass density M , iso-lines of the autoinducer concentration
A are plotted in grayscale.

condition effect that is prompted by the smaller diffusion length for substrates from
the middle of the lateral sides than from the corners. Overall, however, the colony
remains in a rather compact shape, in analogy with biofilms which have been found
to grow in compact, homogenous layers when nutrients are nowhere severely limited.
With the increase in biomass density in the system, the signal concentration also
increases. The autoinducer concentration attains its highest values inside the floc
and, due to diffusion and the parabolic maximum principle, decreases from there
towards the floc/water interface and the boundary of the domain where the signal
concentration is kept at A = 0. At the next snapshot t = 20, we observe a visible
decrease in biomass density in the centre of the floc, thus creating a hollow in the floc
due to conversion of sessile cells into dispersed cells and their subsequent diffusion
out of the domain. The last snapshot taken at t = 25 shows that the microbial floc
has started growing again both internally and on the surface; and consequently the
signal concentration has started rising.
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The 2-D structural representation of the biofilm shown in Figure 2 reveals that
the bacterial cells leave from the inner core of the microfloc, but it does not illustrate
the extent of the dispersal effect on the biofilm structure. Hence, we present a 1-D
spatial representation of a typical biofilm dispersal event in Figure 3 whereby the
biofilm is cut vertically to reveal the dispersal taking place in the inner core of the
biofilm. The sessile biomass density and the concentration of the quorum sensing
molecule are shown at selected times t = 0.0002, 5, 10, 15, 20, 25. From the top view
of the microfloc, we observe that at times t = 0.0002, t = 5, and t = 10 the microfloc
is still in its initial growth phase, the sessile biomass density has increased leading
to spatial spreading. The signal molecule concentration also rises until its level is
high enough to induce cell dispersal, as seen at the next selected time t = 15. The
following two snapshots at times t = 20 and t = 25 show that the dispersal of cells
from the microfloc creates voids in the floc and its depth increases over time (as
seen from the top view).

Figures 2 and 3 illustrate that cell dispersal occurs from the inner core of the
microfloc thereby creating hollowing structures, as reported in experimental studies,
e.g. [9, 22]. Furthermore, we will investigate the general extent of the hollow effect
over a longer period of time through the lumped quantities Mtot, Ntot, Aave and R
defined in equations (45)-(49).

The temporal plots are shown in Figure 4 where the autoinducer production rate
is varied as α = 92.0, 46.0, 30.7, 23.0, 18.4, 15.3, 13.1. For α ≥ 30.7, we observe a
rapid removal of biomass and signal molecule (see Figure 4c, e) due to the Dirichlet
conditions prescribed on the boundary. After the first dispersal event, the bacterial
cells that are left behind in the floc are too few to maintain the signal concentration
at a level high enough to sustain cell dispersal, so the biomass in the floc starts
increasing. This also leads again to an increase in autoinducer concentration until
the next dispersal event is triggered. This pattern continues, thus producing an
almost periodic pattern of discrete dispersal events, cf. Figure 4. For α < 30.7, the
floc grows larger with higher levels of biomass density and autoinducer concentration
before cell dispersal is induced. Here, the dispersal appears continuously and the
biomass density in the floc reaches a plateau. The simulations in Figure 4 illustrate
that cell dispersal is taking place, depending on the value of α in a continuous or
periodic pattern. The relative size of the biofilm colony, however, does not reflect
this as seen in Figure 4b. It indicates that most of the dispersed cells are from the
inner core of the floc.

The relative variation of the biomass density defined in equation (45) is the stan-
dard deviation of the sessile biomass density from its mean in the microfloc. This is
evaluated and plotted in Figure 4d. So far, we established that cell dispersal occurs
in the inner core of the biofilm, it creates voids (hollows) whose depth increases
over time when viewed from the top and the floc size does not shrink as a result
of dispersal. The importance of the variable R is to investigate the spatiotemporal
effect of cell dispersal, in order to analyze the extent of the voids over time. When
the standard deviation is close to zero, the hollow in the floc is small (or narrow);
on the other hand, if the standard deviation is large, the hollow is big (or wide).
The plots in Figure 4d show that the size of the hollow decreases over time as the
standard deviation from the mean decreases. This is more visible in smaller flocs
(i.e. when α ≥ 30.7). Hence, after the voids are created by cell dispersal, the
floc grows both inside and outside. Loss of biomass occurs in the inner core even
though the total floc size does not shrink. For bigger flocs (i.e. when α < 30.7),
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Figure 3. 1-D Spatial representation of the development and dis-
persal of bacterial cells from the microbial floc: The snapshots are
taken at different computational time t, with an autoinducer pro-
duction rate α = 30.7 and a dispersal rate of η1 = 0.6.

the dispersal occurs rather continuously. The floc hardly grows, especially in the
inner core, and hence the created hollow becomes constant, seen in Figure 4d as R
approaches a plateau.

So far, we presented simulation experiments for a microfloc. We will compare this
situation with a biofilm. Besides, we will investigate the effect of quorum sensing
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Figure 4. Temporal plots of simulations computed for a non-
quorum sensing producing microfloc (Non-QS) and a quorum sens-
ing producing microfloc using seven different constitutive autoin-
ducer production rate α = {92.0, 46.0, 30.7, 23.0, 18.4, 15.3, 13.1}
and fixed maximum dispersal rate η1 = 0.6. Shown are (a) the
total sessile biomass fraction Mtot in the floc, (b) the floc size ω
(c) dispersed cells Ntot, (d) relative variation R, and (e) signal
concentration Aave.

induced dispersal on merged colonies which has not been done in the previous study
[18]. More specifically, we will analyze the behaviour of merging colonies in terms
of biomass growth, cell dispersal and hollow structures.

4.2. Microbial biofilm. The simulated biofilm community consists of bacterial
cells accumulating on a surface (substratum) surrounded by an aquatic region. The
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substratum is inoculated by two colonies of small pockets of sessile cells with biomass
density M0 = 0.1 in each colony.

The substratum forms the bottom boundary of the domain Ω and is impermeable
to biomass, substrate and signal molecule. This is described by homogeneous Neu-
mann boundary conditions imposed on the dependent variables M,N,C,A. These
can be understood as symmetry boundary conditions which enable us to view the
small simulation section as a part of a much larger system. At the top boundary, we
impose homogenous Dirichlet conditions for the dependent variables M , N and A
by setting M = 0, N = 0 and A; this enforces a diffusion gradient from the biofilm
in the interior of the domain to the boundary and mimics removal of quorum sens-
ing molecule and dispersed cells into the surrounding bulk phase, where they are
negligible due to instantaneous dilution. An inhomogeneous Dirichlet condition is
imposed for C at the top boundary by setting C to the bulk concentration value
(i.e. C = C∞ = 1); this reflects that the growth limiting substrate is added to
the system through the top boundary. For the left and right boundaries, we im-
pose homogeneous Neumann boundary conditions for all the dependent variables
M,N,C,A which makes the left and right boundaries impermeable to biomass,
substrate and signal molecules.

Initially, no dispersed cells and no autoinducers are in the system, and the con-
centration of nutrients is at bulk level, i.e. C0 ≡ C∞ = 1, N0 = A0 ≡ 0.

To investigate the effect of quorum sensing triggered dispersal on the spatial
structure of the biofilm colony, we visualize the development, growth and cell dis-
persal of the biofilm in Figure 5. We used the autoinducer production rate α = 30.7
and a maximum dispersal rate η1 = 0.6, which mimics the periodic dispersal events
described in [18]. All other parameter values used are as listed in Table 1. We show
the spatial distribution of the sessile biomass M and the iso-lines of the autoinducer
concentration A within the first dispersal event (cycle); the selected time instances
illustrate the biofilm growth and dispersal in response to autoinducer concentration.

After the simulation starts, the biomass M starts growing and colonies gradually
expand as shown in the snapshots at t = 0.002 and t = 5, but due to the removal of
signal molecules from three out of four boundary segments of the domain, accumu-
lation of signal molecules is not strong enough to induce dispersal. Expansion starts
locally when and where the biomass density M approaches its maximum value. As
long as the nutrient substrate is not severely limited, the total biomass density M
is close to 1 in the biofilm.

At the next shown time instance t = 10, the biomass densityM inside the colonies
has increased. The colonies which were initially placed apart are now drawing close
and then merge, albeit the biomass density inside the colonies still remains below
the maximum biomass density. The autoinducer concentration has risen, though
not strong enough to induce cell dispersal. Moreover, the merged colonies now
act as one colony, whereby the iso-lines of the signal concentration are no longer
separated. The autoinducer concentration in the middle of the merged colony has
increased and few cells started dispersing as shown at the time instance t = 11.

At the next snapshot t = 12, we notice a huge biomass loss resulting in a signif-
icant decrease in the biomass density of the merged colony. An important observa-
tion is the void region of the colonies, seen at the centre of the merged colonies and
not at the centre of the individual colonies as in the study [18]. At the snapshot
t = 13, the biomass density in the merged colony has started to increase again.
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Figure 5. 2-D structural representation of the microbial biofilm
growth for autoinducer production rate α = 30.7 and maximum
dispersal rate η1 = 0.6 for selected time instances t. Color coded is
the biomass density M , iso-lines of the autoinducer concentration
A are plotted in grayscale.

Furthermore, we investigate the behaviour of the biofilm if cell dispersal occurs
before merging of the colonies. The simulation setup here is the same as in Figure
5 except that the autoinducer production rate is set to α = 92.0 which relates to a
small biofilm. Here, the biofilm grows less and merging of the colonies is delayed.
Similar to the results in Figure 5, we notice that at the first two time instances
t = 0.002 and t = 5, the colonies are still in the growth phase (see Figure 6). At
the next two snapshots t = 10 and t = 11, we observe a significant biomass loss
leading to hollow structures. After the dispersal event, the biofilm starts growing
again albeit the colonies do not merge (see Figure 6f); the inability of the colonies
to merge could be due to mass transfer. The signal concentration attains its highest
values at the sides of the colony close to the neighbouring colonies, in accordance
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Figure 6. 2-D structural representation of the microbial biofilm
growth for autoinducer production rate α = 92.0 and maximum
dispersal rate η1 = 0.6 for selected time instances t. Color coded is
the biomass density M , iso-lines of the autoinducer concentration
A are plotted in grayscale.

with the parabolic maximum principle, and hence more cells disperse from the sides
which inhibits merging.

The extent of the hollow effect in the quorum sensing induced biofilm dispersal
is investigated through the lumped quantities Mtot, Ntot, Aave, ω and R, shown in
Figure 7, by varying the value of α as α = 92.0, 46.0, 30.7, 23.0, 18.4, 15.3, 13.1. The
time evolution profile presented in Figure 7 for the biofilm is similar to the one for
the microbial floc in Figure 4. Small values of R indicate small hollows while large
values of R indicate large deviation of the bacterial density from the mean, i.e. large
hollows. The deviations in R show that the size of the hollows is not steady but
rather decreases as new cells are produced during the biofilm intermittent growth
phase. It is interesting that the size of the void in the biofilm changes as dispersal
and growth takes place, which is not evident when dispersal happens continuously,
whereby R attains a near constant value.
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Figure 7. Temporal plots of simulations computed for a non-
quorum sensing producing biofilm (Non-QS) and a quorum sens-
ing producing biofilm using seven different constitutive autoin-
ducer production rate α = {92.0, 46.0, 30.7, 23.0, 18.4, 15.3, 13.1}
and fixed maximum dispersal rate η1 = 0.6. Shown are (a) the
total sessile biomass fraction Mtot in the floc, (b) the floc size ω
(c) dispersed cells Ntot, (d) relative variation R, and (e) signal
concentration Aave.

In the simulations discussed above, we prescribed homogeneous Dirichlet bound-
ary conditions for the autoinducer A. We compare these results with the situation
where homogeneous Neumann boundary conditions are imposed for the autoinducer.
This assumption is made solely to isolate and emphasise the effect of accumulating
QS molecules vs their removal from the system, and not thought of as a simula-
tion of a realistic physical environment. The comparison is presented in Figure 8
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Figure 8. Comparison of the sessile biomass Mtot and the dis-
persed cells Ntot under different boundary conditions for the signal
molecule A: Homogenous Dirichlet conditions and Neumann con-
ditions. The left panel is for a microbial floc while the right panel
is for a biofilm.

where we used an autoinducer production rate α = 18.4 and maximum dispersal
rate η1 = 0.6; for the case of a microbial floc (see Figure 8a) with homogeneous
Neumann boundary conditions imposed for M,N,C,A on all the boundaries, and
for the microbial biofilm (see Figure 8b) with homogeneous Neumann conditions
imposed for M,N,C,A on all boundaries except for the top boundary. The Neu-
mann boundary condition models the case where the signal molecule cannot leave
the domain and therefore accumulates faster. As a consequence, the onset of quo-
rum sensing occurs much earlier than with Dirichlet boundary conditions. As a
result of unhindered accumulation of signal molecules in the system, very high au-
toinducer concentrations are attained, hence quick up-regulation and cell dispersal
occurs which reduces the density of sessile biomass in the floc. In the case of Dirich-
let boundary conditions, the accumulation of the signal molecule is slower due to
its early removal through the boundaries, hence causing a delay in up-regulation
and cell dispersal.

5. Conclusion. In order to describe dispersal of cells from a biofilm colony into
the aqueous environment, simple prototype biofilm growth models must be ex-
tended to include both the dispersing cells as well as the trigger that causes such
detachment. In the case of quorum sensing induced dispersal these are autoinducer
molecules that are produced in the biofilm colony. In total, this introduces two
new dependent variables. The existence and uniqueness proofs for the underlying
prototype model must be adapted and extended to account for this new complex-
ity. Our particular model is based on a biofilm growth model that consists of a
density-dependent diffusion-reaction equation for sessile biomass that is coupled
with a semi-linear diffusion-reaction equation for nutrient, which are consumed in
the biofilm. The extension of the model introduces additional semi-linear diffusion-
reaction equations that describe quantities that are produced in the biofilm. Since
the associated reaction terms have opposite signs than the nutrient terms, the ap-
proach to obtain estimates for the nutrient concentration does not carry over to the
two new dependent variables and alternative arguments were developed. We for-
mulated the analysis for the case of Dirichlet boundary conditions, but the results
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can be generalized to other situations with the same ideas that were used for the
underlying prototype biofilm growth model. In numerical simulations we focus on
the effect of quorum sensing controlled dispersal on the colony. The simulations
suggest: (i) Depending on parameters, microflocs and biofilms do not shrink as a
result of dispersal but hollow out, with lower biomass densities in the inner layers
of the colonies. (ii) After a rapid dispersal event the number of cells remaining in
the colony drops which also leads to a drop in the amount of autoinducer molecules
produced; if sufficient nutrients are available cells grow inside the colonies after the
dispersal event, leading to increasing biomass there, i.e. a shrinkage of the inner
hollow regions, until the next dispersal event. Thus, (iii) quorum sensing induced
hollowing of biofilm colonies is a dynamic feature, changing in size and depth over
time.
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