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Abstract. To study the impacts of toxin produced by phytoplankton and
refuges provided for phytoplankton on phytoplankton-zooplankton interactions
in lakes, we establish a simple phytoplankton-zooplankton system with Holling
type II response function. The existence and stability of positive equilibria are

discussed. Bifurcation analyses are given by using normal form theory which
reveals reasonably the mechanisms and nonlinear dynamics of the effects of
toxin and refuges, including Hopf bifurcation, Bogdanov-Takens bifurcation of
co-dimension 2 and 3. Numerical simulations are carried out to intuitively
support our analytical results and help to explain the observed biological be-
haviors. Our findings finally show that both phytoplankton refuge and toxin
have a significant impact on the occurring and terminating of algal blooms in
freshwater lakes.

1. Introduction. The outbreaks of algal bloom in freshwater lakes have been be-
coming more and more frequent and popular on the globe. For example, Tai Lake
(or Taihu), China’s third-largest freshwater lake, has repeatedly suffered from the
disastrous algae blooms, which dates back to at least 1987. The annual duration
of algal blooms became longer and longer from 1987 to 2007 and the date of initial
blooming was in approximately 11.42 days advancement per year since 1998 [1].
Recently, algae blooms frequently broke out in Lake Erie, the fourth largest lake of
the five Great Lakes in north America, from 2008 to 2013 [2]. The harmful algal
blooms bring a great economic loss to the nation and people. for example, in 2011,
a sixth of the surface of Lake Erie was covered by thick of toxic blue-green algae,
which was estimated to have brought a 2.4 million dollar loss to Ohios recreational

2010 Mathematics Subject Classification. Primary: 92D25, 92D40; Secondary: 34A47.
Key words and phrases. Phytoplankton, zooplankton, refuge, toxin, algal blooms, multiple

equilibria, stability, Hopf bifurcation, Bogdanov-Takens bifurcation.
This research was partially supported by NSFC grant (NO. 11271196) of China, China Scholar-

ship Council (CSC), NSERC of Canada, and the NSF of the Jiangsu Higher Education Committee
of China (No. 15KJD110004). The authors would like to thank the referees for their valuable com-
ments and suggestions.

∗ Corresponding author: Huaiping Zhu.

529

http://dx.doi.org/10.3934/mbe.2017032


530 JUAN LI, YONGZHONG SONG, HUI WAN AND HUAIPING ZHU

fishing industry, and a 1.3 million dollar loss to the Maumee Bay State Park [3]. In
a report to the Congress of USA [4], “harmful algal blooms were considered as one
of the most scientifically complex and economically damaging issues challenging our
ability to safeguard the health of our Nations aquatic and marine ecosystems.”

For algal bloom, there have been extensive modelling studies to understand
bloom dynamics by considering the factors, including nutrient, temperature, light,
viral disease, harvesting, and toxin released by some phytoplankton and so on
([5, 6, 7, 8, 9, 10, 11, 12] and references therein). However, the potential effect
of toxin released by phytoplankton on algae bloom does not receive much attention
as it should. Hallam et al.[13] observed that some plankton are able to produce
and release toxic substances into lake environment which has an adverse effect on
other species. Noctiluca scintillans, for example, is harmful to other planktonic or-
ganisms including fish by releasing more toxin when algal blooms occur. Turner et
al.[14] pointed out that the mechanisms of toxin between toxic phytoplankton and
their grazers are very complex. So far the related researches have been focused on
considering the impact of toxin released by toxic-phytoplankton in phytoplankton-
zooplankton models to study the dynamical behaviors of the toxic-phytoplankton.
Based on both observations and mathematical models, Chattopadhyay et al.[15]
concluded that toxin released by phytoplankton has a capacity to terminate the
planktonic blooms by decreasing the grazing pressure of zooplankton and can serve
as a biological controller. At the same time, by proposing and analyzing a simple
phytoplankton-zooplankton model under three forms of the liberation of toxic sub-
stances: (a) a Holling type II, (b) a gamma distribution and (c) a discrete type,
respectively, Chattopadhyay et al. [16] once again confirmed that toxin produced by
phytoplankton can play a significant role in terminating the blooms. In a nutrient-
phytoplankton-zooplankton model, the similar finding was also observed by Pal
et al.[17], they showed that the concentration of toxin that surpasses a threshold
level dampens phytoplankton-zooplankton population oscillations and has a stabi-
lizing effect on the lake ecosystem. In order to explore the dynamics of seasonally
recurring bloom phenomena, Chakraborty et al. [18] proposed a simple nutrient-
phytoplankton model by considering the toxin liberation rate with a periodic func-
tion to reflect the seasonal changes. Their findings showed that with a changing
liberation rate, toxin can contribute to the explanation for algal bloom and a wide
range of complex dynamical behaviors, such as simple cyclical blooms, irregular
chaotic blooms and skipping phenomenon, were also observed by varying the toxin
liberation rate. By analyzing a phytoplankton-toxic phytoplankton-zooplankton
model with a Monod-Haldane response function, Banerjee et al. [19] concluded
that the zooplankton population can survive with the existence of toxic phyto-
plankton. Therefore, it is essential to take toxin into consideration when studying
the interactions between phytoplankton and zooplankton in a freshwater lake.

In nature, there is another fascinating factor, the refuge provided to prey, can
have an important impact upon the dynamics of the food web and the balance of
prey-predator interaction. For a lake ecosystem, the concept of a refuge is worthy of
attention since it might stabilize the biomass of plankton by preventing extinction
of phytoplankton from the predation of zooplankton temporarily [20].

At present, the effect of refuge on some predator-prey interactions has been
widely studied. Collings et al.[21] demonstrated that a refuge incorporated in mite
predator-prey interactions can offer the prey some degree of protection from pre-
dation and help to prolong a predator-prey interaction by reducing the possibility
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of extinction due to predation, and they also showed that increasing the amount
of refuge can raise prey densities and even trigger population outbreaks due to the
presence of multiple stable states. So some prey-predator types of models with prey
refuge have been proposed and analyzed. Based on the principle of biomass conver-
sion, González-Olivares et al.[22] studied the dynamic consequences of a continuous
models with the role of prey’s refuge, they analytically proved that the local stability
of equilibria and existence of limit cycle. In terms of the work of González-Olivares,
Chen et al. [23] further gave a complete dynamical analysis for the same model
in [22] by proving the global stability of the positive equilibrium and the unique-
ness of limit cycle when exists. Kumar [24] dealt with a prey-predator model with
Holling type II response function by taking the refuge of prey into consideration. By
the qualitative analysis of ordinary differential equation, they demonstrated that a
refuge of prey is an important biological control factor for a pest and the density of
prey can increase and even reach a peak as the amount of refuge increased. With
a Holling type III response function instead of a Holling type II, Huang et al.[25]
illustrated that refuge has an important impact on the stability of prey-predator
interactions by using the similar mathematical analysis as in [24]. In a lake ecosys-
tem, the refuge for phytoplankton is also a common phenomenon. Schindler et al.
[26] claimed that benthic sediments can provide the phytoplankton with a refuge to
produce eggs or be dormant, contributing to temporal escape from the predation
of zooplankton. Wiles et al. [27] showed that stratification of water column can
also be used as a temporary refuge for phytoplankton to recover. However, the
effect of such refuges of phytoplankton has not been well considered in modelling
the interactions between phytoplankton and zooplankton.

In freshwater lakes, zooplankton as secondary consumers feed on phytoplankton,
which obviously shows a prey-predation mechanism between phytoplankton and
zooplankton. Meanwhile, some phytoplankton have the ability to utilize refuge
and release toxin to protect themselves from grazing. Therefore, it is reasonable
and interesting to establish a new model by considering the impact of the above
factors on the interaction between phytoplankton and zooplankton simultaneously
to explore the mechanism of algae bloom in lakes. Hence, our aim of this study is
to explore how both refuge and toxin affect the forming and ending of algal bloom
in a lake ecosystem and to better understand the mechanism of the blooms for the
purpose of their prevention and control.

In section 2, we will first propose a two-dimensional phytoplankton-zooplankton
model considering the impacts of toxin released by phytoplankton and refuge of
phytoplankton. And then we will carry out a complete dynamical analysis of the
model to study bifurcations and related dynamics, including Hopf and Bogdanov-
Takens bifurcations, which reveals the complex dynamics and the reason behind the
complexity. Finally, some numerical simulations will help us to have an intuitionistic
view for the effects of refuge and toxin on the occurrence and termination of algal
bloom.

2. The model with toxin-producing and refuge of phytoplankton. Based
on the prey-predation relationship between phytoplankton-zooplankton, the follow-
ing general model has been introduced and studied in [28, 29, 30],











dP

dt
= rP (1 − P

K
)− β1φ1(P )Z,

dZ

dt
= β2φ1(P )Z − dZ,

(1)
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where P and Z denote the population size of phytoplankton and zooplankton respec-
tively; φ1(P ) represents the predatory response function; r is the intrinsic growth
rate of phytoplankton; K represents the environmental carrying capacity of phyto-
plankton; β1 is the specific predation rate of zooplankton; β2 denotes the conversion
rate of consumed phytoplankton into zooplankton; d is regarded as the mortality
rate of zooplankton due to natural death as well as higher predation.

We also assume that total toxic phytoplankton population follows a logistic
growth. When the influence of toxin is taken into consideration, the grazing pres-
sure of zooplankton due to the existence of toxin will be decreasing according to
the observation in [15]. In this case, an additional mortality of zooplankton can
be observed due to insufficient food acquisition. Therefore, the following model
framework adopted from (1) will be used to study the toxin liberation processes for
planktonic dynamics,











dP

dt
= rP (1−

P

K
)− β1φ1(P )Z,

dZ

dt
= β2φ1(P )Z − dZ − θψ(P )Z,

(2)

where θ denotes the rate of toxin production per phytoplankton species; ψ(P ) rep-
resents the distribution of toxic substances.

We will consider a simple case by assuming that the total phytoplankton are
responsible for the release of toxic substances. The amount of toxin increases with
the growing amount of phytoplankton population. However, toxic substances is
limited due to the saturation of phytoplankton, Therefore, it is reasonable to use
the Holling type II function, ψ(P ) = P

a2+P
, to model the distribution of toxic

substances, where a2 is the half saturation constant.
The refuge is favorable for phytoplankton growth by preventing the grazing of

zooplankton. For the effect of refuges, one naturally subdivides the total phyto-
plankton into two groups, one portion is in the refuge and the other portion is
outside the refuge. Usually, one would consider that the population size of phy-
toplankton in refuge as one variables depends on different growth and predation
pressure. However, the effectiveness of refuges for phytoplankton depends on vari-
ous factors, for example, temperature, radiation and winds mainly affect the process
of stratification which offers a refuge for phytoplankton in some ways [31]. Due to
the complexity of the biological process, we restrict ourselves to study a special
case that the refuge capacity denoted by m remains a constant and is taken as a
parameter in the model analysis. Besides, we assume that phytoplankton can be
able to take full advantage of refuges. Therefore, we consider that the predation
of zooplankton on phytoplankton depends on the population size of phytoplankton
outside refuges expressed by P − m and the predation of zooplankton on unpro-
tected phytoplankton increases and can approach its maximum biological limit with
the saturation of phytoplankton in water body. Motivated by the study in [22], we
employ Holling type II functional response, i.e., φ1(P ) =

P−m
a1+(P−m) , to describe the

predation of zooplankton on unprotected phytoplankton, where a1 is the the half
saturation constant.

From the above discussion, we will extend the previous model (2) for toxin-
producing phytoplankton (P) with refuge and zooplankton (Z) as follows:















dP

dt
= rP (1−

P

K
)−

β1(P −m)

a1 + (P −m)
Z,

dZ

dt
=

β2(P −m)

a1 + (P −m)
Z − dZ −

θP

a2 + P
Z,

(3)
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Table 1. The biological interpretations of all parameters in sys-
tem (3) with default values used for numerical studies.

Par. Description Value Unit Reference.
r Growth rate of phytoplankton 0.2 h−1 0.07-0.28 [16]
K Environmental carrying capacity 50 l−1 108 [15]
m Refuge capacity Par. l−1 Defaulted
β1 Predation rate of zooplankton 1 h−1 0.6-1.4[16]
β2 Growth efficiency of zooplankton 0.15 h−1 0.2-0.5[16]
d Mortality rate of zooplankton 0.003 h−1 0.015-0.15[16]
a1 Half saturation constant 3 l−1 Defaulted
a2 Half saturation constant 5.7 l−1 5.7[15]
θ Toxin production rate Par. h−1 Defaulted

where all parameters are nonnegative and their biological interpretations are sum-
marized in Table 1.

It should be noted from the second equation of model (3) that if β2 ≤ d, the
population size of zooplankton will continue to drop or remain unchanged over time,
which means that the dynamical behaviors of zooplankton can not be described
objectively in the actual situation when the conversion rate of phytoplankton is no
more than the mortality rate of zooplankton. Therefore, it makes sense to consider
only the case β2 > d. Besides, when phytoplankton and zooplankton co-exist in
lakes, the population size of (protected) phytoplankton and the refuge size can not
reach the maximal carrying capacity. Thus we take 0 < m < K in the following
study.

From the first equation of the system (3), it is easy to derive that lim inf
t→∞

P (t) ≥ m

for any solutions (P (t), Z(t)) with initial values P (0) > m,Z(0) > 0. And the
second equation of the system (3) implies that Z = 0 is invariant. Furthermore, we
have the following lemma.

Lemma 2.1. Solutions of system (3) with initial conditions P (0) > m,Z(0) > 0
are positive and bounded for all t > 0.

Proof. Let (P (t), Z(t)) be a solution of system (3) with initial conditions P (0) >
m,Z(0) > 0. It is easy to obtain from first equation of system (3) that

lim sup
t→∞

P (t) ≤ K, (4)

hence, for sufficiently small ε > 0, there is a sufficiently large T > 0 such that
P (t) < K + ε for all t > T .

Define the function w(P,Z) = cP (t) +Z(t), where c = β2

β1

, then the time deriva-

tive of w(P,Z) along the solutions of system (3) is given by

dw

dt
= c

dP

dt
+
dZ

dt

= crP (1 − P

K
)− dZ − θP

γ + P
Z

≤ crP − dZ

≤ −(dZ + rcP ) + 2crP

≤ −min{r, d}w+ 2cr(K + ε).

(5)



534 JUAN LI, YONGZHONG SONG, HUI WAN AND HUAIPING ZHU

And then we have

0 < w(P,Z) ≤ 2cr(K + ε)

min{r, d} (1− e−min{r,d}t) + w(P (0), Z(0))e−min{r,d}t, (6)

which follows from the Gronwall inequality [32].

Therefore, for sufficiently large t, w(t) ≤ 2cr(K+ε)
min{r,d} holds. The proof is finished.

This lemma implies that the set Ω =
{

(P,Z) ∈ R2
+|0 ≤ cP + Z ≤ 2cr(K+ε)

min{r,d}
}

is

an invariant set. For practical biological significance, we will focus our discussion
about system (3) in Ω.

3. The existence and number of equilibria of system (3). In order to simplify
system (3), we introduce new variables and rescale the time as:

P̂ = P −m, Ẑ = β1Z, τ =
1

(a2 + P )(a1 + (P −m))
t, (7)

if we denote η = r
K
, then system (3) becomes the following form (here we still use

symbols P,Z, t instead of P̂ , Ẑ, τ respectively)











dP

dt
= (a2 +m+ P )

(

η(P +m)(K −m− P )(a1 + P )− PZ
)

,

dZ

dt
= β2P (a2 +m+ P )Z − d(a1 + P )(a2 +m+ P )Z − θ(P +m)(a1 + P )Z.

(8)
Note that Ω1 =

{

(P,Z)|K ≥ P (t) > m,Z(t) > 0 for all t > 0
}

for system (3)

equivalently transforms to Ω2 =
{

(P,Z)|K −m ≥ P (t) > 0, Z(t) > 0 for all t > 0
}

,
which means that we will study system (8) in Ω2.

Obviously, E0(K −m, 0) is always a boundary equilibrium of system (8).
Suppose (P ∗, Z∗) is a positive equilibrium of the system (8), by putting the

right-hand side of system (8) to zero, except for E0, we have

Z∗ =
η(P ∗ +m)(K −m− P ∗)(a1 + P ∗)

P ∗ , (9)

where P ∗ satisfies the quadratic equation

f(P ) = aP 2 + bP + c = 0, (10)

with
a = β2 − d− θ,

b = am+ (β2 − d)a2 − (d+ θ)a1,

c = −a1(da2 + dm+ θm) < 0.

(11)

Of special note here is that P ∗ also satisfies 0 < P ∗ < K − m. The interior
equilibria (P ∗, Z∗) of system (8) in Ω2 exist if and only if the equation (10) has
positive root(s) in the interval (0,K −m).

In order to explore the effect of toxin and refuge on the interactions between
phytoplankton and zooplankton, we will only choose θ andm as two key parameters.
We will discuss the number and distribution of the equilibria of system (8) for the
parameters in the region Λ = {(θ,m)|0 < θ, 0 < m < K} of plane (θ,m).
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For the convenience of expression, we first define

d0 = β2(1−
a1
a2

), d1 =
K2β2

(K + a1)(K + a2)
(1− a1

a2
),

d2 =
Kβ2
K + a1

(1 − a1
a2

), d3 =
Kβ2
K + a1

,

(12)

where d1 < d2 < d3 < d0 and the meaning of this definition will become clear in the
following statement. Since f(0) = c < 0, f(P ) will have positive root(s) in three
cases.

Case 1. a < 0, i.e., θ > β2 − d

(a) θ > β2 − d, ∆ > 0, f(K −m) ≥ 0 (b) θ > β2 − d, ∆ = 0, K − m >
−b/(2a) > 0

(c) θ > β2 − d, ∆ > 0, K − m >
−b/(2a) > 0, f(K −m) < 0

(d) θ = β2 − d, f(K −m) > 0

(e) θ < β2 − d, f(K −m) > 0

Figure 1. Existence of the positive roots of f(P ) with f(c) < 0.
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In this case, we will discuss the existence conditions of the positive root(s) of the
equation (10) in details. It is easy to have that the equation (10) has positive roots
only and only if any one of three cases is satisfied in Fig. 1(a)-(c).

One can verify that −b/(2a) = 0 defines a curve Γ1,

Γ1 : m1(θ) =
(d+ θ)a1 − (β2 − d)a2

β2 − d− θ
. (13)

By c < 0, if the positive solution of the equation (10) exists for θ > β2 − d, then
−b/(2a) > 0 must hold, which implies 0 < m < m1(θ). From θ > β2 − d and (13),
we can get that if d < d0 with a2 > a1, the positive root of (10) might exist. Or
else, the equation (10) has no any positive root. Therefore, the existence conditions
of the positive root of the equation (10) will be further investigated in the following
only when d < d0.

With d < d0, along the curve Γ1, the derivative of m1(θ) with respect to θ is

m′
1(θ) = − (β2 − d)a2 − β2a1

(β2 − d− θ)2
< 0 (14)

In addition, it is easy to have that m1(θ) with respect to θ is monotone de-
creasing. Besides, θ = β2 − d is a vertical asymptote of m1(θ) and m1(∞) →
−a1. By calculating, the curve Γ1 travels through two points ( (β2−d)a2−da1

a1

, 0) and

( (β2−d)(K+a2)−da1

K+a1

,K) in the region Λ.

∆ = 0 can define two curves. By writing the discriminant ∆ = b2 − 4ac as a
function of θ and m, a straightforward calculation leads to

∆(m, θ) = b2 − 4ac

= (am+ (β2 − d)a2 + (d+ θ)a1)
2 − 4β2a1a2θ,

then solving the equation ∆(m, θ) = 0 for m, one can get two curves

Γ2 : m2(θ) =
−(d+ θ)a1 − (β2 − d)a2 − 2

√
β2a1a2θ

β2 − d− θ
, (15)

Γ3 : m3(θ) =
−(d+ θ)a1 − (β2 − d)a2 + 2

√
β2a1a2θ

β2 − d− θ
. (16)

In order to ensure the existence of the root of the equation (10), we first need
∆ ≥ 0. From the above discussion, it is not difficult to obtain that ∆ > 0 if and only
ifm > m2(θ) orm < m3(θ) and ∆ = 0 if and only ifm = m2(θ) = m3(θ). Combined
with the above discussion on the curve Γ1, by comparing, we havem3(θ) < m1(θ) <
m2(θ). Thus, (10) may have two positive roots if 0 < m < m3(θ) and an unique
positive root if 0 < m = m3(θ), otherwise, there is no root. With these, one can see
that the curve Γ3 pays a key role in the existence of the positive root(s) of (10).

For Γ3, θ =
(β2−d)a2−da1±2

√
β2da1(a2−a1)

a1

when m3 = 0, θ = β2 − d is a vertical

asymptote of m3(θ), and the derivative of m3(θ) with respect to θ is

m′
3(θ) =

( β2a1a2√
β2a1a2θ

− a1)(β2 − d− θ)− ((d+ θ)a1 + (β2 − d)a2 − 2
√
β2a1a2θ)

(β2 − d− θ)2
< 0

(17)
Solving K −m = −b/(2a), we get a curve Γ4,

Γ4 : m4(θ) = 2K +
(β2 − d)a2 − (d+ θ)a1

β2 − d− θ
= 2K −m1(θ), (18)
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where K −m > −b/(2a) is equivalent to 0 < m < m4(θ).

From (18), θ = β2−d is a vertical asymptote ofm4(θ),m4(0) = 2K+ (β2−d)a2−da1

β2−d
,

m4(∞) → 2K + a1, and θ = (β2−d)(2K+a2)−da1

2K+a1

when m4 = 0. Furthermore, the

derivative of m4(θ) with respect to θ is given by the following form

m′
4(θ) =

(β2 − d)a2 − β2a1
(β2 − d− θ)2

= −m′
1(θ) > 0. (19)

Finally, f(K −m) = 0 defines a curve Γ5,

Γ5 : m5(θ) = K − (Kd+Kθ + da2)a1
(β2 − d)(K + a2)−Kθ

, (20)

which implies that f(K −m) < 0 if and only if m > m5(θ) and f(K −m) > 0 if
and only if 0 < m < m5(θ).

From (20), we have θ = (β2 − d)(1 + a2

K
) is a vertical asymptote of m5(θ),

m5(0) = K − da1

β2−d
< K, m5(∞) → K + a1 and θ = (K+a2)(β2K−dK−da1)

K(K+a1)
when

m5 = 0. The corresponding derivative of m5(θ) with respect to θ is

m′
5(θ) = − Ka1β2(K + a2)

((β2 − d)(K + a2)−Kθ)2
< 0. (21)

Since θ > β2 − d, we get from the characters of the curve Γ5 that equation (10)

might have positive root(s) in the region Λ when m5(β2−d) = K− (Kβ2+da2)a1

(β2−d)a2

> 0

i.e., d < d2.
When d < d2, we have that only three curves Γ3, Γ4 and Γ5 are critical to

determine the existence of the positive root(s) of (10).
By solving two equations (18) and (20) simultaneously, we can have that two

curves Γ4 and Γ5 uniquely intersect in the region Λ when d < d1. Through further
validation, the intersection point also satisfies the equation of Γ3. That is, when
d < d1, three curves have an unique common intersection point (θ∗,m∗). Otherwise,
three curves can not intersect at the same point in the region Λ. Let (θ∗,m∗) be
the intersection point, by computing, then we get

(θ∗,m∗) = (
M −

√

a1a2β2(2M − a1a2β2)

2K2
, 2K +

(β2 − d)a2 − (d+ θ∗)a1
β2 − d− θ∗

), (22)

where M = 2K(β2 − d)(K + a2) + a1a2β2.
According the above analysis, the relative locations of Γ3, Γ4 and Γ5 can be

approximately depicted in the region Λ (see Fig. 2(a) and (b)).
Therefore, when θ > β2 − d, we can conclude that
(1a) when d1 ≤ d < d2, then system (8) has an unique positive equilibrium if

0 < m ≤ m5(θ).
(1b) when d < d1, then system (8) has an unique positive equilibrium if 0 < m =

m3(θ) < m4(θ) or if 0 < m < m5(θ) or if 0 < m = m5(θ) ≤ m4(θ) and system (8)
has two positive equilibrium if max{0,m5(θ)} < m < min{m3(θ),m4(θ)}, or else,
system (8) does not have any positive equilibrium.

(1c) when d ≥ d2, then system (8) does not have any positive equilibrium.

Case 2. a = 0, i.e., θ = β2 − d.
For the equation (10), the positive root exists only when f(K−m) > 0. See Fig.

1(d).
Based on the definition of the curve Γ5 in the region Λ, f(K−m) > 0 is equivalent

to 0 < m < m5(β2− d), where m5(β2− d) > 0 can be equivalently transformed into
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d < d2. As a consequence, we reach a conclusion that the positive equilibrium is
existent and unique for system (8) only when 0 < m < m5(β2 − d) with d < d2.

Case 3. a > 0, i.e., θ < β2 − d
By using c < 0, it is easy to see that the equation (10) has an unique positive

root if and only if f(K −m) > 0. See Fig. 1(e).
According to the analysis of the curve Γ5, f(K − m) > 0 is also equivalent to

0 < m < m5(θ) in the case. By the monotonicity of m5(θ), then m5(0) > 0, i.e.,
d < d3, must be satisfied, which means there is an unique positive equilibrium for
system (8) only when 0 < m < m5(θ) with d < d3.

(a) d < d1

(b) d1 ≤ d < d2 (c) d2 ≤ d < d3

Figure 2. The existence and number of equilibrium of system (8) on
the plane (θ,m) for different values of d, where the dotted line denotes
θ = β2 − d.

From the discussion above, three curves Γ3, Γ4 and Γ5 are important to determine
the existence and the numbers of the positive equilibrium points of system (8). Here
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we define C1, C2 and C1 as

C1 =
{

(θ,m)|θ = β2 − d, 0 ≤ m < m5(θ)
}

;

C2 =
{

(θ,m)|β2 − d < θ, 0 ≤ m = m5(θ) < m4(θ)
}

;

C3 =
{

(θ,m)|β2 − d < θ, 0 ≤ m = m3(θ) ≤ m4(θ)
}

.

which divide the whole region Λ into the following subregions where the positive
equilibrium points exist:

Λ1 =
{

(θ,m)|0 ≤ θ < β2 − d, 0 ≤ m < m5(θ)
}

;

Λ2 =
{

(θ,m)|β2 − d < θ, 0 ≤ m < m5(θ)
}

;

Λ3 =
{

(θ,m)|β2 − d < θ,m5(θ) < m < m3(θ),m < m4(θ)
}

.

therefore, we summarize the above discussion about the existence and number of
the positive equilibria in the following theorem.

Theorem 3.1. For system (8) with m3(θ),m4(θ) and m5(θ) defined as above.
(I) If d < d1, as shown in Fig. 2(a), then
(a) for (θ,m) ∈ Λ1

⋃

Λ2

⋃

C2, system (8) has an unique positive equilibrium
E1(P1, Z1);

for (θ,m) ∈ C1, system (8) has an unique positive equilibrium E2(P2, Z2);
for (θ,m) ∈ Λ3, system (8) has two positive equilibria E1(P1, Z1) and E3(P3, Z3);
for (θ,m) ∈ C3, E1(P1, Z1) and E3(P3, Z3) coalesce at an unique positive equi-

librium of multiplicity 2.
(b) for (θ,m) ∈ Λ/(Λ1

⋃

Λ2

⋃

Λ3

⋃

C1

⋃

C2

⋃

C3), system (8) has none positive
equilibrium.

(II) If d1 ≤ d < d2, as shown in Fig. 2(b), then
(a) for (θ,m) ∈ C1, system (8) has an unique positive equilibrium E2(P2, Z2);
for (θ,m) ∈ Λ1

⋃

Λ2, system (8) has an unique positive equilibrium E1(P1, Z1);
(b) for (θ,m) ∈ Λ/(Λ1

⋃

Λ2

⋃

C1), system (8) has none positive equilibrium.
(III) If d2 ≤ d < d3, as shown in Fig. 2(c), then
(a) for (θ,m) ∈ Λ1, system (8) has an unique positive equilibrium E1(P1, Z1);
(b) for (θ,m) ∈ Λ/Λ1, system (8) has none positive equilibrium.
(IV) If d ≥ d3, system (8) has none positive equilibrium.
Where when exist the corresponding equilibria are:

E1(P1, Z1) = (
−b+

√
∆

2a
,
η(m− b+

√
∆)(K −m+ b−

√
∆)(a1 − b+

√
∆)

4a2(−b+
√
∆)

),

(23)

E2(P2, Z2) = (
−c
b
,−η(m− c)(K −m+ c)(a1 − c)

b2c
), (24)

E3(P3, Z3) = (
−b−

√
∆

2a
,−η(m− b −

√
∆)(K −m+ b+

√
∆)(a1 − b−

√
∆)

4a2(b+
√
∆)

).

(25)

From Fig. 2, it is easy to see that the curve Γ5 is a threshold line which determines
the change of the number of positive equilibria.

According to the definition of the curve Γ5, by simply rearranging the expression
of f(K −m), we have
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f(K −m) = (a2 +K −m)(da2 + dK + θK)
( β2(K −m)(a2 +K)

(a2 +K −m)(da2 + dK + θK)
− 1

)

.

(26)

Let R0 = β2(K−m)(a2+K)
(a1+K−m)(da2+dK+θK) , the ratio of growth to mortality of zooplankton

at the critical situation. Based on the preceding assumption 0 < m < K, then
f(K −m) > 0 if and only if R0 > 1 and f(K −m) < 0 if and only if R0 < 1.

For d < d1 andm ∈ (0,m∗), the curve Γ3 is also a threshold line which determines
the change of the number of positive equilibria from 1 to 2 or from 2 to 1, which is
clearly seen from Fig. 2(c). The curve Γ3 is defined by ∆ = 0. Let R̃0 = R0|∆=0,

then R̃0 = 1 + (2a(K−m)+b)2

4a(a1+K−m)(da2+dK+θK) and 0 < R̃0 < 1 due to θ > β2 − d.

We summarize the above discussion into the following proposition.

Proposition 1. Suppose d < d1 and m ∈ (0,m∗), then
(a) if R0 ≥ 1, system (8) has an unique positive equilibrium;

(b) if R̃0 < R0 < 1, system (8) has two positive equilibria;

(c) if R0 = R̃0 < 1, two positive equilibria coalesce at an unique equilibrium of
multiplicity 2;

(d) if R0 < R̃0 < 1, system (8) has none positive equilibria.

Proposition 1 shows that system (8) will undergo a backward bifurcation which
occurs at R0 = 1 (Fig. 3).

4. Stability and bifurcation analysis. Let E∗(P ∗, Z∗) be any one equilibrium,
then the Jacobian matrix of system (8) at E∗ is given by

JE =

(

− η(a2+m+P∗)
P∗

h(P ∗) −P ∗(a2 +m+ P ∗)
(2aP ∗ + b)Z∗ f(P ∗)

)

, (27)

where

h(P ∗) = 2(P ∗)3 + (a1 + 2m−K)(P ∗)2 +ma1(K −m). (28)

Figure 3. A backward bifurcation occurs when 0 < d < d1 and m ∈ (0,m∗).
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4.1. The boundary equilibrium E0.

Theorem 4.1. The boundary equilibrium E0 is unstable if R0 > 1, asymptotically
stable if R0 < 1 and globally asymptotically stable if R0 < R̃0 < 1.

Proof. One can verify that system (8) at E0 has an eigenvalue, −ηK(K + a2)(a1 +
(K −m)) < 0. The other eigenvalue is f(K −m). The results follow from the fact
that f(K −m) > 0 is equivalent to R0 > 1.

By using Proposition 1, system (8) has no positive equilibria if R0 < R̃0 < 1.
Since E0 is local asymptotically stable, it follows from Poincaré-Bendixson theorem
[33] that E0 is also globally asymptotically stable. We finish this proof.

4.2. The positive equilibrium E1, E2 and E3 for (θ,m) ∈ Λ1, Λ2, Λ3, C2 and

C1. In this subsection, the aim is to determine the stability and bifurcation of the
existing positive equilibriums of system (8).

Theorem 4.2. Assume (θ,m) ∈ Λ1

⋃

Λ2

⋃

Λ3

⋃

C2, then the positive equilibrium
E1 of system (8) is asymptotically stable when h(P1) > 0 and unstable when h(P1) <
0, system (8) will experience a Hopf-bifurcation at E1 when h(P1) = 0. Moreover
E3 when exists is always unstable.

Proof. From (27), then the Jacobian matrix of system (8) at E1(P1, Z1) is

JE1
=

(

− η(a2+m+P1)
P1

h(P1) −P1(a2 +m+ P1)

(2aP1 + b)Z1 0

)

. (29)

The corresponding characteristic polynomial of the model (8) at the interior
equilibrium point E1 is given by

λ2 +
η(a2 +m+ P1)

P1
h(P1)λ+ (2aP1 + b)(a2 +m+ P1)P1Z1 = 0. (30)

When (θ,m) ∈ Λ1 or Λ2 or C2, one can obtain from Theorem 3.1 that the positive
equilibrium E1 is unique for system (8). For E1, by Theorem (2.1), the derivative
of f(P ) with respect to P1 satisfies f ′(P1) = (2aP1 + b)Z1 > 0, which is easy to
be obtained by Fig. 1, then (2aP1 + b)(a2 + m + P1)P1Z1 > 0. By using the
Routh-Hurwitz criterion, we have the real part of two roots of (30) are negative if
h(P1) > 0. Therefore, E1 is asymptotically stable if h(P1) > 0.

When (θ,m) ∈ Λ3, system (8) has another positive equilibrium E3 except for E1,
where P1 < P3. In this case, the discussion about the stability of system (8) at E1

is the same as the above. For E3, the Jacobin of system (8) at E3 can be given by
(29) where P1 is replaced by P3. Note that, however, the derivative of f(P ) with
respect to P3 satisfies f ′(P3) = (2aP3 + b)Z3 < 0, which can be obtained easily by
Fig. 1(c), then (2aP3 + b)(a2 +m+ P3)P3Z3 < 0, which implies that E3 is always
unstable.

If h(P1) < 0, then E1 is an unstable equilibrium. Moreover, system (8) has at
least one closed orbit in Ω2, which can be deduced by Poincaré-Bendixson Theorem
[33].

If h(P1) = 0, then (30) has a pair of pure imaginary complex conjugate roots.
To discuss the effect of refuges, we here select the parameter m as a bifurcation
parameter. Let λ = v(m)±iω(m) be the complex conjugate roots and there exists a
critical value m̂ satisfying H(P1(m̂)) = 0, then the transversality condition satisfies

dv

dm
|m=m̂ =

( dv

dP1

dP1

dm

)

|m=m̂ 6= 0, (31)
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where

dv

dP1
=

−η(a2 +m+ P1)(3P1 +m+ 2a1 −K)

P1
, (32)

dP1

dm
=
am+ (β2 − d)a2 + (d+ θ)a1 −

√
∆

2
√
∆

, (33)

which means that Hopf bifurcation can occur.
The proof is finished.

When (θ,m) ∈ C1, we have a similar conclusion for E2.

Theorem 4.3. Assume (θ,m) ∈ C1, then the positive equilibrium E2 of system (8)
is asymptotically stable when h(P2) > 0; E2 is unstable when h(P2) < 0, and Hopf
bifurcation occurs if h(P2) = 0.

4.3. Saddle-node bifurcation for (θ,m) ∈ C3. According to Theorem 3.1, when
(θ,m) ∈ C3, two positive equilibria E1 and E3 coalesce at an unique positive equi-

librium denoted by E∗(P ∗, Z∗) with P ∗ = − b
2a and Z∗ = − η(m∗−b)(K−m∗+b)(a1−b)

4a2b
,

where a = β2 − d− θ, b = am∗ + (β2 − d)a2 − (d+ θ)a1.
When (θ,m) ∈ C3, we have from (16) that m satisfies

m = m∗ =
−(d+ θ)a1 − (β2 − d)a2 + 2

√
β2a1a2θ

β2 − d− θ
. (34)

And a straightforward calculation gives that one eigenvalue of Jacobian matrix

of system (8) at E∗ is zero, the other is −η(a2+m+P∗)
P∗

h(P ∗). By (28), we have that
h(P ∗) = 0 is equivalent to

K = K∗ = P ∗ +m∗ +
P ∗(P ∗ +m∗)(a1 + P ∗)

(P ∗)2 −m∗a1
, (35)

In the following, we will consider the dynamical behavior of system (8) at the
equilibrium E∗ in two cases: K 6= K∗ and K = K∗, respectively.

When K 6= K∗, the relevant positive equilibrium E∗ is a Lyapunov-type equilib-
rium. The transformation

x = P − P ∗ and y = Z − Z∗ (36)

brings E∗ to the origin, then system (8) in a neighborhood of the origin becomes










dx

dt
= −η(a2 +m+ P ∗)

P ∗ h(P ∗)x − P ∗(a2 +m+ P ∗)y + ψ(x, y)

dy

dt
= φ(x, y),

(37)

where

ψ(x, y) = η(K − 2m− a1 − 3P ∗)(a2 +m+ P ∗)x2 − (a2 +m+ 2P ∗)xy

+ η(K − 3m− a1 − a2 − 4P ∗)x3 − x2y − ηx4,

φ(x, y) = Z∗ax2 + ax2y.

Let the right hand side of the first equation of (37) be zero, we obtain a function

for x in terms of y by implicit function theorem [34], x = u(y) = − (P∗)2

ηh(P∗)y + · · ·
with u(0) = 0.
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Substituting x = u(y) into φ(x, y), we have

φ(u(y), y) =
(P ∗)∗Z∗a

b2h2(P ∗)
y2 + o(y2), (38)

which shows that the equilibrium E∗ is a stable saddle-node [35].
Therefore, we have the following theorem.

Theorem 4.4. If m = m∗ and K 6= K∗, the equilibrium E∗ of system (8) is a
stable saddle-node, where m∗ and K∗ are given in (34) and (35) respectively.

4.4. Bogdanov-Takens bifurcation for (θ,m) ∈ C3. Based on the discussion in
subsection 4.3, we have that system (8) at E∗ has a zero eigenvalues with multiplicity
2 when K = K∗, which suggests that the equilibrium E∗ may undergo a Bogdanov-
Takens bifurcation. Through the further analysis, the following theorem will be
given and proved.

Theorem 4.5. If m = m∗, K = K∗ and K∗ 6= 3P ∗+a1+2m∗, then the equilibrium
E∗ of system (8) is a cusp of codimension 2 (a Bogdanov-Takens bifurcation point),
where m∗ and K∗ are given in (34) and (35) respectively.

Proof. Similar to the process which leads to (37), then we have






















dx

dt
= −P ∗(a2 +m+ P ∗)y + η(K − 2m− a1 − 3P ∗)(a2 +m+ P ∗)x2

+R10(x, y),

dy

dt
= Z∗ax2 +R20(x, y),

(39)

where Ri0(i = 1, 2) is C∞ in (x, y) and Ri0 = O(|(x, y)|3).
Introducing new variables

x1 = x and y1 = −P ∗(a2 +m+ P ∗)y, (40)

system (39) becomes










dx1
dt

= y1 + a11x1y1 + a20x
2
1 +R11(x1, y1),

dy1
dt

= b20x
2
1 +R21(x1, y1),

(41)

where Ri1(i = 1, 2) is C∞ in (x1, y1) and Ri1 = O(|(x1, y1)|3), and

a11 =
a2 +m+ 2P ∗

P ∗(a2 +m+ P ∗)
> 0,

a20 = η(K − 2m− a1 − 3P ∗)(a2 +m+ P ∗),

b20 = −P ∗(a2 +m+ P ∗)Z∗a > 0. (42)

Making the near-identity transformation

x2 = x1, y2 = y1 + a11x1y1 + a20x
2
1 +R11(x1, y1), (43)

we have














dx2
dt

= y2,

dy2
dt

= b20x
2
2 + a11y2

y2 − a20x
2
2

1 + a11x2
+ 2a20x2y2 +R22(x2, y2),

(44)

where R22 is C∞ in (x1, y2) and R22 = O(|(x2, y2)|3).
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Furthermore, utilizing the near-identity transformation

dt = (1 + a11x2)dτ, (45)

we obtain










dx2
dτ

= (1 + a11x2)y2,

dy2
dτ

= b20x
2
2 + 2a20x2y2 + a11y

2
2 +R23(x2, y2),

(46)

where R23 is C∞ in (x2, y2) and R23 = O(|(x2, y2)|3).
By a time reparameterization

u = x2 and v = (1 + a11x2)y2, (47)

we obtain










du

dτ
= v,

dv

dτ
= b20u

2 + 2a20uv +R24(u, v),

(48)

where R24 is C∞ in (u, v) and R24 = O(|(u, v)|3).
According to (47) and P ∗ = − b

2a , it is easy to see that b20 > 0. And note that
K∗ 6= 3P ∗ + a1 + 2m∗, we have a20 6= 0.

Hence, the equilibrium E∗ of system (8) is a cusp of codimension 2 [36]. The
proof is completed.

Next, we study system (8) by perturbing the parameters (θ,m) in a small neigh-
borhood of (K∗,m∗) when K∗ 6= 3P ∗ + a1 + 2m∗. Thus we let

{

K = K∗ + ǫ1,

m = m∗ + ǫ2,
(49)

in system (8) and we discuss the bifurcations of the resulting system


































dP

dt
= (a2 +m∗ + ǫ2 + P )

[

η(P +m∗ + ǫ2)(K + ǫ1 −m∗ − ǫ2 − P )(a1 + P )

− PZ
]

,

dZ

dt
= β2P (a2 +m∗ + ǫ2 + P )Z − d(a1 + P )(a2 +m∗ + ǫ2 + P )Z

− θ(P +m∗ + ǫ2)(a1 + P )Z,

(50)
for sufficiently small (ǫ1, ǫ2).

System (50) has a cusp point (P ∗, Z∗) if (ǫ1, ǫ2) = (0, 0). Using the substitution
{

P̄ = P − P ∗,

Z̄ = Z − Z∗,
(51)

and expanding the right side of system (50) into Taylor series about the origin, we
get















dP̄

dt
= (p00 + p10P̄ + p20P̄

2 + p30P̄
3 + p40P̄

4) + (p01 + p11P̄ + p21P̄
2)Z̄,

dZ̄

dt
= (q00 + q10P̄ + q20P̄

2) + (q01 + q11P̄ + q21P̄
2)Z̄,

(52)
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where

p00 = η[ǫ2(K − 2m∗ − 2P ∗ − ǫ2) + ǫ1(m
∗ + ǫ2 + P ∗)](a1 + P ∗)

(a2 +m∗ + ǫ2 + P ∗),

p10 = η{(a2 +m∗ + P ∗ + ǫ2)[ǫ2(K − 2m∗ − 4P ∗ − 2a1 − ǫ2)

+ ǫ1(a1 + 2P ∗ +m∗ + ǫ2)]

+ (a1 + P ∗)[ǫ2(K − 2m∗ − 2P ∗ − ǫ2) + ǫ1(m
∗ + ǫ2 + P ∗)]},

p01 = −P ∗(a2 +m∗ + P ∗ + ǫ2),

p11 = −(a2 +m∗ + 2P ∗ + ǫ2),

p20 = η{(K − 2m∗ − a1 − 3P ∗ − 2ǫ2)(a2 +m∗ + P ∗ + ǫ2)

+ ǫ2(K − 2m∗ − 4P ∗ − 2a1 − ǫ2) + ǫ1(a1 + a2 + 2P ∗ + 2m∗ + 2ǫ2)},
p21 = −1,

p30 = η{(K − 3m∗ − 4P ∗ − a1 − a2 − 3ǫ2) + ǫ1},
p40 = −η,
q00 = ǫ2((β2 − d− θ)P ∗ − (d+ θ)a1)Z

∗,

q10 = ǫ2(β2 − d− θ)Z∗,

q01 = ǫ2((β2 − d− θ)P ∗ − (d+ θ)a1),

q11 = ǫ2(β2 − d− θ),

q20 = (β2 − d− θ)Z∗,

q21 = β2 − d− θ. (53)

Following the transformation
{

P̃ = P̄ ,

Z̃ = (p00 + p10P̄ + p20P̄
2 + p30P̄

3 + p40P̄
4) + (p01 + p11P̄ + p21P̄

2)Z̄,
(54)

system (52) is rewritten in the following form














dP̃

dt
= Z̃,

dZ̃

dt
= f00 + f10P̃ + f01Z̃ + f11P̃ Z̃ + f20P̃

2 + f02Z̃
2 +O(‖(P̃ , Z̃)‖3),

(55)

where

f00 = p01q00 − p00q01,

f10 = p01q10 + p11q00 + p00q11 − p10q01,

f01 = p10 + q01 −
p00p11
p01

,

f11 = 2p20 + q11 +
p00p

2
11 − p10p01p11 − 2p00p01p21

p201
,

f20 = p01q20 + p11q10 + p21q00 − p20q01 − p10q11 − p00q21 +
p11(p10q01 + p00q11)

p01

− p00(p
2
11 − p21)q01
p201

,

f02 = p11. (56)
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By rescaling the time variable t using

t = (1 − f02Z̃)τ, (57)

system (55) becomes


























dP̃

dτ
= (1− f02Z̃)Z̃,

dZ̃

dτ
= (1− f02Z̃)(f00 + f10P̃ + f01Z̃ + f11P̃ Z̃ + f20P̃

2 + f02Z̃
2

+O(‖(P̃ , Z̃)‖3)).

(58)

Furthermore, let
{

P̂ = P̃ ,

Ẑ = (1− f02Z̃)Z̃,
(59)

then we have


























dP̂

dτ
= Ẑ,

dẐ

dτ
= f00 + (f10 − 2f00f02)P̂ + f01Ẑ + (f20 + f00f

2
02 − 2f10f02)P̂

2

+ (f11 − f01f02)P̂ Ẑ +O(‖(P̂ , Ẑ)‖3).

(60)

By (53), we can compute

lim
ǫ1→0,ǫ2→0

(f11 − f01f02) = η(K − 2m∗ − a1 − 3P ∗)(a2 +m∗ + P ∗) 6= 0, (61)

thus setting P̂ = P − f01
f11−f01f02

and renaming P to be P̂ , then system (60) is

equivalent to














dP̂

dτ
= Ẑ,

dẐ

dτ
= g00 + g10P̂ + g20P̂

2 + g11P̂ Ẑ +O(‖(P̂ , Ẑ)‖3).
(62)

where

g00 = f00 −
f01(f10 − 2f00f02)

f11 − f01f02
+
f2
01(f20 + f00f

2
02 − 2f10f02)

(f11 − f01f02)2
,

g10 = f10 − 2f00f02 −
2f01(f20 + f00f

2
02 − 2f10f02)

f11 − f01f02
,

g20 = f20 + f00f
2
02 − 2f10f02,

g11 = f11 − f01f02. (63)

From (53) and (63), we are able to have

lim
ǫ1→0,ǫ2→0

g11 = η(K − 2m∗ − a1 − 3P ∗)(a2 +m∗ + P ∗) 6= 0, (64)

and

lim
ǫ1→0,ǫ2→0

g20 = −P ∗(a2 +m∗ + P ∗)(β2 − d− θ)Z∗ 6= 0, (65)
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therefore, by performing the change of new variables: ξ1 =
g2

11

g20
P̂ , ξ2 =

g3

11

g2

20

Ẑ, t =
g20
g11
τ , which finally leads that system (3) takes the following generic normal form















dξ1
dt

= ξ2,

dξ2
dt

=
g00g

4
11

g320
+
g10g

2
11

g220
ξ1 + ξ21 + ξ1ξ2 +O(‖(ξ̂1, ξ̂2)‖3).

(66)

Corollary 1. If m = m∗, K = K∗ and K∗ = 3P ∗+a1+2m∗, then the equilibrium
E3 of system (8) is a cusp with the codimension at least 3 (a degenerate Bogdanov-
Takens bifurcation point), where m∗ and K∗ are given in (34) and (35) respectively.

4.5. Hopf bifurcation. From Theorem 4.2 and 4.3, the positive equilibrium E1

(or E2) is a center-type non-hyperbolic equilibrium of system (8) when h(P1) = 0
(or h(P2) = 0). In this case, system (8) may undergo a Hopf bifurcation at the

equilibrium E1 (or E2). Let E(P̃ , Z̃) be any one of the candidates E1 and E2.

To determine the stability of the positive equilibrium E(P̃ , Z̃) and the direction
of the Hopf bifurcation, the relevant Liapunov coefficients of the above mentioned
equilibria will be computed.

Making the transformation

x = P − P̃ and y = Z − Z̃ (67)

then by expanding the right hand side of the corresponding system in a Taylor series
about the origin, we get











dx

dt
= a01y + a20x

2 + a11xy + a30x
3 + a21x

2y +O(x4),

dy

dt
= b10x+ b11xy + b20x

2 + b21x
2y,

(68)

where

a01 = −P̃ (a2 +m+ P̃ ),

a11 = −(a2 +m+ 2P̃ ),

a20 = η(K − 2m− a1 − 3P̃ )(a2 +m+ P̃ ),

a21 = −1,

a30 = η(K − 3m− a1 − a2 − 4P̃ ),

b10 = (2aP̃ + b)Z̃,

b11 = (2aP̃ + b),

b20 = Z̃a,

b21 = a.

a and b here are given in (11).
Applying the formula of the Liapunov number σ for the focus at the origin of

(68) in [35], we obtain

σ = − 3π

2∆
3

2

(−2a01a20b20 − a11a20b10 + 3a01a30b10), (69)

where it follows from the proof of Theorem 4.2 that ∆ = −a01b10 = (2aP̃ + b)(a2 +

m+ P̃ )P̃ Z̃ > 0.
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Figure 4. The Hopf bifurcation diagram of system (8) withm = 8
and θ as a bifurcation parameter.

Theorem 4.6. For system (8), fix all parameters except m > 0 (or θ > 0) and

suppose there exists mk > 0 (or θk > 0) such that h(P̃ ,mk)=0 (or h(P̃ , θk)=0) and
∂h(P̃ ,m)

∂m
|m=mk

6= 0 (or ∂h(P̃ ,θ)
∂θ

|θ=θk 6= 0) for the equilibrium E(P̃ , Z̃). If σ 6= 0,

then a curve of periodic solutions bifurcation from E(P̃ , Z̃) such that

(i) a supercritical Hopf bifurcation occurs at E(P̃ , Z̃) if σ < 0;

(ii) a subcritical Hopf bifurcation occurs at E(P̃ , Z̃) if σ > 0.

5. Numerical simulations. In this section, the previous theoretical results will
be numerically performed by using MATLAB 7.1 and an assistive software Matcont
(a graphical Matlab package). The relevant parameter values are referenced from
[15, 16](see Table 1 for details).

Note that let E(P,Z) be any one positive equilibrium of system (8), then the
coordinates of the related positive equilibrium E(P ∗, Z∗) of system (3) is P ∗ =
P +m,Z∗ = β1Z.

We first study the impact of toxin released by phytoplankton on the dynamical
behaviors of system (3) through system (8) more intuitively, the Hopf bifurcation
diagram for system (8) with θ as a bifurcation parameter is drawn in Fig. 4, where
the value of m is fixed as 8. Fig. 4 shows that system (8) undergoes two Hopf
bifurcation points (H). The values of θ for H from left to right are 0.194742 and
0.201745, where the corresponding first Liapunov numbers are −5.531406e− 4 and
−4.126233e − 4 respectively. This means that a Hopf bifurcation occurs, which
generates limit cycles for model (8).

From Fig. 5, we find that the related dynamical behavior of system (3) depends
on the toxin level released by phytoplankton. The phytoplankton and zooplankton
is able to be in a stable state with θ small enough. With the increasing of θ,
system (3) has a limit cycle which is possible to be caused by the heavy growth of
phytoplankton and the mass death of zooplankton because of high concentrations
of toxin, which means that algal bloom is likely to occur. By comparing the above
case with less toxin, if one keeps θ increasing, the system then is able to become
stable again where the abundance of phytoplankton will be at a higher level. If
θ is large enough, system (3) is still stable, but in this case, zooplankton due to
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Figure 5. The variation of phytoplankton and zooplankton with
the increasing time and the phase plane diagram of system (3) with
m = 8 for different θ values, where the initial value is (20, 3).
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Figure 6. The Hopf bifurcation diagram of system (8) with
θ = 0.2 and m as a bifurcation parameter.

the powerful toxic substances dies out while the size of phytoplankton due to the
extinction of zooplankton reaches the environmental carrying capacity. Thus, we
can conclude that, toxin produced by phytoplankton has a significant effect on the
occurring and terminating algal blooms.

Similarly, in order to understand the influence of the refuge of phytoplankton
on the dynamical behavior of system (3) more clearly, our numerical experiments
are carried out by varying the value of refuge capacity m with other parameter
values fixed. With θ = 0.2, Fig. 6 depicts the the equilibrium curve of system
(8) and limit point bifurcation of cycle as m varies. From this figure, we see that
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Figure 7. The variation of phytoplankton and zooplankton with
the increasing time and the phase plane diagram of system (3) with
θ = 0.2 for different m values, where the initial value is (20, 3).

three Hopf bifurcation points for our systems appear when m changes from small
to large, where the values of m for H from small to large are 0.003364, 2.485566
and 8.220599, and the corresponding first Liapunov numbers are −1.817476e− 4,
−2.280040e− 4 and −4.253572e− 04 respectively.

At the same time, the equilibrium level of phytoplankton due to the refuge be-
comes large as the value of m grows, which shows that the population of phyto-
plankton can increase because the refuge effect protects phytoplankton from the
predation of zooplankton.

From Fig. 7, we observe that the related dynamical behavior of system (3)
also relies on the refuge capacity m. If m is not large, there is a limit cycle for
system (3). However, system (3) has a global asymptotically stable equilibrium
with the limit cycle disappearing as m becomes progressively larger. Keeping m
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θ as two parameters, where the values of m and θ for BT are
5.4248527 and 0.20944969 respectively. Note LP marked repre-
sents the limit point at which two positive equilibria collide into
one positive equilibrium, and BP represents branch point at which
positive equilibrium can disappears with the increase of the value
of the parameter θ orm.

increasing, the system is able to become oscillatory again where the abundance of
phytoplankton will be at a higher level by comparing the case with small m value.
With larger m, system (3) becomes stable again. If the value of m is large enough,
however, zooplankton due to the lack of touchable phytoplankton becomes extinct.
But phytoplankton population due to the excessive protection of the refuge effect
can achieve the environmental carrying capacity. We therefore come to a conclusion
that the refuge also pays an positive role in the growth of phytoplankton and has
an impressible effect on the occurrence and termination of algal blooms.

With the purpose of exploring the influences of toxin and refuge on the dynamical
behavior of our systems in combination, by choosingm and θ as two bifurcation pa-
rameters, the corresponding bifurcation diagram is presented in Fig. 8 respectively.
One Bogdanov-Takens point (BT) can be detected. According to the theoretical
analysis, there is an equilibrium with a double zero eigenvalues for our system at
BT point.

Beside, in order to study the complicated dynamics of system (8) at the critical
positive equilibrium E(P ∗, Z∗) in subsection 4.3 and 4.4, we first fix the value of θ
(θ = 0.25) and choose K and m as two bifurcation parameters to verify the exis-
tence of BT bifurcation of codimension 2 in system (8) by numerical simulations. In
this case, we have that there is an unique equilibrium (P ∗, Z∗) = (3.1257, 1.0368)
for (K∗,m∗) = (12.7759, 0.6146). By perturbing (K,m) in a small neighbor-
hood of (K∗,m∗), Fig. 9 shows that there is an unique limit cycle for small
values (ǫ1, ǫ2) = (−0.05,−0.03). Second, we select θ as an additional bifurca-
tion parameter to checkout the existence of BT bifurcation of codimension 3. The
unique equilibrium (P ∗, Z∗) = (3.1257, 1.0368) is calculated when (K∗,m∗, θ∗) =
(12.7759, 0.6146, 0.2681). By perturbing (K,m, θ) in a small neighborhood of (K∗,
m∗, θ∗), the numerical simulations display that two limit cycles can appear for
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Figure 9. The phase portraits of system (8) by perturbing (K,m)
in a small neighborhood of (K∗,m∗) = (12.7759, 0.6146).

(ǫ1, ǫ2, ǫ3) = (0.0191099, 0.000836,−0.0001), see Fig. 10-13. Therefore, one can see
that BT bifurcation with different codimension can occur in system (8) when the
bifurcation parameters are chosen properly, which is consistent with our theoretical
analysis as before.

6. Discussion. In this paper, we have studied a model incorporating the effects
of both refuge and toxin of phytoplankton on the phytoplankton-zooplankton in-
teractions. Despite its simplicity, our model still gives fascinating insights into the
phenomenons occurring in lakes.

Comparing the study about the phytoplankton-zooplankton model with toxin in
[15], the complex dynamical behaviors can be observed for a suitable set of param-
eter values in our model with the effect of phytoplankton refuge. By selecting the
related parameter values of toxin release rate and refuge at some certain levels, our
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Figure 10. The phase portraits of system (8) by taking
(K,m, θ) = (K∗,m∗, θ∗) = (12.7759, 0.6146, 0.2681) and perturb-
ing (K,m, θ) in a small neighborhood of (K∗,m∗, θ∗). The partial
enlarged details of S1,S2 and S3 marked are shown by following fig.
11-13.

analysis indicates that two different positive equilibria can exist. And more compli-
cated bifurcations, for example, Bogdanov-Takens bifurcation of high codimension,
can be shown. These complexities are unlikely to be explained by some previous
models which only consider the effect of toxic chemicals.

The previous results in [15, 16, 17, 18, 19] have demonstrated that the level of
toxicity plays a decisive role in the termination of plankton blooms. In order to
verify those statements, we fix the value of refuge capacity and vary the value of
toxin production rate to explore the dynamical behaviors of our proposed system.
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Figure 11. The local phase portraits of system (8) for
(ǫ1, ǫ2, ǫ3) = (0.01665, 0.0001,−0.0001) in Fig.10.
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Figure 12. The local phase portraits of system (8) for
(ǫ1, ǫ2, ǫ3) = (0.322, 0,−0.0001) in Fig. 10.

With the refuge capacity in a proper range, our study suggests that the phenomenon
of periodic oscillations disappears and the ecological system becomes more stable
when the concentration of toxin overtakes a threshold, which means that the same
result can be obtained in our study.

However, our study also shows more complicated interactions between phyto-
plankton and zooplankton. Especially, when the refuge capacity is fixed in a certain
range, the periodic oscillations can be developed from nonexistence to existence as
toxin production rate varies. In biologically, this means that various amounts of
toxin released by phytoplankton may act as a biological trigger for algal blooms.
In addition, when the system is in a stable state for small toxin production rate,
the equilibrium level of phytoplankton can increase as the the toxin production rate
increases, which is mainly because the death of zooplankton due to the increasing
of toxin increases.

For the sake of studying the effect of refuge, keeping toxin production rate at
a fixed level, we discuss the dynamical behaviors shown in our model by chang-
ing the value of refuge capacity. Our study indicates that the refuge does make a
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Figure 13. The local phase portraits of system (8) for
(ǫ1, ǫ2, ǫ3) = (0.0191099, 0.000836,−0.0001) in Fig. 10.

contribution to increasing the population of phytoplankton and reducing the op-
portunity of phytoplankton from extinction since it can lead to the decrease of the
predation ability of zooplankton, which is consistent with the previous finding about
predation-prey interactions in [21].

Besides, our findings suggest that, when refuge capacity is very small, the phe-
nomenon of periodic oscillations can fade away gradually with the increase of phy-
toplankton population in refuge. When refuge capacity further increases, however,
our system can experience the oscillations of the population sizes of phytoplankton
and zooplankton and then become stable again. Therefore, the moderate refuge
of phytoplankton may serve as a biological control not only for the termination of
algal blooms but also for the occurrence of algal blooms.

From our study, it is clear that the dynamical behaviors of system (3) we propose
rely on the refuges of phytoplankton and toxin produced by phytoplankton. And
the significant impacts of both phytoplankton refuge and toxin on the occurrence
or termination of algal bloom should not be ignored in lake modelling.

A good understanding of two natural behaviors of some phytoplankton, refuge
and toxin that impact on the dynamical behaviors of lake ecosystem, is an impor-
tance when making decisions regarding prediction and control of algal bloom in
lakes. Besides refuge and toxin, however, a lot of factors mentioned in [5, 6, 7,
8, 9, 10, 11, 12] and references therein may effect the phytoplankton-zooplankton
interactions and the occurrence and termination of algal bloom in lakes. Therefore,
the mechanism of algal bloom in lakes is still needed to be studied continually.
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